1
|
Yang J, Yuan X, Hao Y, Shi X, Yang X, Yan W, Chen L, Zhang D, Shen C, Li D, Zhu Z, Liu X, Zheng H, Zhang K. Proteins in pregnant swine serum promote the African swine fever virus replication: an iTRAQ-based quantitative proteomic analysis. Virol J 2023; 20:54. [PMID: 36978180 PMCID: PMC10043535 DOI: 10.1186/s12985-023-02004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
African swine fever (ASF) is a severe infectious disease caused by the African swine fever virus (ASFV), seriously endangering the global pig industry. ASFV possesses a large genome, strong mutation ability, and complex immune escape mechanisms. Since the first case of ASF was reported in China in August 2018, it has had a significant impact on social economy and food safety. In the present study, pregnant swine serum (PSS) was found to promote viral replication; differentially expressed proteins (DEPs) in PSS were screened and identified using the isobaric tags for relative and absolute quantitation technology and compared with those in non-pregnant swine serum (NPSS). The DEPs were analyzed using Gene Ontology functional annotation, Kyoto Protocol Encyclopedia of Genes and Genome pathway enrichment, and protein-protein interaction networks. In addition, the DEPs were validated via western blot and RT-qPCR experiments. And the 342 of DEPs were identified in bone marrow-derived macrophages cultured with PSS compared with the NPSS. The 256 were upregulated and 86 of DEPs were downregulated. The primary biological functions of these DEPs involved signaling pathways that regulate cellular immune responses, growth cycles, and metabolism-related pathways. An overexpression experiment showed that the PCNA could promote ASFV replication whereas MASP1 and BST2 could inhibit it. These results further indicated that some protein molecules in PSS were involved in the regulation of ASFV replication. In the present study, the role of PSS in ASFV replication was analyzed using proteomics, and the study will be provided a basis for future detailed research on the pathogenic mechanism and host interactions of ASFV as well as new insights for the development of small-molecule compounds to inhibit ASFV.
Collapse
Affiliation(s)
- Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xingguo Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yu Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xijuan Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xing Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Wenqian Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Lingling Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Dajun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Chaochao Shen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| | - Keshan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Avian IRF1 and IRF7 Play Overlapping and Distinct Roles in Regulating IFN-Dependent and -Independent Antiviral Responses to Duck Tembusu Virus Infection. Viruses 2022; 14:v14071506. [PMID: 35891486 PMCID: PMC9315619 DOI: 10.3390/v14071506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Avian interferon regulatory factors 1 and 7 (IRF1 and IRF7) play important roles in the host’s innate immunity against viral infection. Our previous study revealed that duck tembusu virus (DTMUV) infection of chicken fibroblasts (DF1) and duck embryo fibroblasts (DEFs) induced the expression of a variety of IFN-stimulated genes (ISGs), including VIPERIN, IFIT5, CMPK2, IRF1, and IRF7. IRF1 was further shown to play a significant role in regulating the up-expression of VIPERIN, IFIT5, and CMPK2 and inhibiting DTMUV replication. In this study, we confirm, through overexpression and knockout approaches, that both IRF1 and IRF7 inhibit DTMUV replication, mainly via regulation of type I IFN expression, as well as the induction of IRF1, VIPERIN, IFIT5, CMPK2, and MX1. In addition, IRF1 directly promoted the expression of VIPERIN and CMPK2 in an IFN-independent manner when IRF7 and type I IFN signaling were undermined. We also found that non-structural protein 2B (NS2B) of DTMUV was able to inhibit the induction of IFN-β mRNA triggered by Newcastle disease virus (NDV) infection or poly(I:C) treatment, revealing a strategy employed by DTMUV to evade host’s immunosurveillance. This study demonstrates that avian IRF7 and IRF1 play distinct roles in the regulation of type I IFN response during DTMUV infection.
Collapse
|
3
|
Hu F, Zhu T, Guo X, Yu K, Ma X, Liu C, Liu L, Gao Y, Song M, Wu J, Huang B, Li Y. Generation of duck Tembusu virus using a simple reverse genetic system in duck embryo fibroblast cells. J Virol Methods 2021; 300:114385. [PMID: 34843824 DOI: 10.1016/j.jviromet.2021.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/04/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022]
Abstract
Outbreaks of duck Tembusu virus (DTMUV) have caused serious economic losses in China since 2010. In this study, an infectious clone of the DTMUV BZ-2010strain, isolated from layer cherry duck in China, was constructed using the bacterium-free infectious subgenomic-amplicons method. The subgenomic-amplicons of the human cytomegalovirus promoter (pCMV) at the 5' terminus of the first DNA fragment, the entire genome of DTMUV, and the hepatitis delta ribozyme followed by the simian virus 40 polyadenylation signal (HDR/SV40pA) at the 3' terminus of the last DNA fragment were synthesized and amplified by PCR in three DNA fragments. The pCMV and HDR/SV40pA were used to drive the viral RNA transcription and generate a full-length RNA transcript of the virus, and were found to be effective in reassembling DTMUV in duck embryo fibroblast cells. The RNA transcripts from the infection clone were infectious in duck embryo fibroblast cells, generating the reconstituted DTMUV. This study provided a valuable reverse genetic tool for the further study DTMUV pathogenesis.
Collapse
Affiliation(s)
- Feng Hu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Immunity and Diagnosis of Poultry Diseases, No. 1 Jiaoxiao Road, Jinan, Shandong, 250023, China.
| | - Tong Zhu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Immunity and Diagnosis of Poultry Diseases, No. 1 Jiaoxiao Road, Jinan, Shandong, 250023, China.
| | - Xiaozhen Guo
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Immunity and Diagnosis of Poultry Diseases, No. 1 Jiaoxiao Road, Jinan, Shandong, 250023, China.
| | - Kexiang Yu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Immunity and Diagnosis of Poultry Diseases, No. 1 Jiaoxiao Road, Jinan, Shandong, 250023, China.
| | - Xiuli Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Immunity and Diagnosis of Poultry Diseases, No. 1 Jiaoxiao Road, Jinan, Shandong, 250023, China.
| | - Cunxia Liu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Immunity and Diagnosis of Poultry Diseases, No. 1 Jiaoxiao Road, Jinan, Shandong, 250023, China.
| | - Liping Liu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Immunity and Diagnosis of Poultry Diseases, No. 1 Jiaoxiao Road, Jinan, Shandong, 250023, China.
| | - Yuehua Gao
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Immunity and Diagnosis of Poultry Diseases, No. 1 Jiaoxiao Road, Jinan, Shandong, 250023, China.
| | - Minxun Song
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Immunity and Diagnosis of Poultry Diseases, No. 1 Jiaoxiao Road, Jinan, Shandong, 250023, China.
| | - Jiaqiang Wu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Immunity and Diagnosis of Poultry Diseases, No. 1 Jiaoxiao Road, Jinan, Shandong, 250023, China.
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Immunity and Diagnosis of Poultry Diseases, No. 1 Jiaoxiao Road, Jinan, Shandong, 250023, China.
| | - Yufeng Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Immunity and Diagnosis of Poultry Diseases, No. 1 Jiaoxiao Road, Jinan, Shandong, 250023, China.
| |
Collapse
|
4
|
Li Y, Guo T, Wang X, Ni W, Hu R, Cui Y, Mi T, Hu S. ITRAQ-based quantitative proteomics reveals the proteome profiles of MDBK cells infected with bovine viral diarrhea virus. Virol J 2021; 18:119. [PMID: 34092256 PMCID: PMC8183066 DOI: 10.1186/s12985-021-01592-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 05/31/2021] [Indexed: 01/18/2023] Open
Abstract
Background Bovine viral diarrhea (BVD) which is caused by Bovine viral diarrhea virus (BVDV), is an acute, contagious disease. In spite of the use of vaccines and elimination projects, BVDV still causes severe economic losses to the cattle industry for the past few years. The current study presents a preliminary analysis of the pathogenic mechanisms from the perspective of protein expression levels in infected host cells at different points in time to elucidate the infection process associated with BVDV. Methods We used the isobaric tags for relative and absolute quantitation (iTRAQ) technology coupled with liquid chromatography-tandem mass spectrometric (LC–MS/MS) approach for a quantitative proteomics comparison of BVDV NADL-infected MDBK cells and non-infected cells. The functions of the proteins were deduced by functional annotation and their involvement in metabolic processes explored by KEGG pathway analysis to identify their interactions. Results There were 357 (47.6% downregulated, 52.4% upregulated infected vs. control), 101 (52.5% downregulated, 47.5% upregulated infected vs. control), and 66 (21.2% downregulated, 78.8% upregulated infected vs. control) proteins were differentially expressed (fold change > 1.5 or < 0.67) in the BVDV NADL-infected MDBK cells at 12, 24, and 48 h after infection. GO analysis showed that the differentially expressed proteins (DEPs) are mainly involved in metabolic processes, biological regulation and localization. KEGG enrichment analysis showed that some signaling pathways that involved in the regulation of BVDV NADL-infection and host resistance are significantly (P < 0.05) enriched at different stages of the BVDV NADL-infection, such as Endocytosis signaling pathway, FoxO signaling pathway, Homologous recombination signaling pathway and Lysosome pathway. Conclusions These results revealed that the DEPs in BVDV NADL-infected MDBK cells have a wide range of regulatory effects; in addition, they provide a lot of resources for the study of host cell proteomics after BVDV infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01592-2.
Collapse
Affiliation(s)
- Yaxin Li
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Tao Guo
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xiaokui Wang
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China.
| | - Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Yuying Cui
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Taotao Mi
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
5
|
Xiang C, Huang M, Xiong T, Rong F, Li L, Liu DX, Chen RA. Transcriptomic Analysis and Functional Characterization Reveal the Duck Interferon Regulatory Factor 1 as an Important Restriction Factor in the Replication of Tembusu Virus. Front Microbiol 2020; 11:2069. [PMID: 32983049 PMCID: PMC7480082 DOI: 10.3389/fmicb.2020.02069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Duck Tembusu virus (DTMUV) infection has caused great economic losses to the poultry industry in China, since its first discovery in 2010. Understanding of host anti-DTMUV responses, especially the innate immunity against DTMUV infection, would be essential for the prevention and control of this viral disease. In this study, transcriptomic analysis of duck embryonic fibroblasts (DEFs) infected with DTMUV reveals that several innate immunity-related pathways, including Toll-like, NOD-like, and retinoic acid-inducible gene I (RIG-I)-like receptor signaling pathways, are activated. Further verification by RT-qPCR confirmed that RIG-I, MAD5, TLR3, TLR7, IFN-α, IFN-β, MX, PKR, MHCI, MHCII, IL-1β, IL-6, (IFN-regulatory factor 1) IRF1, VIPERIN, IFIT5, and CMPK2 were up-regulated in cells infected with DTMUV. Through overexpression and knockdown/out of gene expression, we demonstrated that both VIPERIN and IRF1 played an important role in the regulation of DTMUV replication. Overexpression of either one significantly reduced viral replication as characterized by reduced viral RNA copy numbers and the envelope protein expression. Consistently, down-regulation of either one resulted in the enhanced replication of DTMUV in the knockdown/out cells. We further proved that IRF1 can up-regulate VIPERIN gene expression during DTMUV infection, through induction of type 1 IFNs as well as directly binding to and activation of the VIPERIN promoter. This study provides a genome-wide differential gene expression profile in cells infected with DTMUV and reveals an important function for IRF1 as well as several other interferon-stimulated genes in restricting DTMUV replication.
Collapse
Affiliation(s)
- Chengwei Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mei Huang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, China
| | - Ting Xiong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fang Rong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Linyu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Rui Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| |
Collapse
|
6
|
Lin Y, Yang J, He D, Li X, Li J, Tang Y, Diao Y. Differently Expression Analysis and Function Prediction of Long Non-coding RNAs in Duck Embryo Fibroblast Cells Infected by Duck Tembusu Virus. Front Immunol 2020; 11:1729. [PMID: 32849615 PMCID: PMC7417515 DOI: 10.3389/fimmu.2020.01729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 06/29/2020] [Indexed: 12/16/2022] Open
Abstract
Duck Tembusu virus (DTMUV), the causative agent of egg-drop syndrome, has caused substantial economic losses to duck industry. DTMUV infection leads to profound changes of host cells, including transcriptome and proteome. However, the lncRNA expression profile and the biological function of lncRNA have not been revealed. Therefore, DTMUV was used to inoculate duck embryo fibroblast cells (DEFs) for high-throughput RNA-sequencing (RNA-Seq). The results showed that 34 and 339 differently expressed lncRNAs were, respectively, identified at 12 and 24 h post-infection (hpi). To analyze their biological functions, target genes in cis were searched and the regulatory network was formed. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the target genes were strongly associated with immune system, signaling molecular and interaction, endocrine system, and signal transduction. The differently expressed lncRNAs were selected and verified by quantitative real-time polymerase chain reaction (RT-qPCR). Our study, for the first time, analyzed a comprehensive lncRNA expression profile in DEFs following DTMUV infection. The analysis provided a view on the important roles of lncRNAs in gene regulation and DTMUV infection.
Collapse
Affiliation(s)
- Yun Lin
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jing Yang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Dalin He
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Xudong Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jing Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
7
|
Abstract
The disease caused by duck Tembusu virus (DTMUV) is characterized by severe egg-drop in laying ducks. Currently, the disease has spread to most duck-raising areas in China, leading to great economic losses in the duck industry. In the recent years, DTMUV has raised some concerns, because of its expanding host range and increasing pathogenicity, as well as the potential threat to public health. Innate immunity is crucial for defending against invading pathogens in the early stages of infection. Recently, studies on the interaction between DTMUV and host innate immune response have made great progress. In the review, we provide an overview of DTMUV and summarize current advances in our understanding of the interaction between DTMUV and innate immunity, including the host innate immune responses to DTMUV infection through pattern recognition receptors (PRRs), signaling transducer molecules, interferon-stimulated genes (ISGs), and the immune evasion strategies employed by DTMUV. The aim of the review is to gain an in-depth understanding of DTMUV pathogenesis to facilitate future studies.
Collapse
|
8
|
Enhanced Immune Responses with Serum Proteomic Analysis of Hu Sheep to Foot-and-Mouth Disease Vaccine Emulsified in a Vegetable Oil Adjuvant. Vaccines (Basel) 2020; 8:vaccines8020180. [PMID: 32326379 PMCID: PMC7349086 DOI: 10.3390/vaccines8020180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/30/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022] Open
Abstract
Our previous study demonstrated that a vegetable oil consisting of soybean oil, vitamin E, and ginseng saponins (SO-VE-GS) had an adjuvant effect on a foot-and-mouth disease (FMD) vaccine in a mouse model. The present study was to compare the adjuvant effects of SO-VE-GS and the conventional ISA 206 on an FMD vaccine in Hu sheep. Animals were intramuscularly (i.m.) immunized twice at a 3-week interval with 1 mL of an FMD vaccine adjuvanted with SO-VE-GS (n = 10) or ISA 206 (n = 9). Animals without immunization served as control (n = 10). Blood was sampled prior to vaccination and at 2, 4, 6, and 8 weeks post the booster immunization to detect FMD virus (FMDV)-specific IgG. Blood collected at 8 weeks after the booster was used for the analyses of IgG1 and IgG2, serum neutralizing (SN) antibody, IL-4 and IFN-γ production, and proteomic profiles. The results showed that IgG titers rose above the protection level (1:128) in SO-VE-GS and ISA 206 groups after 2 and 4 weeks post the booster immunization. At 6 weeks post the booster, the ISA 206 group had 1 animal with IgG titer less than 1:128 while all the animals in the SO-VE-GS group retained IgG titers of more than 1:128. At 8 weeks post the booster, 6 of 9 animals had IgG titers less than 1:128 with a protective rate of 33.3% in the ISA 206 group, while only 1 of 10 animals had IgG titer less than 1:128 with a protective rate of 90% in the SO-VE-GS group, with statistical significance. In addition, IgG1, IgG2, SN antibodies, IL-4, and IFN-γ in the SO-VE-GS group were significantly higher than those of the ISA 206 group. Different adjuvant effects of SO-VE-GS and ISA 206 may be explained by the different proteomic profiles in the two groups. There were 39 and 47 differentially expressed proteins (DEPs) identified in SO-VE-GS compared to the control or ISA 206 groups, respectively. In SO-VE-GS vs. control, 3 immune related gene ontology (GO) terms and 8 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were detected, while 2 immune related GO terms and 5 KEGG pathways were found in ISA 206 vs. control. GO and KEGG analyses indicated that 'positive regulation of cytokine secretion', 'Th1/Th2 cell differentiation', and 'Toll-like receptor signaling pathways', were obviously enriched in the SO-VE-GS group compared to the other groups. Coupled with protein-protein interaction (PPI) analysis, we found that B7TJ15 (MAPK14) was a key DEP for SO-VE-GS to activate the immune responses in Hu sheep. Therefore, SO-VE-GS might be a promising adjuvant for an FMD vaccine in Hu sheep.
Collapse
|