1
|
Alrubaie MFK, Khafaji SS. Impacts of Pinus pinaster extract and L. carnitine on gene expression and reproductive efficacy against Mancozeb-induced testicular toxicity in male rats. Open Vet J 2025; 15:1166-1177. [PMID: 40276171 PMCID: PMC12017718 DOI: 10.5455/ovj.2025.v15.i3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/04/2025] [Indexed: 04/26/2025] Open
Abstract
Background A mancozeb, belonging to a pesticide, can induce testicular injury via free radical generation and antioxidant suppression. Pinus pinaster extract (Pycnogenol®) and L. carnitine have potent antioxidant properties. Aim This study aimed to compare and evaluate the therapeutic roles of P. pinaster extract (Pycnogenol®) and L. carnitine in eliminating and/or reducing the testicular toxicity of mancozeb in male rats, emphasizing their combined antioxidant. Methods Testicular toxicity was induced by oral administration of mancozeb (MCZ) at a dose of 313.6 mg/Kg for 4 weeks. Fifty male rats were allocated randomly into 5 groups, each group contained 10 rats. The first group (control group; C), second group (mancozeb group; MCZ) was orally administered 313.6 mg/Kg of mancozeb as a single dose/day for 4 weeks, third group (MCZ+PPE) received MCZ as the second group then administered P. pinaster extract (Pycnogenol®) at dose 40 mg/ Kg/day/ orally for 4 weeks, fourth group (MCZ+LC) was treated as the second group then administered L. carnitine at dose 200 mg/Kg/day/orally for 4 weeks. The fifth group (MCZ+PPE+LC) was treated as the second group and then received PPE and LC at the same doses mentioned in the third and fourth groups for 4 weeks. Results Testicular follicle-stimulating hormone receptor (FSHr) and luteinizing hormone receptor (LHr) gene expression was significantly upregulated in rats that received PPE + LC+ MCZ compared with the experimental rats. The seminal fluid quality was significantly elevated while abnormal morphology significantly declined in the MCZ+PPE, MCZ+LC, and MCZ+PPE+LC groups compared with the MCZ group. The serum FSH, testosterone, LH, and antioxidant enzymes, superoxide dismutase, and glutathione peroxidase, increased significantly, whereas malondialdehyde decreased significantly in rats that received PPE+ LC+ MCZ compared with all experimental rats. In addition, based on testicular-histopathological investigations, the administration of both PPE and LC, alone or in combination, can improve testicular disarrangement due to mancozeb-induced testicular damage. Conclusion The administration of P. pinaster extract and L. carnitine, individually or in combination, has antioxidant effects against mancozeb-induced toxicity via improvement of seminal quality, regeneration of testicular tissues, and upregulation of FSHr and LHr genes positively influence reproductive hormones. This study is the first to demonstrate that the P. pinaster extract plays a therapeutic role in testicular atrophy caused by the fungicide, mancozeb.
Collapse
Affiliation(s)
| | - Sura Safi Khafaji
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, Al-Qassim Green University, Ministry of Higher Education and Scientific Research, Al-Qassim City, Iraq
| |
Collapse
|
2
|
Laoung-on J, Nuchniyom P, Intui K, Jaikang C, Saenphet K, Boonyapranai K, Konguthaithip G, Outaitaveep N, Phankhieo S, Sudwan P. The Potential Effect of Bualuang (White Nelumbo nucifera Gaertn.) Extract on Sperm Quality and Metabolomic Profiles in Mancozeb-Induced Oxidative Stress in Male Rats. Life (Basel) 2024; 15:6. [PMID: 39859946 PMCID: PMC11767100 DOI: 10.3390/life15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Mancozeb (MZ), an EBDC fungicide, has been found to contaminate agricultural products and cause male reproductive toxicity. The phytochemical compounds of white N. nucifera petal extract (WNPE) and its effects on metabolomic profiles and reproductive function in male rats poisoned with MZ were investigated. Seventy-two mature male Wistar rats were divided into nine groups (n = 8) and, for 30 days, were gavaged with WNPE at doses of 0.55, 1.10, and 2.20 mg/kg; were given distilled water; or were co-gavaged with MZ and WNPE. By evaluating the 1H-NMR of WNPE, myricetin, apigenin, luteolin, ferulic acid, caffeic acid, ascorbic acid, genistein, chlorogenic acid, naringenin, and ellagic acid were found, and the essential minerals were evaluated by AAS. The NMR spectra demonstrated that creatine, carnitine, ACh, and choline in WNPE were significantly higher than that in MZ. The gavaging of the rats with WNPE before poisoning them with MZ improved creatine, carnitine, acetylcholine, progressive sperm motility, sperm viability, and normal sperm morphology compared to rats who only received MZ. It was concluded that MZ had a toxicity effect on the male reproductive system via decreased metabolomic profiles, affecting sperm motility, sperm viability, and normal sperm morphology. Nevertheless, WNPE had plenty of bioactive compounds that could enhance creatine, carnitine, and acetylcholine, which are related to sperm quality in male rats. WNPE should be considered as an alternative dietary supplement that can protect against MZ toxicity and enhance sperm quality in the male rat reproductive system.
Collapse
Affiliation(s)
- Jiraporn Laoung-on
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (K.I.); (S.P.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pimchanok Nuchniyom
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (K.I.); (S.P.)
| | - Ketsarin Intui
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (K.I.); (S.P.)
| | - Churdsak Jaikang
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.J.); (G.K.)
| | - Kanokporn Saenphet
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kongsak Boonyapranai
- Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Giatgong Konguthaithip
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.J.); (G.K.)
| | - Nopparuj Outaitaveep
- School of Health Sciences Research, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sasitorn Phankhieo
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (K.I.); (S.P.)
| | - Paiwan Sudwan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (K.I.); (S.P.)
| |
Collapse
|
3
|
Fadl AM, Samir H, Shahat AM. Repeated injections of vitamin E and Se improves testicular morphology, testosterone and in vitro and in vivo sperm fertility in subfertile rabbits. Vet Res Commun 2024; 48:3157-3166. [PMID: 39110295 PMCID: PMC11442476 DOI: 10.1007/s11259-024-10439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/13/2024] [Indexed: 10/01/2024]
Abstract
Subfertility is a multifactorial disorder that affects the rabbit production industry. However, subfertility may be treated by using a simple intervention such as vitamin supplementation. Vitamin E and selenium (Se) are potent antioxidants that protect the male reproductive system. The aim of this study is to determine the effects of vitamin E and Se on testicular size, semen quality and freezability, antioxidant activity, testosterone levels, and fertility in subfertile rabbits. Twenty-one New Zealand rabbits were classified as subfertile rabbits based on their semen characteristics and fertility records. The rabbits were randomly allocated into 3 equal groups (G1: control; G2: injected with Vit E 100 IU/head + Se 0.1 mg/kg b.w.; G3: injected with Vit E 200 IU/head + Se 0.2 mg/kg b.w. once weekly for 8 weeks).Once weekly for 8 W, blood samples were collected to measure serum testosterone level and total antioxidant capacity (TAC), and semen samples were collected by artificial vagina to assess the quality of fresh and frozen semen. At the 8th week of the study, 150 multiparous does were artificially inseminated with fresh semen to assess the fertility of rabbits after treatment; 50 does for each group. At the end of the study, rabbits were slaughtered to assess testicular morphometry. Fresh and post-thaw semen quality parameters were significantly (p < 0.05) higher in G3in comparison with G2and G1, respectively. Also, testosterone level was significantly (p < 0.05) increased at the 2nd week in G3in comparison with other groups. Conception and kindling rates were significantly (p < 0.05) higher in does which were inseminated with semen fromG3. In conclusion, injection of vitamin E and selenium at a higher dose (G3) improved the testicular morphology, quality of fresh and post-thaw semen, and most importantly, the fertility of subfertile rabbits.
Collapse
Affiliation(s)
- Aya M Fadl
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, 183-8509, Tokyo, Japan
| | - Abdallah M Shahat
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
4
|
Zarei S, Molavi F, Abasnezhad FA, Majidi B, Mohammadihosseinabad S, Ranjbar FE, Vatanparast M. The effects of vitamin E supplementation on sperm parameters, chromatin integrity, and gene expression before and after freezing in aged mice. Clin Exp Reprod Med 2024; 51:213-224. [PMID: 38853131 PMCID: PMC11372309 DOI: 10.5653/cerm.2023.06632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/06/2024] [Indexed: 06/11/2024] Open
Abstract
OBJECTIVE Some age-related testicular changes, such as Sertoli cell vacuolization and blood-testis barrier breakdown, reduce total sperm production and male fertility. Therefore, this study investigated the effect of vitamin E on restoring testicular function in aged mice. Sperm cryo-resistance was also assessed. METHODS Twenty-eight 48-week-old male Naval Medical Research Institute mice were divided into four groups for a daily gavage of vitamin E: the control group received distilled water, while the three treatment groups were administered 100, 200, and 400 mg/kg, respectively, for 4 weeks. Subsequently, semen analyses, DNA fragmentation index (DFI), and protamine deficiency tests were conducted. Testicular histology, tissue antioxidant enzyme activity, and gene expression levels were also assessed. RESULTS The two higher dosages of vitamin E were associated with a higher sperm count, greater progressive motility, and improved sperm morphology (p<0.05). These benefits were also evident after sperm freezing (p<0.05). Although chromatin abnormalities increased following vitrification, the treatment groups showed better outcomes (p<0.05). The tubular diameter, epithelium height, and luminal diameters remained unchanged with age. The tissue antioxidant capacity was greater in the groups receiving the high doses of vitamin E. Additionally, significant increases in inhibitor of DNA binding protein-4 (Id4) and GDNF family receptor alpha-1 (Gfra1) expression were observed in the higher vitamin E dosage groups, and promyelocytic leukemia zinc finger protein (Plzf) expression was notably present in the 400 mg/kg treatment group compared to the control group (p<0.05). CONCLUSION Antioxidant supplementation might enhance reproductive outcomes in aging males. The observed effects included improved sperm cryo-resistance, which is advantageous for future applications such as sperm freezing or fertility preservation.
Collapse
Affiliation(s)
- Sadegh Zarei
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Farnoosh Molavi
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Farzaneh Abbas Abasnezhad
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Behanaz Majidi
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Saeed Mohammadihosseinabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Faezeh Esmaeili Ranjbar
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahboubeh Vatanparast
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
5
|
Nady Ouais G, Kamar SA, Mousa AA, Sonbol MM. The Protective effects of Vitamin E against alterations of rat testis structure induced by deltamethrin; histological, ultrastructure, and biochemical study. Ultrastruct Pathol 2024; 48:108-120. [PMID: 38073084 DOI: 10.1080/01913123.2023.2292563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 02/08/2024]
Abstract
Deltamethrin is a widely used synthetic pyrethroid pesticide. It causes reproductive toxicity. Aim of the work: it evaluates the impact of vitamin E in restoration of the testicular integrity of albino rats after toxicity induced by Deltamethrin. Thirty-six adult male albino rats were included, and they were further sub-divided into four experimental groups; Group A: six rats served as controls. Group B (Model): 10 rats equally divided into two sub-groups (B1): the rats received deltamethrin dissolved in oil in a dose of 0.6 mg/kg/daily by nasogastric gavage for 2 weeks. (B2): the rats received Deltamethrin in the same dose of group B1 for 1 month. Group C (Protected): 10 rats equally divided into two sub-groups (C1): the rats received deltamethrin orally 0.6 mg/kg/day concomitant with Vitamin E dissolved in 1 ml of corn oil in a dose 200 mg/kg/day by nasogastric gavage for 2 weeks. (C2): the rats received deltamethrin concomitant with Vitamin E in the same dose of group C1 for 1 month. Group D (Treatment): 10 rats received deltamethrin for 1 month followed by Vitamin E for another month in the same previously prescribed doses. Significant decreases in serum testosterone level, GSH, catalase activity, and significant increase in MDA in the deltamethrin-treated group were detected. Moreover, histological and ultrastructural examinations of the testis seminiferous tubules showed detrimental alterations in the deltamethrin group which were duration dependent. Vitamin E administration reversed such alterations. Vitamin E ameliorates the testicular dysfunction caused by Deltamethrin.
Collapse
Affiliation(s)
- Ghada Nady Ouais
- Anatomy and Embryology Department, Faculty of Medicine, Cairo University Cairo, Cairo, Egypt
- Anatomy and Embryology Department, Faculty of Medicine, New Giza University, Giza, Egypt
| | - Sherif A Kamar
- Faculty of Dentistry, Al-Ahliyya Amman University (AAU), Amman, Jordan
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ali Ahmed Mousa
- Anatomy and Embryology Department, Faculty of Medicine, Jouf University, Sakaka,AL-Jouf, Kingdom of Saudi Arabia
| | - Mohamed Mostafa Sonbol
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Naderi N, Souri M, Nasr-Esfahani MH, Hajian M, Nazem MN. Ferulago angulata extract alleviates testicular toxicity in male mice exposed to diazinon and lead. Tissue Cell 2023; 85:102257. [PMID: 37924715 DOI: 10.1016/j.tice.2023.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
In this study, we investigated the protective effects of Ferulago angulata extract (FAE) against the reproductive toxicants Diazinon (DZN) and Lead (Pb) in mice. These pollutants are known to induce oxidative stress (OS), while FAE acts as a natural antioxidant. Adult male NMRI mice were exposed to DZN, Pb, and DZN+Pb, with or without FAE treatment for six weeks. We evaluated OS markers, testicular histology, and expression of mRNA related to enzymatic antioxidants. Exposure to DZN and Pb led to increased levels of thiobarbituric acid reactive substance (TBARS) and nitric oxide (NO) in the testes, along with a decrease in the total antioxidant capacity (TAC). Furthermore, the mRNA expression of antioxidant enzymes such as superoxide dismutase 1 (SOD1) and glutathione peroxidase 4 (GPX4) was altered. However, when FAE was administered concurrently, it restored the biochemical parameters to normal levels, reduced the toxic effects of DZN and Pb, and provided protection against testicular histopathological injury. These findings suggest that FAE has the potential to serve as a protective agent against oxidative damage caused by contaminants in reproductive organs, specifically in the testes.
Collapse
Affiliation(s)
- Nushin Naderi
- Department of Animal Science, College of Agriculture, Razi University, Kermanshah, Iran; Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Manouchehr Souri
- Department of Animal Science, College of Agriculture, Razi University, Kermanshah, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Naser Nazem
- Department of Basic Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
7
|
Arjmand K, Daneshi E, Pourmasumi S, Fathi F, Nasseri S, Sabeti P. Evaluation of the Effect of Vitamin E on Reproductive Parameters in Morphine-Treated Male Mice. ADDICTION & HEALTH 2023; 15:177-184. [PMID: 38026720 PMCID: PMC10658105 DOI: 10.34172/ahj.2023.1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/13/2023] [Indexed: 12/01/2023]
Abstract
Background Morphine is a narcotic pain reliever that is prescribed to reduce postoperative pain and can produce reactive oxygen species (ROS). Therefore, it can have negative effects on spermatogenesis and male fertility. Vitamin E is an effective antioxidant which plays an important role in membrane lipid peroxidation due to increased ROS. The present study aimed to evaluate the effects of vitamin E and morphine on sperm parameters, level of malondialdehyde (MDA), and diameter of seminiferous tubules in morphine-treated mice. Methods In this experimental study, 80 mice were divided into ten groups (n=8) including control, normal saline, vehicle, morphine, various doses of vitamin E (100, 200, 300 mg/kg), and morphine plus vitamin E (100, 200, 300 mg/kg) groups. The groups were followed up for 30 consecutive days. Sperm parameters, testis weight, the diameter of seminiferous tubules, and the level of MDA were analyzed and compared. Findings Data analysis showed seminal parameters decreased significantly (excluding sperm count) and there was an increase in the level of MDA in morphine-treated mice compared with the normal saline group (P<0.05). Administration of E100 to morphinetreated mice did not show a significant difference in the evaluated parameters compared with the morphine group. However, E200 and E300 significantly reduced MDA and improved sperm parameters (P≤0.05). Conclusion The results showed co-administration of vitamin E in high doses (200 & 300) could prevent the deleterious effects of morphine on some reproductive parameters and decrease the level of MDA in morphine-treated mice.
Collapse
Affiliation(s)
- Katayoon Arjmand
- Masters student, Department of Anatomical Sciences, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Erfan Daneshi
- Department of Anatomical Sciences, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Soheila Pourmasumi
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Clinical Research Development Unit, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fardin Fathi
- Department of Anatomical Sciences, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sherko Nasseri
- Department of Anatomical Sciences, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Parvin Sabeti
- Department of Anatomical Sciences, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
8
|
Shojaeepour S, Sharififar F, Haghpanah T, Iranpour M, Imani M, Dabiri S. Panax ginseng ameliorate toxic effects of cadmium on germ cell apoptosis, sperm quality, and oxidative stress in male Wistar rats. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.1884095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Saeedeh Shojaeepour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanah
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Imani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Laoung-on J, Jaikang C, Saenphet K, Sudwan P. Effect of Nelumbo nucifera Petals Extract on Antioxidant Activity and Sperm Quality in Charolais Cattle Sperm Induced by Mancozeb. PLANTS 2022; 11:plants11050637. [PMID: 35270108 PMCID: PMC8912329 DOI: 10.3390/plants11050637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/23/2022]
Abstract
The white Nelumbo nucifera petals aqueous extraction (NAE) was prominent in phytochemical content, antioxidant activity, and enhanced rat sperm viability induced by FeSO4, a heavy metal. Mancozeb (MZ) contains heavy metals and is widely used for fungal control in agriculture and industry. It induces oxidative stress and causes of spermatogenesis and reproductive organs’ abnormalities in both humans and animals. The aims of the present study were to investigate the effects of white Nelumbo nucifera petals aqueous extraction (WNAE) on sperm quality in cattle sperm induced by MZ. Moreover, this study investigated phytochemical compounds by liquid chromatography-mass spectrometry. A protein profile related to sperm quality with SDS-page and sperm energy preservation for each treatment was determined. The results found nine phytochemical compounds, in which quercetin-3-O-arabinoglycoside was a major flavonoid that was found in the WNAE. MZ induced free radicals in cells, leading to LPO and protein oxidation, while decreasing sperm motility, sperm viability, acrosome integrity, and normal sperm morphology. The cattle sperm found four proteins related to sperm quality including MWs of 17, 31, 34, and 55 kDa. The WNAE effectively increased energy preservation, sperm motility, sperm viability, acrosome integrity, and normal sperm morphology. The WNAE enhanced sperm qualities by reducing oxidative stress. It might be suggested that WNAE has benefits for sperm preservation which may be used to guard against toxicity in animals or humans exposed to MZ contaminants.
Collapse
Affiliation(s)
- Jiraporn Laoung-on
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Graduate School, Doctor of Philosophy Program in Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Churdsak Jaikang
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kanokporn Saenphet
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Paiwan Sudwan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Correspondence: ; Tel.: +66-53-93-5312 (ext. 208)
| |
Collapse
|
10
|
α-Tocopherol Prevents Sperm Apoptosis and Necrosis in Rats Exposed to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Vet Med Int 2022; 2022:3685686. [PMID: 35237404 PMCID: PMC8885270 DOI: 10.1155/2022/3685686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent organic pollutant that induces overproduction of reactive oxygen species (ROS). Studies on avoiding the adverse effects of dioxin pollution exposure are needed in all aspects, including reproductive health. This study aimed to determine the effect of α-tocopherol on superoxide dismutase (SOD) and malondialdehyde (MDA) levels, live spermatozoa, apoptosis, and necrosis in male rats exposed to dioxin as a model. Thirty healthy 12-week-old male rats were randomly divided into five groups. Rats in the control group were given corn oil twice daily at 4-hour intervals. The remaining rats were given TCDD 700 mg/kg BW daily, followed by administration of corn oil and α-tocopherol at doses of 77, 140, and 259 mg/kg BW/d for T0, T1, T2, and T3 groups, respectively. The treatments were conducted for 45 days; all rats were euthanized to collect blood and testicular samples on day 46. The results showed that exposure of TCDD resulted in a decrease in SOD activity and live spermatozoa and increased MDA level and death, apoptosis, and necrosis of spermatozoa (T0) compared to the control (C) group (p < 0.05). The administration of α-tocopherol, starting from the doses of 77 (T1), 149 (T2), and 259 mg (T3) per kg BW, was sequentially followed by returning MDA levels, recovering SOD activities, and restoration in the percentage of living, dead, apoptotic, and necrotic spermatozoa, similar (p > 0.05) to those of the control group. It could be concluded that the administration of α-tocopherol resolves the harmful effects of TCDD on the viability of spermatozoa in rats as a model.
Collapse
|
11
|
Wurlina W, Mustofa I, Meles DK, Safitri E, Susilowati S, Mulyati S, Utomo B, Utama S. α-Tocopherol restores semen quality in rats exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Vet World 2022; 15:316-323. [PMID: 35400953 PMCID: PMC8980384 DOI: 10.14202/vetworld.2022.316-323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
Background and Aim: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent organic pollutant toxic to the human reproductive system. This study aimed to evaluate the effect of α-Tocopherol administration on the male fertility parameters of a rat model exposed to TCDD. Materials and Methods: Fifty healthy 12-week-old male rats were randomly divided into five groups. Rats in the control group were given corn oil twice daily in 4 h intervals. In the treatment groups, all rats were given TCDD at a dose of 700 ng/kg of body weight (BW)/day for 45 days. Four hours after receiving the TCDD, T0 rats were given corn oil, and T1, T2, and T3 rats were given α-Tocopherol at doses of 77, 140, and 259 mg/kg BW/day, respectively, for 45 days. On day 46, experimental animals were sacrificed to collect blood and testicular samples. Results: TCDD exposure decreased superoxide dismutase activity, plasma membrane integrity, Leydig cell count, sperm cell count, sperm viability and motility, and increased malondialdehyde levels, serum testosterone levels, and sperm morphological abnormalities. The administration of α-Tocopherol mitigated the effects of TCDD exposure, and the 140 and 259 mg/kg BW/day treatments returned those male fertility parameters to normal levels. Conclusion: The administration of 140 mg/kg BW/day α-Tocopherol restored male semen quality in rats exposed to TCDD. We found dynamics serum testosterone levels in rats exposed to TCDD that need to be further studied.
Collapse
Affiliation(s)
- Wurlina Wurlina
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Imam Mustofa
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Dewa Ketut Meles
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Erma Safitri
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Suherni Susilowati
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Sri Mulyati
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Budi Utomo
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| | - Suzanita Utama
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Kampus C Mulyorejo, Surabaya 601155, East Java, Indonesia
| |
Collapse
|
12
|
Azeez OH. Evaluation of Some Male and Female Rats’ Reproductive Hormones Following Administration of Aspartame With or Without Vitamin C or E. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.30539/ijvm.v45i2.1256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Aspartame (ASP) is a sugar substitute. Its use rose because it has been demonstrated to have deleterious effects after being metabolized. In the presence of antioxidant vitamins C or E, the effects of ASP on reproductive hormones of adult male and female Albino Wister rats were investigated. A total of eighty male and female rats were used in this study. The rats were divided into four groups: group 1, received no treatment; group 2, received ASP at 40 mg/kg BW; group 3, received ASP at 40 mg/kg BW with vitamin C at 150 mg/kg BW; and group 4, received ASP at 40 mg/kg BW and vitamin E at 100 mg/kg BW. All treatments were given orally by gavage needle once daily for consecutive 90 days. The levels of estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone hormone (TH) were measured after 90 days in blood plasma. In comparison with the control group, ASP treatment resulted in lower levels of E2, FSH, and LH in male and female rats. When the antioxidants vitamin C or E was given, the effects of ASP were reversed, and the levels of E2, LH, and FSH were increased. The testosterone hormone was likewise significantly increased by ASP, but testosterone hormone concentrations were decreased by vitamin C or E treatments. Long-term ASP consumption caused interfering with testicular and ovarian hormonal activity, while vitamins C and E on the other hand, overcome longstanding consumption ASP's effects.
Collapse
|
13
|
Genetic and epigenetic modifications of F1 offspring's sperm cells following in utero and lactational combined exposure to nicotine and ethanol. Sci Rep 2021; 11:12311. [PMID: 34112894 PMCID: PMC8192516 DOI: 10.1038/s41598-021-91739-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
It is well established that maternal lifestyle during pregnancy and lactation affects the intrauterine programming of F1 offspring. However, despite the co-use of alcohol and nicotine is a common habit, the effects of exposure to both substances on the reproductive system of F1 male offspring and the underlying mechanisms of developmental programming have not been investigated. The present study aimed to examine pre- and postnatal concurrent exposure to these substances on genetic and epigenetic alterations of sperm cells as well as testis properties of F1 offspring compared with exposure to each substance alone. Pregnant dams in the F0 generation randomly received normal saline, nicotine, ethanol, and combinations throughout full gestation and lactation periods. Sperm cells and testes of F1 male offspring were collected at postnatal day 90 for further experiments. High levels of sperm DNA fragmentation were observed in all exposed offspring. Regarding epigenetic alterations, there was a significant increase in the relative transcript abundance of histone deacetylase 1 and 2 in all exposed sperm cells. Moreover, despite a decrease in the expression level of DNA methyltransferase (DNMT) 3A, no marked differences were found in the expression levels of DNMT1 and 3B in any of the exposed sperm cells compared to non-exposed ones. Interestingly, combined exposure had less prominent effects relative to exposure to each substance alone. The changes in the testicular and sperm parameters were compatible with genetic and epigenetic alterations. However, MDA level as an oxidative stress indicator increased in all exposed pups, which may be responsible for such outputs. In conclusion, maternal co-exposure to these substances exhibited epigenotoxicity effects on germline cells of F1 male offspring, although these effects were less marked relative to exposure to each substance alone. These counteracting effects may be explained by cross-tolerance and probably less impairment of the antioxidant defense system.
Collapse
|
14
|
Skalny A, Aschner M, Paoliello M, Santamaria A, Nikitina N, Rejniuk V, Jiang Y, Rocha J, Tinkov A. Endocrine-disrupting activity of mancozeb. ARHIV ZA FARMACIJU 2021; 71:491-507. [PMID: 35990020 PMCID: PMC9390121 DOI: 10.5937/arhfarm71-34359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
The objective of the present study was to review the existing data on the mechanisms involved in the endocrine disrupting activity of mancozeb (MCZ) in its main targets, including thyroid and gonads, as well as other endocrine tissues that may be potentially affected by MCZ. MCZ exposure was shown to interfere with thyroid functioning through impairment of thyroid hormone synthesis due to inhibition of sodium-iodine symporter (NIS) and thyroid peroxidase (TPO) activity, as well as thyroglobulin expression. Direct thyrotoxic effect may also contribute to thyroid pathology upon MCZ exposure. Gonadal effects of MCZ involve inhibition of sex steroid synthesis due to inhibition of P450scc (CYP11A1), as well as 3β-HSD and 17β-HSD. In parallel with altered hormone synthesis, MCZ was shown to down-regulate androgen and estrogen receptor signaling. Taken together, these gonad-specific effects result in development of both male and female reproductive dysfunction. In parallel with clearly estimated targets for MCZ endocrine disturbing activity, namely thyroid and gonads, other endocrine tissues may be also involved. Specifically, the fungicide was shown to affect cortisol synthesis that may be mediated by modulation of CYP11B1 activity. Moreover, MCZ exposure was shown to interfere with PPARγ signaling, being a key regulator of adipogenesis. The existing data also propose that endocrine-disrupting effects of MCZ exposure may be mediated by modulation of hypothalamus-pituitary-target axis. It is proposed that MCZ neurotoxicity may at least partially affect central mechanisms of endocrine system functioning. However, further studies are required to unravel the mechanisms of MCZ endocrine disrupting activity and overall toxicity.
Collapse
Affiliation(s)
- Anatoly Skalny
- IM Sechenov First Moscow State Medical University, Moscow 119146, Russia
- Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Institute of Bioelementology, Orenburg State University, Orenburg 460018, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University, Moscow 119146, Russia
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Monica Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Natalia Nikitina
- IM Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Vladimir Rejniuk
- Golikov Research Center of Toxicology, Saint Petersburg 192019, Russia
| | - Yueming Jiang
- Department of Toxicology,School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - João Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexey Tinkov
- Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Institute of Bioelementology, Orenburg State University, Orenburg 460018, Russia
- Yaroslavl State University, Yaroslavl 150000, Russia
| |
Collapse
|
15
|
Ashkanani M, Farhadi B, Ghanbarzadeh E, Akbari H. Study on the protective effect of hydroalcoholic Olive Leaf extract (oleuropein) on the testis and sperm parameters in adult male NMRI mice exposed to Mancozeb. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Zare M, Haghpanah T, Shekari MA, Eftekhar-Vaghefi SH. The prophylactic effect of date palm ( Phoenix dactylifera L.) fruit extract on testicular toxicity induced by formaldehyde: An experimental study. Int J Reprod Biomed 2020; 18:275-286. [PMID: 32494766 PMCID: PMC7218671 DOI: 10.18502/ijrm.v13i4.6890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/21/2019] [Accepted: 10/28/2019] [Indexed: 01/02/2023] Open
Abstract
Background Formaldehyde (FA) is one of the most widely used materials in industries and in sciences. Prolonged contact with FA might have harmful effects on fertility due to the increase in the reactive oxygen species level. On the other hand, date palm (Phoenix Dactilifera L.) fruit extract (DPFE) contains a high concentration of natural antioxidants that could scavenge free radicals.
Objective: The aim was to investigate the prophylactic effects of DPFE, with strong antioxidant properties, on FA-induced testicular toxicity in male mice. Materials and Methods Thirty-two adult NMRI male mice with a weight range of 25-35 gr (9-10 wk old) were randomly divided into four groups: control group (distilled water, orally for 35 days), FA group (FA; 0.25 mg/kg intraperitoneally (i.p.) for 20 days), treatment group (Date (DT) + FA; DPFE, 4 mg/kg for 35 days followed by FA administration, 0.25 mg/kg, i.p., for 20 days), date fruit extract group (DT; DPFE, 4 mg/kg, orally for 35 days). After this, blood was collected and left epididymis and testis tissues were isolated to evaluate the sperm parameters and histological examination, respectively. Results The FA administration increased the sperm morphological anomalies and reduced the sperm count, viability and motility, and also testosterone compared to the control group (p ≤ 0.001). In addition, histological studies of the testes showed that FA causes changes in the testis seminiferous tubules such as destruction of germinal epithelium and vacuolization of the tubules. The DPFE consumption before FA administration could partially ameliorate the reduced testosterone, sperm, and testicular parameters due to FA. Conclusion The DPFE use might have discount effects on FA-induced testicular toxicity.
Collapse
Affiliation(s)
- Mahdieh Zare
- Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Health Policy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Haghpanah
- Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Asadi Shekari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Hassan Eftekhar-Vaghefi
- Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Anatomy, Kerman Branch, Islamic Azad University, Kerman, Iran
| |
Collapse
|
17
|
Esmaiel S, Tahereh H, Noreddin NMS, Massood E. Mancozeb exposure during development and lactation periods results in decreased oocyte maturation, fertilization rates, and implantation in the first-generation mice pups: Protective effect of vitamins E and C. Toxicol Ind Health 2019; 35:714-725. [PMID: 31818241 DOI: 10.1177/0748233719890965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study aimed to evaluate the mancozeb (MNZ) impact on oocyte maturation of first-generation mice pups as well as their fertilization rate, embryo development, and implantation along with the preventative effect of vitamins E and C. Pregnant mice were randomly divided into six groups: control, vehicle, and MNZ (500 mg/kg body weight (BW)), vitamin E (200 mg/kg BW), MNZ plus vitamin E, MNZ plus vitamin C (100 mg/kg BW), and MNZ plus two vitamins. All treatments were conducted by oral gavage every 2 days from the second day of gestation until the end of lactation. Vitamin treatment was initiated 30 min before receiving MNZ. After birth, first-generation mice pups were kept until adulthood (8-10 W). Adult female mice pups superovulated and then the collected oocytes were examined for nuclear maturity status. After in vitro fertilization of metaphase II oocytes with sperm of the first-generation male mice pups, fertilization rate and embryo development were evaluated over 24 h. Also, the fecundity rate and the number of implanted embryos in vivo were studied on the eighth day of pregnancy. MNZ exposure during embryo development and lactation significantly decreased the total number of collected oocytes, oocyte maturation, fertilization rate, implantation rate, fecundity rate, and embryo development compared with the control group in the first-generation pups. In contrast, vitamin treatments significantly increased these parameters compared to the MNZ group. Reduction in the quality of oocyte, the rate of fertilization, embryo implantation, and development following MNZ exposure could decrease female reproductive success, while coadministration of vitamins E and C could prevent these complications.
Collapse
Affiliation(s)
- Saddein Esmaiel
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Haghpanah Tahereh
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Ezzatabadipour Massood
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|