1
|
Xiang M, Gao Y, Zhou Y, Wang M, Yao X. A novel nomogram based on cell cycle-related genes for predicting overall survival in early-onset colorectal cancer. BMC Cancer 2023; 23:595. [PMID: 37370046 DOI: 10.1186/s12885-023-11075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Although the incidence of late-onset colorectal cancer (LOCRC) has decreased, the incidence of early-onset colorectal cancer (EOCRC) is still rising dramatically. Heterogeneity in the genomic, biological, and clinicopathological characteristics between EOCRC and LOCRC has been revealed. Therefore, the previous prognostic models based on the total CRC patient population might not be suitable for EOCRC patients. Here, we constructed a prognostic classifier to enhance the precision of individualized treatment and management of EOCRC patients. METHODS EOCRC expression data were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The regulatory pathways were explored by gene set enrichment analysis (GSEA). The prognostic model was developed by univariate Cox-LASSO-multivariate Cox regression analyses of GEO samples. TCGA samples were used to verify the model. The expression and mutation profiles and immune landscape of the high-risk and low-risk cohorts were analyzed and compared. Finally, the expression and prognostic value of the model genes were verified by immunohistochemistry and qRT‒PCR analysis. RESULTS The cell cycle was identified as the most significantly enriched oncological signature of EOCRC. Then, a 4-gene prognostic signature comprising MCM2, INHBA, CGREF1, and KLF9 was constructed. The risk score was an independent predictor of overall survival. The area under the curve values of the classifier for 1-, 3-, and 5-year survival were 0.856, 0.893, and 0.826, respectively, in the training set and 0.749, 0.858, and 0.865, respectively, in the validation set. Impaired DNA damage repair capability (p < 0.05) and frequent PIK3CA mutations (p < 0.05) were found in the high-risk cohort. CD8 T cells (p < 0.05), activated memory CD4 T cells (p < 0.01), and activated dendritic cells (p < 0.05) were clustered in the low-risk group. Finally, we verified the expression of MCM2, INHBA, CGREF1, and KLF9. Their prognostic value was closely related to age. CONCLUSION In this study, a robust prognostic classifier for EOCRC was established and validated. The findings may provide a reference for individualized treatment and medical decision-making for patients with EOCRC.
Collapse
Affiliation(s)
- Meijuan Xiang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
- Department of General Surgery, Foresea Life Insurance Shaoguan Hospital, Shaoguan, 512000, China
| | - Yuan Gao
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yue Zhou
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Muqing Wang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xueqing Yao
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Zhao D, Yuan H, Fang Y, Gao J, Li H, Li M, Cong H, Zhang C, Liang Y, Li J, Yang H, Yao M, Du M, Tu H, Gan Y. Histone Methyltransferase KMT2B Promotes Metastasis and Angiogenesis of Cervical Cancer by Upregulating EGF Expression. Int J Biol Sci 2023; 19:34-49. [PMID: 36594087 PMCID: PMC9760441 DOI: 10.7150/ijbs.72381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
Evidence has indicated that lysine methyltransferase 2B (KMT2B), a major H3K4 tri-methyltransferase (H3K4me3), contributes to the development of various cancers; however, its role in cervical cancer (CC) is unclear. In this study, increased KMT2B expression was observed in human CC specimens and significantly associated with poor prognosis. The condition medium of KMT2B-overexpressing cells facilitated angiogenesis in vitro. In the subcutaneous model of human CC, KMT2B overexpression significantly promoted tumor growth and increased tumor vascular density. Meanwhile, KMT2B enhanced the migration and invasion of CC cells and promoted their metastasis to bone in a tail-vein-metastasis model. Mechanistically, the genes upregulated by KMT2B were significantly enriched in PI3K-AKT pathway. Using H3K4me3 ChIP-seq analysis, we found increased H3K4me3 level at EGF promoter region in KMT2B-overexpressing HeLa cells. ChIP-qPCR experiments not only confirmed the increased H3K4me3 level of EGF promoter but also determined that in KMT2B-overexpressing HeLa cells, KMT2B increased binding with the EGF promoter. Blocking EGFR diminished the KMT2B-induced PI3K-AKT signaling activation and CC cell migration and invasion. Moreover, EGFR inhibitors abolished the KMT2B-drived tube formation capacity of HUVECs. In conclusion, KMT2B facilitates CC metastasis and angiogenesis by upregulating EGF expression, and may serve as a new therapeutic target for CC.
Collapse
Affiliation(s)
- Dan Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Yuan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, Yunnan Province, China
| | - Jian Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengge Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Cong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenglin Zhang
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, 415 Fengyang road, Shanghai, China
| | - Yiyi Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hancao Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Du
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Kaźmierczak-Siedlecka K, Marano L, Merola E, Roviello F, Połom K. Sodium butyrate in both prevention and supportive treatment of colorectal cancer. Front Cell Infect Microbiol 2022; 12:1023806. [PMID: 36389140 PMCID: PMC9643746 DOI: 10.3389/fcimb.2022.1023806] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/05/2022] [Indexed: 07/21/2023] Open
Abstract
Accumulating evidence suggests that selected microbiota-derived metabolites play a significant role in both tumor prevention and supportive treatment of cancer. Short-chain fatty acids (SCFAs), i.e., mainly acetate, proprionate, and butyrate, are one of them. Nowadays, it is known that butyrate is a key microbial metabolite. Therefore, in the current review, we focused on butyrate and sodium butyrate (NaB) in the context of colorectal cancer. Notably, butyrate is characterized by a wide range of beneficial properties/activities. Among others, it influences the function of the immune system, maintains intestinal barrier integrity, positively affects the efficiency of anti-cancer treatment, and may reduce the risk of mucositis induced by chemotherapy. Taking into consideration these facts, we analyzed NaB (which is a salt of butyric acid) and its impact on gut microbiota as well as anti-tumor activity by describing molecular mechanisms. Overall, NaB is available as, for instance, food with special medical purposes (depending on the country's regulation), and its administration seems to be a promising option for colorectal cancer patients.
Collapse
Affiliation(s)
| | - Luigi Marano
- Department of Surgical Oncology, University of Siena, Siena, Italy
| | - Elvira Merola
- Department of Surgical Oncology, University of Siena, Siena, Italy
| | - Franco Roviello
- Department of Surgical Oncology, University of Siena, Siena, Italy
| | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
4
|
Farooqi AA, Fayyaz S, Poltronieri P, Calin G, Mallardo M. Epigenetic deregulation in cancer: Enzyme players and non-coding RNAs. Semin Cancer Biol 2022; 83:197-207. [PMID: 32738290 DOI: 10.1016/j.semcancer.2020.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Data obtained from cutting-edge research have shown that deregulated epigenetic marks are critical hallmarks of cancer. Rapidly emerging scientific evidence has helped in developing a proper understanding of the mechanisms leading to control of cellular functions, from changes in chromatin accessibility, transcription and translation, and in post-translational modifications. Firstly, mechanisms of DNA methylation and demethylation are introduced, as well as modifications of DNA and RNA, with particular focus on N6-methyladenosine (m6A), discussing the effects of these modifications in normal cells and in malignancies. Then, chromatin modifying proteins and remodelling complexes are discussed. Many enzymes and accessory proteins in these complexes have been found mutated or have undergone differential splicing, leading to defective protein complexes. Epigenetic mechanisms acting on nucleosomes by polycomb repressive complexes and on chromatin by SWI/SNF complexes on nucleosome assembly/disassembly, as well as main mutated genes linked to cancers, are reviewed. Among enzymes acting on histones and other proteins erasing the reversible modifications are histone deacetylases (HDACs). Sirtuins are of interest since most of these enzymes not only deacylate histones and other proteins, but also post-translationally modify proteins adding a Mono-ADP-ribose (MAR) moiety. MAR can be read by MACRO-domain containing proteins such as histone MacroH2A1, with specific function in chromatin assembly. Finally, recent advances are presented on non-coding RNAs with a scaffold function, prospecting their role in assembly of chromatin modifying complexes, recruiting enzyme players to chromatin regions. Lastly, the imbalance in metabolites production due to mitochondrial dysfunction is presented, with the potential of these metabolites to inhibit enzymes, either writers, readers or erasers of epitranscriptome marks. In the perspectives, studies are overwied on drugs under development aiming to limit excessive enzyme activities and to reactivate chromatin modifying complexes, for therapeutic application. This knowledge may lead to novel drugs and personalised medicine for cancer patients.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | | | - Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni Km 7, 73100 Lecce, Italy.
| | - George Calin
- Department of Experimental Therapeutics, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, "Federico II" via Pansini 5, Napoli, Italy.
| |
Collapse
|
5
|
The High Expression of Minichromosome Maintenance Complex Component 5 Is an Adverse Prognostic Factor in Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4338793. [PMID: 35360518 PMCID: PMC8961428 DOI: 10.1155/2022/4338793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Background. Minichromosome maintenance (MCM) genes are crucial for genomic DNA replication and are important biomarkers in tumor biology. In this study, we aimed to identify the diagnostic, therapeutic, and prognostic value of the MCM2–10 genes in patients with lung cancer. Methods. We examined the expression levels, gene networks, and protein networks of lung cancer using data from the ONCOMINE, GeneMANIA, and STRING databases. We conducted a functional enrichment analysis of MCM2–10 using the clusterProfiler package using TCGA data. The correlation between the MCM2–10 expression and lung cancer prognosis was evaluated using Cox regression analysis. The influence of clinical variables on overall survival (OS) was evaluated using univariate and multivariate analyses. The TIMER database was used to evaluate the correlation between tumor infiltrating levels and lung cancer. Kaplan–Meier Plotter pan-cancer RNA sequencing was used to estimate the correlation between the MCM5 expression and OS in different immune cell subgroups in patients with lung adenocarcinoma (LUAD). Finally, the 1-, 3-, and 5-year predictions of LUAD were performed using nomogram and calibration analysis. Results. The expression of MCM2, 3, 4, 5, 6, 7, 8, and 10 in lung cancer was higher than that for normal samples. The MCM5 expression was associated with poor OS in patients with LUAD, and prognosis was related to TNM stage, smoking status, and pathological stage. The MCM5 expression is correlated with immune invasion in LUAD and may affect prognosis due to immune infiltration. Conclusion. MCM5 may serve as a molecular biomarker for LUAD prognosis.
Collapse
|
6
|
Lu W, Cao Y, Wu H, Ding Y, Song Z, Zhang Y, Fu Q, Li H. Research on RNA secondary structure predicting via bidirectional recurrent neural network. BMC Bioinformatics 2021; 22:431. [PMID: 34496763 PMCID: PMC8427827 DOI: 10.1186/s12859-021-04332-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA secondary structure prediction is an important research content in the field of biological information. Predicting RNA secondary structure with pseudoknots has been proved to be an NP-hard problem. Traditional machine learning methods can not effectively apply protein sequence information with different sequence lengths to the prediction process due to the constraint of the self model when predicting the RNA secondary structure. In addition, there is a large difference between the number of paired bases and the number of unpaired bases in the RNA sequences, which means the problem of positive and negative sample imbalance is easy to make the model fall into a local optimum. To solve the above problems, this paper proposes a variable-length dynamic bidirectional Gated Recurrent Unit(VLDB GRU) model. The model can accept sequences with different lengths through the introduction of flag vector. The model can also make full use of the base information before and after the predicted base and can avoid losing part of the information due to truncation. Introducing a weight vector to predict the RNA training set by dynamically adjusting each base loss function solves the problem of balanced sample imbalance. RESULTS The algorithm proposed in this paper is compared with the existing algorithms on five representative subsets of the data set RNA STRAND. The experimental results show that the accuracy and Matthews correlation coefficient of the method are improved by 4.7% and 11.4%, respectively. CONCLUSIONS The flag vector introduced allows the model to effectively use the information before and after the protein sequence; the introduced weight vector solves the problem of unbalanced sample balance. Compared with other algorithms, the LVDB GRU algorithm proposed in this paper has the best detection results.
Collapse
Affiliation(s)
- Weizhong Lu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.,Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yan Cao
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China. .,Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yijie Ding
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.,Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zhengwei Song
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu Zhang
- Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, China
| | - Qiming Fu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.,Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Haiou Li
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
7
|
Integrative Transcriptomic Network Analysis of Butyrate Treated Colorectal Cancer Cells. Cancers (Basel) 2021; 13:cancers13040636. [PMID: 33562636 PMCID: PMC7914650 DOI: 10.3390/cancers13040636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 01/14/2023] Open
Abstract
Diet-derived histone deacetylase inhibitor (HDACi), butyrate, alters global acetylation and consequently global gene expression in colorectal cancer (CRC) cells to exert its anticancer effects. Aberrant microRNA (miRNA) expression contributes to CRC development and progression. Butyrate-mediated modulation of microRNA (miRNA) expression remains under-investigated. This study employed a systems biology approach to gain a comprehensive understanding of the complex miRNA-mRNA interactions contributing to the butyrate response in CRC cells. Next-generation sequencing, gene ontology (GO) and pathway enrichment analyses were utilized to reveal the extent of butyrate-mediated gene regulation in CRC cells. Changes in cell proliferation, apoptosis, the cell cycle and gene expression induced by miRNAs and target gene knockdown in CRC cells were assessed. Butyrate induced differential expression of 113 miRNAs and 2447 protein-coding genes in HCT116 cells. Butyrate also altered transcript splicing of 1591 protein-coding genes. GO, and pathway enrichment analyses revealed the cell cycle to be a central target of the butyrate response. Two butyrate-induced miRNAs, miR-139 and miR-542, acted cooperatively with butyrate to induce apoptosis and reduce CRC cell proliferation by regulating target genes, including cell cycle-related EIF4G2 and BIRC5. EIF4G2 RNA interference mimicked the miR-139-mediated reduction in cell proliferation. The cell cycle is a critical pathway involved in the butyrate response of CRC cells. These findings reveal novel roles for miRNAs in the cell cycle-related, anticancer effects of butyrate in CRC cells.
Collapse
|
8
|
Chang SC, Shen MH, Liu CY, Pu CM, Hu JM, Huang CJ. A gut butyrate-producing bacterium Butyricicoccus pullicaecorum regulates short-chain fatty acid transporter and receptor to reduce the progression of 1,2-dimethylhydrazine-associated colorectal cancer. Oncol Lett 2020; 20:327. [PMID: 33101496 PMCID: PMC7577080 DOI: 10.3892/ol.2020.12190] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Gut microbes influence tumor development and progression in the intestines and may provide a novel paradigm for the treatment of colorectal cancer (CRC). Gut dysbiosis may be associated with the development and progression of CRC. Identifying the interactions between the colonic tract and gut microbiota may provide novel information relevant to CRC prevention. The present study examined the effects of butyrate-producing Butyricicoccus pullicaecorum (B. pullicaecorum) on mice with 1,2-dimethylhydrazine (DMH)-induced CRC and the microbial metabolite of B. pullicaecorum on CRC cells. Immunohistochemical staining of the mouse colon tissues and reverse transcription PCR of CRC cells were used to determine the protein and mRNA expression levels of the short-chain fatty acid (SCFA) transporter solute carrier family 5 member 8 (SLC5A8) and G-protein-coupled receptor 43 (GPR43). In CRC-bearing mice fed B. pullicaecorum, DMH-induced CRC regressed, body weight increased and serum carcinoembryonic antigen levels decreased. Notably, SLC5A8 and GPR43 were diffusely and moderately to strongly expressed in the neoplastic epithelial cells and underlying muscularis propria in the colons of the mice. In conclusion, administration of B. pullicaecorum or its metabolites improved the clinical outcome of CRC by activating the SCFA transporter and/or receptor. These results indicated that B. pullicaecorum was a probiotic with anti-CRC potential.
Collapse
Affiliation(s)
- Shih-Chang Chang
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Ming-Hung Shen
- Department of Surgery, Fu Jen Catholic University Hospital, New Taipei City 24352, Taiwan, R.O.C.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Chih-Yi Liu
- Department of Pathology, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan, R.O.C
| | - Chi-Ming Pu
- Division of Plastic Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Je-Ming Hu
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, Taipei 11490, Taiwan, R.O.C.,School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C
| | - Chi-Jung Huang
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C.,Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| |
Collapse
|