1
|
Singh NK, Choudhary S. Bacterial and archaeal diversity in oil fields and reservoirs and their potential role in hydrocarbon recovery and bioprospecting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58819-58836. [PMID: 33410029 DOI: 10.1007/s11356-020-11705-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Hydrocarbon is a primary source of energy in the current urbanized society. Considering the increasing demand, worldwide oil productions are declining due to maturity of oil fields and because of difficulty in discovering new oil fields to substitute the exploited ones. To meet current and future energy demands, further exploitation of oil resources is highly required. Microorganisms inhabiting in these areas exhibit highly diverse catabolic activities to degrade, transform, or accumulate various hydrocarbons. Enrichment of hydrocarbon-utilizing bacteria in oil basin is caused by continuous long duration and low molecular weight hydrocarbon microseepage which plays a very important role as an indicator for petroleum prospecting. The important microbial metabolic processes in most of the oil reservoir are sulfate reduction, fermentation, acetogenesis, methanogenesis, NO3- reduction, and Fe (III) and Mn (IV) reduction. The microorganisms residing in these sites have critical control on petroleum composition, recovery, and production methods. Physical characteristics of heavy oil are altered by microbial biotransformation and biosurfactant production. Considering oil to be one of the most vital energy resources, it is important to have a comprehensive understanding of petroleum microbiology. This manuscript reviews the recent research work referring to the diversity of bacteria in oil field and reservoir sites and their applications for enhancing oil transformation in the target reservoir and geomicrobial prospecting scope for petroleum exploration.
Collapse
Affiliation(s)
- Nishi Kumari Singh
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan, 304022, India
| | - Sangeeta Choudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan, 304022, India.
| |
Collapse
|
2
|
Tiburcio SRG, Macrae A, Peixoto RS, da Costa Rachid CTC, Mansoldo FRP, Alviano DS, Alviano CS, Ferreira DF, de Queiroz Venâncio F, Ferreira DF, Vermelho AB. Sulphate-reducing bacterial community structure from produced water of the Periquito and Galo de Campina onshore oilfields in Brazil. Sci Rep 2021; 11:20311. [PMID: 34645885 PMCID: PMC8514479 DOI: 10.1038/s41598-021-99196-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
Sulphate-reducing bacteria (SRB) cause fouling, souring, corrosion and produce H2S during oil and gas production. Produced water obtained from Periquito (PQO) and Galo de Campina (GC) onshore oilfields in Brazil was investigated for SRB. Produced water with Postgate B, Postgate C and Baars media was incubated anaerobically for 20 days. DNA was extracted, 16S rDNA PCR amplified and fragments were sequenced using Illumina TruSeq. 4.2 million sequence reads were analysed and deposited at NCBI SAR accession number SRP149784. No significant differences in microbial community composition could be attributed to the different media but significant differences in the SRB were observed between the two oil fields. The dominant bacterial orders detected from both oilfields were Desulfovibrionales, Pseudomonadales and Enterobacteriales. The genus Pseudomonas was found predominantly in the GC oilfield and Pleomorphominas and Shewanella were features of the PQO oilfield. 11% and 7.6% of the sequences at GC and PQO were not classified at the genus level but could be partially identified at the order level. Relative abundances changed for Desulfovibrio from 29.8% at PQO to 16.1% at GC. Clostridium varied from 2.8% at PQO and 2.4% at GC. These data provide the first description of SRB from onshore produced water in Brazil and reinforce the importance of Desulfovibrionales, Pseudomonadales, and Enterobacteriales in produced water globally. Identifying potentially harmful microbes is an important first step in developing microbial solutions that prevent their proliferation.
Collapse
Affiliation(s)
- Samyra Raquel Gonçalves Tiburcio
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Andrew Macrae
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Raquel Silva Peixoto
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Felipe Raposo Passos Mansoldo
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy Lab, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Daniela Sales Alviano
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Celuta Sales Alviano
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Davis Fernandes Ferreira
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | | | | | - Alane Beatriz Vermelho
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy Lab, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|