1
|
Keegan A, Malamal G, Lee Y, Korolowicz K, Shepard BD, Ecelbarger CM, Rubiano MM, Avantaggiati ML, Levi M, Rich L, Alfano M, Rosenberg A, Fricke S, Albanese C, Jose J, Rodriguez O. Multimodal Diagnostic Imaging of Metabolic Dysfunction-Associated Steatotic Liver Disease: Noninvasive Analyses by Photoacoustic Ultrasound and Magnetic Resonance Imaging. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:875-890. [PMID: 39954964 PMCID: PMC12016859 DOI: 10.1016/j.ajpath.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Chronic diseases of the liver are major public health concerns worldwide. Steatosis and steatohepatitis associated with alcoholic liver disease, metabolic dysfunction-associated fatty liver disease/nonalcoholic fatty liver disease, and hepatitis B and C contribute to chronic diseases of the liver. Liver fibrosis occurs in all forms of advanced chronic diseases of the liver, the confirmation of which is typically performed by needle biopsy. Imaging approaches for liver diagnosis exist but do not provide sufficient diagnostic accuracy for defining the various stages of fibrosis or steatosis. Therefore, there is a need for improved imaging capabilities to enhance disease diagnosis. Ultrasonography-based photoacoustic imaging has recently emerged as a noninvasive, nonionizing modality, capable of capturing structural details and oxygen saturation changes during disease progression. However, its potential for detecting surrogate metabolic dysfunction-associated fatty liver disease markers, such as collagen and lipids, which are often poorly resolved by other conventional imaging techniques, has yet to be investigated in detail. The novelty of this study lies in the innovative use of spectral photoacoustic imaging for the direct detection and quantification of key biomarkers of liver disease, such as fibrosis, collagen, lipids, and oxygenated and deoxygenated hemoglobin, in a mouse model of steatotic fatty liver disease. Ultrasonography-based photoacoustic imaging, validated with magnetic resonance imaging, effectively identified increases in liver adiposity and fibrosis, enabling the noninvasive detection of changes in liver pathology associated with metabolic dysfunction.
Collapse
Affiliation(s)
- Alissa Keegan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | | | - Yichien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Kyle Korolowicz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Blythe D Shepard
- Department of Human Science, Georgetown University Medical Center, Washington, District of Columbia
| | - Carolyn M Ecelbarger
- Department of Medicine, Georgetown University Medical Center, Washington, District of Columbia
| | - Mariana Moya Rubiano
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Maria Laura Avantaggiati
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cell Biology and Center for Biological and Biomedical Engineering, Georgetown University Medical Center, Washington, District of Columbia
| | - Laurie Rich
- FUJIFILM VisualSonics Inc., Amsterdam, the Netherlands
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute, Instituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Avi Rosenberg
- Genitourinary and Autopsy Divisions, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stanley Fricke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia; Department of Radiology, Georgetown University Medical Center, Washington, District of Columbia; Center for Translational Imaging, Georgetown University Medical Center, Washington, District of Columbia
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia; Department of Radiology, Georgetown University Medical Center, Washington, District of Columbia; Center for Translational Imaging, Georgetown University Medical Center, Washington, District of Columbia.
| | - Jithin Jose
- FUJIFILM VisualSonics Inc., Amsterdam, the Netherlands.
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia; Center for Translational Imaging, Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
2
|
Pérez-Liva M, Alonso de Leciñana M, Gutiérrez-Fernández M, Camacho Sosa Dias J, F Cruza J, Rodríguez-Pardo J, García-Suárez I, Laso-García F, Herraiz JL, Elvira Segura L. Dual photoacoustic/ultrasound technologies for preclinical research: current status and future trends. Phys Med Biol 2025; 70:07TR01. [PMID: 39914003 DOI: 10.1088/1361-6560/adb368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/06/2025] [Indexed: 02/12/2025]
Abstract
Photoacoustic (PA) imaging, by integrating optical and ultrasound (US) modalities, combines high spatial resolution with deep tissue penetration, making it a transformative tool in biomedical research. This review presents a comprehensive analysis of the current status of dual PA/US imaging technologies, emphasising their applications in preclinical research. It details advancements in light excitation strategies, including tomographic and microscopic modalities, innovations in pulsed laser and alternative light sources, and US instrumentation. The review further explores preclinical methodologies, encompassing dedicated instrumentation, signal processing, and data analysis techniques essential for PA/US systems. Key applications discussed include the visualisation of blood vessels, micro-circulation, and tissue perfusion; diagnosis and monitoring of inflammation; evaluation of infections, atherosclerosis, burn injuries, healing, and scar formation; assessment of liver and renal diseases; monitoring of epilepsy and neurodegenerative conditions; studies on brain disorders and preeclampsia; cell therapy monitoring; and tumour detection, staging, and recurrence monitoring. Challenges related to imaging depth, resolution, cost, and the translation of contrast agents to clinical practice are analysed, alongside advancements in high-speed acquisition, artificial intelligence-driven reconstruction, and innovative light-delivery methods. While clinical translation remains complex, this review underscores the crucial role of preclinical studies in unravelling fundamental biomedical questions and assessing novel imaging strategies. Ultimately, this review delves into the future trends of dual PA/US imaging, highlighting its potential to bridge preclinical discoveries with clinical applications and drive advances in diagnostics, therapeutic monitoring, and personalised medicine.
Collapse
Affiliation(s)
- Mailyn Pérez-Liva
- IPARCOS Institute and EMFTEL Department, Universidad Complutense de Madrid, Pl. de las Ciencias, 1, Moncloa-Aravaca, Madrid 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/ Profesor Martín Lagos s/n, Madrid 28040, Spain
| | - María Alonso de Leciñana
- Department of Neurology and Stroke Centre, Neurological Sciences and Cerebrovascular Research Laboratory, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research-IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - María Gutiérrez-Fernández
- Department of Neurology and Stroke Centre, Neurological Sciences and Cerebrovascular Research Laboratory, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research-IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - Jorge Camacho Sosa Dias
- Instituto de Tecnologías Físicas y de la Información (ITEFI, CSIC), Serrano 144, Madrid 28006, Spain
| | - Jorge F Cruza
- Instituto de Tecnologías Físicas y de la Información (ITEFI, CSIC), Serrano 144, Madrid 28006, Spain
| | - Jorge Rodríguez-Pardo
- Department of Neurology and Stroke Centre, Neurological Sciences and Cerebrovascular Research Laboratory, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research-IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - Iván García-Suárez
- Department of Neurology and Stroke Centre, Neurological Sciences and Cerebrovascular Research Laboratory, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research-IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
- Department of Emergency Service, San Agustín University Hospital, Asturias, Spain
| | - Fernando Laso-García
- Department of Neurology and Stroke Centre, Neurological Sciences and Cerebrovascular Research Laboratory, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research-IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - Joaquin L Herraiz
- IPARCOS Institute and EMFTEL Department, Universidad Complutense de Madrid, Pl. de las Ciencias, 1, Moncloa-Aravaca, Madrid 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/ Profesor Martín Lagos s/n, Madrid 28040, Spain
| | - Luis Elvira Segura
- Instituto de Tecnologías Físicas y de la Información (ITEFI, CSIC), Serrano 144, Madrid 28006, Spain
| |
Collapse
|
3
|
Paul A, Mallidi S. Enhancing signal-to-noise ratio in real-time LED-based photoacoustic imaging: A comparative study of CNN-based deep learning architectures. PHOTOACOUSTICS 2025; 41:100674. [PMID: 39758833 PMCID: PMC11699471 DOI: 10.1016/j.pacs.2024.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
Recent advances in Light Emitting Diode (LED) technology have enabled a more affordable high frame rate photoacoustic imaging (PA) alternative to traditional laser-based PA systems that are costly and have slow pulse repetition rate. However, a major disadvantage with LEDs is the low energy outputs that do not produce high signal-to-noise ratio (SNR) PA images. There have been recent advancements in integrating deep learning methodologies aimed to address the challenge of improving SNR in LED-PA images, yet comprehensive evaluations across varied datasets and architectures are lacking. In this study, we systematically assess the efficacy of various Encoder-Decoder-based CNN architectures for enhancing SNR in real-time LED-based PA imaging. Through experimentation with in vitro phantoms, ex vivo mouse organs, and in vivo tumors, we compare basic convolutional autoencoder and U-Net architectures, explore hierarchical depth variations within U-Net, and evaluate advanced variants of U-Net. Our findings reveal that while U-Net architectures generally exhibit comparable performance, the Dense U-Net model shows promise in denoising different noise distributions in the PA image. Notably, hierarchical depth variations did not significantly impact performance, emphasizing the efficacy of the standard U-Net architecture for practical applications. Moreover, the study underscores the importance of evaluating robustness to diverse noise distributions, with Dense U-Net and R2 U-Net demonstrating resilience to Gaussian, salt and pepper, Poisson, and Speckle noise types. These insights inform the selection of appropriate deep learning architectures based on application requirements and resource constraints, contributing to advancements in PA imaging technology.
Collapse
Affiliation(s)
- Avijit Paul
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
4
|
Dhankhar S, Garg N, Chauhan S, Saini M. A Bird View on the Role of Graphene Oxide Nanosystems in Therapeutic Delivery. CURRENT NANOSCIENCE 2025; 21:470-480. [DOI: 10.2174/0115734137299120240312044808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2025]
Abstract
The remarkable physicochemical properties of Graphene oxide (GO), a graphene
derivative, have made it a material with intriguing medical administration potential. Its 2D allotropic
nature is the source of its biological flexibility. The transportation of genes and small
molecules are just two of the many biomedical applications of graphene and its composite. Antibacterial
use in tooth and bone grafts, biofunctionalization of proteins, and treatment of cancer
are among other potential uses. The biocompatibility of the freshly synthesized nanomaterials
opens up a world of potential biological and medicinal uses. Furthermore, GO's versatility
makes it an ideal component for usage in other drug delivery systems, such as hydrogels, nanoparticles,
and micelles. This review aims to compile the existing body of knowledge regarding
the use of GO in drug delivery by delving into its many potential uses, obstacles, and future
developments.
Collapse
Affiliation(s)
- Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Monika Saini
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133-207, Ambala, Haryana, India
| |
Collapse
|
5
|
Di Gregorio E, Scarciglia A, Amaolo A, Ferrauto G. Mn(iii), Fe(iii) and Zn(ii)-serum albumin as innovative multicolour contrast agents for photoacoustic imaging. NANOSCALE ADVANCES 2024; 6:777-781. [PMID: 38298593 PMCID: PMC10825928 DOI: 10.1039/d3na00843f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024]
Abstract
Here we propose innovative photoacoustic imaging (PAI) contrast agents, based on the loading of Mn(iii)-, Fe(iii)- or Zn(ii)-protoporphyrin IX in serum albumin. These systems show different absorption wavelengths, opening the way to multicolor PA imaging. They were characterized in vitro for assessing stability, biocompatibility, and their optical and contrastographic properties. Finally, a proof of concept in vivo study was carried out in breast cancer bearing mice, to evaluate its effectiveness for cancer imaging.
Collapse
Affiliation(s)
- Enza Di Gregorio
- Department of Molecular Biotechnology, Molecular Imaging Center, University of Torino Via Nizza 42 10126 Torino Italy +39 0116708459
| | - Angelo Scarciglia
- Department of Molecular Biotechnology, Molecular Imaging Center, University of Torino Via Nizza 42 10126 Torino Italy +39 0116708459
| | - Alessandro Amaolo
- Department of Molecular Biotechnology, Molecular Imaging Center, University of Torino Via Nizza 42 10126 Torino Italy +39 0116708459
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnology, Molecular Imaging Center, University of Torino Via Nizza 42 10126 Torino Italy +39 0116708459
| |
Collapse
|
6
|
Xin Z, Zhang M, Cui H, Ding X, Zhang T, Wu L, Cui H, Xue Q, Chen C, Gao J. Algae: A Robust Living Material Against Cancer. Int J Nanomedicine 2023; 18:5243-5264. [PMID: 37727650 PMCID: PMC10506609 DOI: 10.2147/ijn.s423412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
Cancer is the second leading cause of death worldwide. Its incidence has been increasing in recent years, and it is becoming a major threat to human health. Conventional cancer treatment strategies, including surgery, chemotherapy, and radiotherapy, have faced problems such as drug resistance, toxic side effects and unsatisfactory therapeutic efficacy. Therefore, better development and utilization of biomaterials can improve the specificity and efficacy of tumor therapy. Algae, as a novel living material, possesses good biocompatibility. Although some reviews have elucidated several algae-based biomaterials for cancer treatment, the majority of the literature has focused on a limited number of algae. As a result, there is currently a lack of comprehensive reviews on the subject of anticancer algae. This review aims to address this gap by conducting a thorough examination of algal species that show potential for anticancer activity. Furthermore, our review will also elucidate the engineering strategies of algae and discuss the challenges and prospects associated with their implementation.
Collapse
Affiliation(s)
- Zhongyuan Xin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Mengya Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Hengqing Cui
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Xiuwen Ding
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Haipo Cui
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Qian Xue
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Hosseindokht Z, Kolahdouz M, Hajikhani B, Sasanpour P. Photoacoustic based evaluation of viscoelastic properties of Gram-negative and Gram-positive bacterial colonies. Sci Rep 2023; 13:14656. [PMID: 37670076 PMCID: PMC10480163 DOI: 10.1038/s41598-023-41663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Mechanical properties of bacterial colonies are crucial considering both addressing their pathogenic effects and exploring their potential applications. Viscoelasticity is a key mechanical property with major impacts on the cell shapes and functions, which reflects the information about the cell envelope constituents. Hereby, we have proposed the application of photoacoustic viscoelasticity (PAVE) for studying the rheological properties of bacterial colonies. In this regard, we employed an intensity-modulated laser beam as the excitation source followed by the phase delay measurement between the generated PA signal and the reference for the characterization of colonies of two different types of Gram-positive and Gram-negative bacteria. The results of our study show that the colony of Staphylococcus aureus as Gram-positive bacteria has a significantly higher viscoelasticity ratio compared to that value for Acinetobacter baumannii as Gram-negative bacteria (77% difference). This may be due to the differing cell envelope structure between the two species, but we cannot rule out effects of biofilm formation in the colonies. Furthermore, a lumped model has been provided for the mechanical properties of bacterial colonies.
Collapse
Affiliation(s)
- Zahra Hosseindokht
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammadreza Kolahdouz
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Assi H, Cao R, Castelino M, Cox B, Gilbert FJ, Gröhl J, Gurusamy K, Hacker L, Ivory AM, Joseph J, Knieling F, Leahy MJ, Lilaj L, Manohar S, Meglinski I, Moran C, Murray A, Oraevsky AA, Pagel MD, Pramanik M, Raymond J, Singh MKA, Vogt WC, Wang L, Yang S, Members of IPASC, Bohndiek SE. A review of a strategic roadmapping exercise to advance clinical translation of photoacoustic imaging: From current barriers to future adoption. PHOTOACOUSTICS 2023; 32:100539. [PMID: 37600964 PMCID: PMC10432856 DOI: 10.1016/j.pacs.2023.100539] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Photoacoustic imaging (PAI), also referred to as optoacoustic imaging, has shown promise in early-stage clinical trials in a range of applications from inflammatory diseases to cancer. While the first PAI systems have recently received regulatory approvals, successful adoption of PAI technology into healthcare systems for clinical decision making must still overcome a range of barriers, from education and training to data acquisition and interpretation. The International Photoacoustic Standardisation Consortium (IPASC) undertook an community exercise in 2022 to identify and understand these barriers, then develop a roadmap of strategic plans to address them. Here, we outline the nature and scope of the barriers that were identified, along with short-, medium- and long-term community efforts required to overcome them, both within and beyond the IPASC group.
Collapse
Affiliation(s)
- Hisham Assi
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Rui Cao
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Madhura Castelino
- Department of Rheumatology, University College London Hospital, London, UK
| | - Ben Cox
- Department of Medical Physics and Bioengineering, University College London, London, UK
| | | | - Janek Gröhl
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kurinchi Gurusamy
- Department of Surgical Biotechnology, University College London, London, UK
| | - Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Aoife M. Ivory
- Department of Medical, Marine and Nuclear Physics, National Physical Laboratory, Teddington, UK
| | - James Joseph
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
| | - Martin J. Leahy
- School of Natural Sciences – Physics, University of Galway, Galway, Ireland
| | | | | | - Igor Meglinski
- College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| | - Carmel Moran
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Andrea Murray
- Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Salford Care Organisation, NCA NHS Foundation Trust, UK
| | | | - Mark D. Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manojit Pramanik
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA
| | - Jason Raymond
- Department of Engineering Science, University of Oxford, UK
| | | | - William C. Vogt
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Lihong Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shufan Yang
- School of Computing, Edinburgh Napier University, UK
| | - Members of IPASC
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Husarova T, MacCuaig WM, Dennahy IS, Sanderson EJ, Edil BH, Jain A, Bonds MM, McNally MW, Menclova K, Pudil J, Zaruba P, Pohnan R, Henson CE, Grizzle WE, McNally LR. Intraoperative Imaging in Hepatopancreatobiliary Surgery. Cancers (Basel) 2023; 15:3694. [PMID: 37509355 PMCID: PMC10377919 DOI: 10.3390/cancers15143694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatopancreatobiliary surgery belongs to one of the most complex fields of general surgery. An intricate and vital anatomy is accompanied by difficult distinctions of tumors from fibrosis and inflammation; the identification of precise tumor margins; or small, even disappearing, lesions on currently available imaging. The routine implementation of ultrasound use shifted the possibilities in the operating room, yet more precision is necessary to achieve negative resection margins. Modalities utilizing fluorescent-compatible dyes have proven their role in hepatopancreatobiliary surgery, although this is not yet a routine practice, as there are many limitations. Modalities, such as photoacoustic imaging or 3D holograms, are emerging but are mostly limited to preclinical settings. There is a need to identify and develop an ideal contrast agent capable of differentiating between malignant and benign tissue and to report on the prognostic benefits of implemented intraoperative imaging in order to navigate clinical translation. This review focuses on existing and developing imaging modalities for intraoperative use, tailored to the needs of hepatopancreatobiliary cancers. We will also cover the application of these imaging techniques to theranostics to achieve combined diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Tereza Husarova
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - William M. MacCuaig
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Isabel S. Dennahy
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Emma J. Sanderson
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Barish H. Edil
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Morgan M. Bonds
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Molly W. McNally
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Katerina Menclova
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Jiri Pudil
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Pavel Zaruba
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Radek Pohnan
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Christina E. Henson
- Department of Radiation Oncology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lacey R. McNally
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
10
|
Swartchick CB, Chan J. Leveraging coordination chemistry to visualize metal ions via photoacoustic imaging. Curr Opin Chem Biol 2023; 74:102312. [PMID: 37146434 DOI: 10.1016/j.cbpa.2023.102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 05/07/2023]
Abstract
Metal ions are indispensable to all living systems owing to their diverse roles. Perturbation of metal homeostasis have been linked to many pathological conditions. As such, visualizing metal ions in these complex environments are of utmost importance. Photoacoustic imaging is a promising modality that combines the sensitivity of fluorescence to the superior resolution of ultrasound, through a light-in sound-out process, making it an appealing modality for metal ion detection in vivo. In this review, we highlight recent advances in the development of photoacoustic imaging probes for in vivo detection of metal ions, such as potassium, copper, zinc, and palladium. In addition, we provide our perspective and outlook on the exciting field.
Collapse
Affiliation(s)
- Chelsea B Swartchick
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
11
|
Lorenz AS, Moses AS, Mamnoon B, Demessie AA, Park Y, Singh P, Taratula O, Taratula O. A Photoacoustic Contrast Nanoagent with a Distinct Spectral Signature for Ovarian Cancer Management. Adv Healthc Mater 2023; 12:e2202946. [PMID: 36495088 PMCID: PMC10079555 DOI: 10.1002/adhm.202202946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Indexed: 12/14/2022]
Abstract
Photoacoustic imaging (PAI) has tremendous potential for improving ovarian cancer detection. However, the lack of effective exogenous contrast agents that can improve PAI diagnosis accuracy significantly limits this application. This study presents a novel contrast nanoagent with a specific spectral signature that can be easily distinguished from endogenous chromophores in cancer tissue, allowing for high-contrast tumor visualization. Constructed as a 40 nm biocompatible polymeric nanoparticle loaded with two naphthalocyanine dyes, this agent is capable of efficient ovarian tumor accumulation after intravenous injection. The developed nanoagent displays a spectral signature with two well-separated photoacoustic peaks of comparable PA intensities in the near-infrared (NIR) region at 770 and 860 nm, which remain unaffected in cancer tissue following systemic delivery. In vivo experiments in mice with subcutaneous and intraperitoneal ovarian cancer xenografts validate that this specific spectral signature allows for accurate spectral unmixing of the nanoagent signal from endogenous contrast in cancer tissue, allowing for sensitive noninvasive cancer diagnosis. In addition, this nanoagent can selectively eradicate ovarian cancer tissue with a single dose of photothermal therapy by elevating the intratumoral temperature to ≈49 °C upon exposure to NIR light within the 700-900 nm range.
Collapse
Affiliation(s)
- Anna St Lorenz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Abraham S. Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Babak Mamnoon
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Ananiya A. Demessie
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Youngrong Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Prem Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| |
Collapse
|
12
|
Lottini T, Duranti C, Iorio J, Martinelli M, Colasurdo R, D’Alessandro FN, Buonamici M, Coppola S, Devescovi V, La Vaccara V, Coppola A, Coppola R, Lastraioli E, Arcangeli A. Combination Therapy with a Bispecific Antibody Targeting the hERG1/β1 Integrin Complex and Gemcitabine in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:2013. [PMID: 37046674 PMCID: PMC10093586 DOI: 10.3390/cancers15072013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/10/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents an unmet medical need. Difficult/late diagnosis as well as the poor efficacy and high toxicity of chemotherapeutic drugs result in dismal prognosis. With the aim of improving the treatment outcome of PDAC, we tested the effect of combining Gemcitabine with a novel single chain bispecific antibody (scDb) targeting the cancer-specific hERG1/β1 integrin complex. First, using the scDb (scDb-hERG1-β1) in immunohistochemistry (IHC), Western blot (WB) analysis and immunofluorescence (IF), we confirmed the presence of the hERG1/β1 integrin complex in primary PDAC samples and PDAC cell lines. Combining Gemcitabine with scDb-hERG1-β1 improved its cytotoxicity on all PDAC cells tested in vitro. We also tested the combination treatment in vivo, using an orthotopic xenograft mouse model involving ultrasound-guided injection of PDAC cells. We first demonstrated good penetration of the scDb-hERG1-β1 conjugated with indocyanine green (ICG) into tumour masses by photoacoustic (PA) imaging. Next, we tested the effects of the combination at either therapeutic or sub-optimal doses of Gemcitabine (25 or 5 mg/kg, respectively). The combination of scDb-hERG1-β1 and sub-optimal doses of Gemcitabine reduced the tumour masses to the same extent as the therapeutic doses of Gemcitabine administrated alone; yielded increased survival; and was accompanied by minimised side effects (toxicity). These data pave the way for a novel therapeutic approach to PDAC, based on the combination of low doses of a chemotherapeutic drug (to minimize adverse side effects and the onset of resistance) and the novel scDb-hERG1-β1 targeting the hERG1/β1 integrin complex as neoantigen.
Collapse
Affiliation(s)
- Tiziano Lottini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Michele Martinelli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Rossella Colasurdo
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Franco Nicolás D’Alessandro
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Matteo Buonamici
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Stefano Coppola
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Valentina Devescovi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Vincenzo La Vaccara
- General Surgery Unit, Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
| | | | - Roberto Coppola
- General Surgery Unit, Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
| | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| |
Collapse
|
13
|
Avsievich T, Zhu R, Popov AP, Yatskovskiy A, Popov AA, Tikhonowsky G, Pastukhov AI, Klimentov S, Bykov A, Kabashin A, Meglinski I. Impact of Plasmonic Nanoparticles on Poikilocytosis and Microrheological Properties of Erythrocytes. Pharmaceutics 2023; 15:1046. [PMID: 37111532 PMCID: PMC10143243 DOI: 10.3390/pharmaceutics15041046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Plasmonic nanoparticles (NP) possess great potential in photothermal therapy and diagnostics. However, novel NP require a detailed examination for potential toxicity and peculiarities of interaction with cells. Red blood cells (RBC) are important for NP distribution and the development of hybrid RBC-NP delivery systems. This research explored RBC alterations induced by noble (Au and Ag) and nitride-based (TiN and ZrN) laser-synthesized plasmonic NP. Optical tweezers and conventional microscopy modalities indicated the effects arising at non-hemolytic levels, such as RBC poikilocytosis, and alterations in RBC microrheological parameters, elasticity and intercellular interactions. Aggregation and deformability significantly decreased for echinocytes independently of NP type, while for intact RBC, all NP except Ag NP increased the interaction forces but had no effect on RBC deformability. RBC poikilocytosis promoted by NP at concentration 50 μg mL-1 was more pronounced for Au and Ag NP, compared to TiN and ZrN NP. Nitride-based NP demonstrated better biocompatibility towards RBC and higher photothermal efficiency than their noble metal counterparts.
Collapse
Affiliation(s)
- Tatiana Avsievich
- Optoelectronics and Measurement Techniques, University of Oulu, 90570 Oulu, Finland
| | - Ruixue Zhu
- Optoelectronics and Measurement Techniques, University of Oulu, 90570 Oulu, Finland
| | - Alexey P. Popov
- VTT Technical Research Centre of Finland, Kaitovayla 1, 90590 Oulu, Finland
| | - Alexander Yatskovskiy
- Department of Histology, Cytology and Embryology, Institute of Clinical Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8, 119991 Moscow, Russia
| | - Anton A. Popov
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University (MEPhI), Kashirskoe Shosse, 31, 115409 Moscow, Russia
| | - Gleb Tikhonowsky
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University (MEPhI), Kashirskoe Shosse, 31, 115409 Moscow, Russia
| | - Andrei I. Pastukhov
- CNRS, LP3, Aix-Marseille University, 163 Av. de Luminy, 13009 Marseille, France
| | - Sergei Klimentov
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University (MEPhI), Kashirskoe Shosse, 31, 115409 Moscow, Russia
| | - Alexander Bykov
- Optoelectronics and Measurement Techniques, University of Oulu, 90570 Oulu, Finland
| | - Andrei Kabashin
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University (MEPhI), Kashirskoe Shosse, 31, 115409 Moscow, Russia
- CNRS, LP3, Aix-Marseille University, 163 Av. de Luminy, 13009 Marseille, France
| | - Igor Meglinski
- Optoelectronics and Measurement Techniques, University of Oulu, 90570 Oulu, Finland
- College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
14
|
K Johnson K, Kopecky C, Koshy P, Liu Y, Devadason M, Holst J, A Kilian K, C Sorrell C. Theranostic Activity of Ceria-Based Nanoparticles toward Parental and Metastatic Melanoma: 2D vs 3D Models. ACS Biomater Sci Eng 2023; 9:1053-1065. [PMID: 36726306 DOI: 10.1021/acsbiomaterials.2c01258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The time interval between the diagnosis of tumor in a patient and the initiation of treatment plays a key role in determining the survival rates. Consequently, theranostics, which is a combination of diagnosis and treatment, can be expected to improve survival rates. Early detection and immediate treatment initiation are particularly important in the management of melanoma, where survival rates decrease considerably after metastasis. The present work reports for the first time the application of fluorescein isothiocyanate (FITC)-tagged epidermal growth factor receptor (EGFR)-functionalized ceria nanoparticles, which exhibit intrinsic reactive oxygen species (ROS)-mediated anticancer effects, for the EGFR-targeted diagnosis and treatment of melanoma. The theranostic activity was demonstrated using two-dimensional (2D) and three-dimensional (3D) models of parental and metastatic melanoma. Confocal imaging studies confirm the diagnostic activity of the system. The therapeutic efficiency was evaluated using cell viability studies and ROS measurements. The ROS elevation levels are compared across the 2D and 3D models. Significant enhancement in the generation of cellular ROS and absence in mitochondrial ROS are observed in the 2D models. In contrast, significant elevations in both ROS types are observed for the 3D models, which are significantly higher for the metastatic spheroids than the parental spheroids, thus indicating the suitability of this nanoformulation for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Kochurani K Johnson
- School of Materials Science and Engineering, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Chantal Kopecky
- Australian Centre for NanoMedicine, School of Chemistry, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Yiling Liu
- Australian Centre for NanoMedicine, School of Chemistry, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Michelle Devadason
- Translational Cancer Metabolism Laboratory, School of Medical Sciences and Prince of Wales Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Jeff Holst
- Translational Cancer Metabolism Laboratory, School of Medical Sciences and Prince of Wales Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia.,Australian Centre for NanoMedicine, School of Chemistry, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
15
|
Barbosa RCS, Mendes PM. A Comprehensive Review on Photoacoustic-Based Devices for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:9541. [PMID: 36502258 PMCID: PMC9736954 DOI: 10.3390/s22239541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The photoacoustic effect is an emerging technology that has sparked significant interest in the research field since an acoustic wave can be produced simply by the incidence of light on a material or tissue. This phenomenon has been extensively investigated, not only to perform photoacoustic imaging but also to develop highly miniaturized ultrasound probes that can provide biologically meaningful information. Therefore, this review aims to outline the materials and their fabrication process that can be employed as photoacoustic targets, both biological and non-biological, and report the main components' features to achieve a certain performance. When designing a device, it is of utmost importance to model it at an early stage for a deeper understanding and to ease the optimization process. As such, throughout this article, the different methods already implemented to model the photoacoustic effect are introduced, as well as the advantages and drawbacks inherent in each approach. However, some remaining challenges are still faced when developing such a system regarding its fabrication, modeling, and characterization, which are also discussed.
Collapse
|
16
|
Nguyen A, Kumar S, Kulkarni AA. Nanotheranostic Strategies for Cancer Immunotherapy. SMALL METHODS 2022; 6:e2200718. [PMID: 36382571 PMCID: PMC11056828 DOI: 10.1002/smtd.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Despite advancements in cancer immunotherapy, heterogeneity in tumor response impose barriers to successful treatments and accurate prognosis. Effective therapy and early outcome detection are critical as toxicity profiles following immunotherapies can severely affect patients' quality of life. Existing imaging techniques, including positron emission tomography, computed tomography, magnetic resonance imaging, or multiplexed imaging, are often used in clinics yet suffer from limitations in the early assessment of immune response. Conventional strategies to validate immune response mainly rely on the Response Evaluation Criteria in Solid Tumors (RECIST) and the modified iRECIST for immuno-oncology drug trials. However, accurate monitoring of immunotherapy efficacy is challenging since the response does not always follow conventional RECIST criteria due to delayed and variable kinetics in immunotherapy responses. Engineered nanomaterials for immunotherapy applications have significantly contributed to overcoming these challenges by improving drug delivery and dynamic imaging techniques. This review summarizes challenges in recent immune-modulation approaches and traditional imaging tools, followed by emerging developments in three-in-one nanoimmunotheranostic systems co-opting nanotechnology, immunotherapy, and imaging. In addition, a comprehensive overview of imaging modalities in recent cancer immunotherapy research and a brief outlook on how nanotheranostic platforms can potentially advance to clinical translations for the field of immuno-oncology is presented.
Collapse
Affiliation(s)
- Anh Nguyen
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Sahana Kumar
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Ashish A. Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
17
|
Chen Z, Gezginer I, Augath MA, Ren W, Liu YH, Ni R, Deán-Ben XL, Razansky D. Hybrid magnetic resonance and optoacoustic tomography (MROT) for preclinical neuroimaging. LIGHT, SCIENCE & APPLICATIONS 2022; 11:332. [PMID: 36418860 PMCID: PMC9684112 DOI: 10.1038/s41377-022-01026-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 05/17/2023]
Abstract
Multi-modal imaging is essential for advancing our understanding of brain function and unraveling pathophysiological processes underlying neurological and psychiatric disorders. Magnetic resonance (MR) and optoacoustic (OA) imaging have been shown to provide highly complementary contrasts and capabilities for preclinical neuroimaging. True integration between these modalities can thus offer unprecedented capabilities for studying the rodent brain in action. We report on a hybrid magnetic resonance and optoacoustic tomography (MROT) system for concurrent noninvasive structural and functional imaging of the mouse brain. Volumetric OA tomography was designed as an insert into a high-field MR scanner by integrating a customized MR-compatible spherical transducer array, an illumination module, and a dedicated radiofrequency coil. A tailored data processing pipeline has been developed to mitigate signal crosstalk and accurately register image volumes acquired with T1-weighted, angiography, and blood oxygenation level-dependent (BOLD) sequences onto the corresponding vascular and oxygenation data recorded with the OA modality. We demonstrate the concurrent acquisition of dual-mode anatomical and angiographic brain images with the scanner, as well as real-time functional readings of multiple hemodynamic parameters from animals subjected to oxygenation stress. Our approach combines the functional and molecular imaging advantages of OA with the superb soft-tissue contrast of MR, further providing an excellent platform for cross-validation of functional readings by the two modalities.
Collapse
Affiliation(s)
- Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Mark-Aurel Augath
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Wuwei Ren
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Yu-Hang Liu
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.
| |
Collapse
|
18
|
Agnihotri TG, Gomte SS, Jain A. Emerging theranostics to combat cancer: a perspective on metal-based nanomaterials. Drug Dev Ind Pharm 2022; 48:585-601. [PMID: 36448770 DOI: 10.1080/03639045.2022.2153862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
OBJECTIVE Theranostics, encompassing diagnostics and therapeutics, has emerged as a critical component of cancer treatment. Metal-based theranostics is one such next-generation nanotechnology-based drug delivery system with a myriad of benefits in pre-clinical and clinical medication for the deadly diseases like cancer, where early detection can actually be life-saving. SIGNIFICANCE Metal theranostics have shown promising outcomes in terms of anticancer medication monitoring, targeted drug delivery, and simultaneous detection and treatment of early-stage cancer. METHODS For collection of literature data, different search engines including Google scholar, SciFinder, PubMed, ScienceDirect have been employed. With key words like, cancer, theranostics, metal nanoparticles relevant and appropriate data have been generated. RESULTS Noninvasive administration of the active drug is made possible by theranostics nanoparticulate systems' ability to aggregate at the tumor site and offer morphological and biochemical characteristics of the tumor site. The recent advancement of metal-based theranostics including metallic nanoparticles, metal oxides, metal sulfides, nanocomposites, etc. has been explored at length in this article. CONCLUSION The review highlights emerging applications in terms of molecular imaging, targeted therapy and different diagnostic approaches of metal theranostics. Possible challenges faced by nanotheranostics in terms of clinical immersion and toxicological aspects which need to be addressed at depth are also discussed at the end.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| |
Collapse
|
19
|
Dimaridis I, Sridharan P, Ntziachristos V, Karlas A, Hadjileontiadis L. Image Quality Improvement Techniques and Assessment Adequacy in Clinical Optoacoustic Imaging: A Systematic Review. BIOSENSORS 2022; 12:901. [PMID: 36291038 PMCID: PMC9599915 DOI: 10.3390/bios12100901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Optoacoustic imaging relies on the detection of optically induced acoustic waves to offer new possibilities in morphological and functional imaging. As the modality matures towards clinical application, research efforts aim to address multifactorial limitations that negatively impact the resulting image quality. In an endeavor to obtain a clear view on the limitations and their effects, as well as the status of this progressive refinement process, we conduct an extensive search for optoacoustic image quality improvement approaches that have been evaluated with humans in vivo, thus focusing on clinically relevant outcomes. We query six databases (PubMed, Scopus, Web of Science, IEEE Xplore, ACM Digital Library, and Google Scholar) for articles published from 1 January 2010 to 31 October 2021, and identify 45 relevant research works through a systematic screening process. We review the identified approaches, describing their primary objectives, targeted limitations, and key technical implementation details. Moreover, considering comprehensive and objective quality assessment as an essential prerequisite for the adoption of such approaches in clinical practice, we subject 36 of the 45 papers to a further in-depth analysis of the reported quality evaluation procedures, and elicit a set of criteria with the intent to capture key evaluation aspects. Through a comparative criteria-wise rating process, we seek research efforts that exhibit excellence in quality assessment of their proposed methods, and discuss features that distinguish them from works with similar objectives. Additionally, informed by the rating results, we highlight areas with improvement potential, and extract recommendations for designing quality assessment pipelines capable of providing rich evidence.
Collapse
Affiliation(s)
- Ioannis Dimaridis
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Patmaa Sridharan
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 80992 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany
| | - Angelos Karlas
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany
- Clinic for Vascular and Endovascular Surgery, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Signal Processing and Biomedical Technology Unit, Telecommunications Laboratory, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
20
|
Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, Amani AM, Hatam S. Nanotechnology Advances in the Detection and Treatment of Cancer: An Overview. Nanotheranostics 2022; 6:400-423. [PMID: 36051855 PMCID: PMC9428923 DOI: 10.7150/ntno.74613] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Over the last few years, progress has been made across the nanomedicine landscape, in particular, the invention of contemporary nanostructures for cancer diagnosis and overcoming complexities in the clinical treatment of cancerous tissues. Thanks to their small diameter and large surface-to-volume proportions, nanomaterials have special physicochemical properties that empower them to bind, absorb and transport high-efficiency substances, such as small molecular drugs, DNA, proteins, RNAs, and probes. They also have excellent durability, high carrier potential, the ability to integrate both hydrophobic and hydrophilic compounds, and compatibility with various transport routes, making them especially appealing over a wide range of oncology fields. This is also due to their configurable scale, structure, and surface properties. This review paper discusses how nanostructures can function as therapeutic vectors to enhance the therapeutic value of molecules; how nanomaterials can be used as medicinal products in gene therapy, photodynamics, and thermal treatment; and finally, the application of nanomaterials in the form of molecular imaging agents to diagnose and map tumor growth.
Collapse
Affiliation(s)
- Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad reza Moaddeli
- Assistant Professor, Department of Oral and Maxillofacial Surgery, School of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Reza Kasaee
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Hatam
- Assistant Lecturer, Azad University, Zarghan Branch, Shiraz, Iran
- ExirBitanic, Science and Technology Park of Fars, Shiraz, Iran
| |
Collapse
|
21
|
Palma-Chavez J, Wear KA, Mantri Y, Jokerst JV, Vogt WC. Photoacoustic imaging phantoms for assessment of object detectability and boundary buildup artifacts. PHOTOACOUSTICS 2022; 26:100348. [PMID: 35360521 PMCID: PMC8960980 DOI: 10.1016/j.pacs.2022.100348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 05/05/2023]
Abstract
Standardized phantoms and test methods are needed to accelerate clinical translation of emerging photoacoustic imaging (PAI) devices. Evaluating object detectability in PAI is challenging due to variations in target morphology and artifacts including boundary buildup. Here we introduce breast fat and parenchyma tissue-mimicking materials based on emulsions of silicone oil and ethylene glycol in polyacrylamide hydrogel. 3D-printed molds were used to fabricate solid target inclusions that produced more filled-in appearance than traditional PAI phantoms. Phantoms were used to assess understudied image quality characteristics (IQCs) of three PAI systems. Object detectability was characterized vs. target diameter, absorption coefficient, and depth. Boundary buildup was quantified by target core/boundary ratio, which was higher in transducers with lower center frequency. Target diameter measurement accuracy was also size-dependent and improved with increasing transducer frequency. These phantoms enable evaluation of multiple key IQCs and may support development of comprehensive standardized test methods for PAI devices.
Collapse
Affiliation(s)
- Jorge Palma-Chavez
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Keith A. Wear
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yash Mantri
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Material Science Program, University of California San Diego, La Jolla, CA 92093, USA
- Corresponding author at: Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - William C. Vogt
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
- Corresponding author.
| |
Collapse
|
22
|
Hilzenrat G, Gill ET, McArthur SL. Imaging approaches for monitoring three-dimensional cell and tissue culture systems. JOURNAL OF BIOPHOTONICS 2022; 15:e202100380. [PMID: 35357086 DOI: 10.1002/jbio.202100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The past decade has seen an increasing demand for more complex, reproducible and physiologically relevant tissue cultures that can mimic the structural and biological features of living tissues. Monitoring the viability, development and responses of such tissues in real-time are challenging due to the complexities of cell culture physical characteristics and the environments in which these cultures need to be maintained in. Significant developments in optics, such as optical manipulation, improved detection and data analysis, have made optical imaging a preferred choice for many three-dimensional (3D) cell culture monitoring applications. The aim of this review is to discuss the challenges associated with imaging and monitoring 3D tissues and cell culture, and highlight topical label-free imaging tools that enable bioengineers and biophysicists to non-invasively characterise engineered living tissues.
Collapse
Affiliation(s)
- Geva Hilzenrat
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Emma T Gill
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Sally L McArthur
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
23
|
Sivasubramanian M, Lo LW. Assessment of Nanoparticle-Mediated Tumor Oxygen Modulation by Photoacoustic Imaging. BIOSENSORS 2022; 12:336. [PMID: 35624636 PMCID: PMC9138624 DOI: 10.3390/bios12050336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/01/2023]
Abstract
Photoacoustic imaging (PAI) is an invaluable tool in biomedical imaging, as it provides anatomical and functional information in real time. Its ability to image at clinically relevant depths with high spatial resolution using endogenous tissues as contrast agents constitutes its major advantage. One of the most important applications of PAI is to quantify tissue oxygen saturation by measuring the differential absorption characteristics of oxy and deoxy Hb. Consequently, PAI can be utilized to monitor tumor-related hypoxia, which is a crucial factor in tumor microenvironments that has a strong influence on tumor invasiveness. Reactive oxygen species (ROS)-based therapies, such as photodynamic therapy, radiotherapy, and sonodynamic therapy, are oxygen-consuming, and tumor hypoxia is detrimental to their efficacy. Therefore, a persistent demand exists for agents that can supply oxygen to tumors for better ROS-based therapeutic outcomes. Among the various strategies, NP-mediated supplemental tumor oxygenation is especially encouraging due to its physio-chemical, tumor targeting, and theranostic properties. Here, we focus on NP-based tumor oxygenation, which includes NP as oxygen carriers and oxygen-generating strategies to alleviate hypoxia monitored by PAI. The information obtained from quantitative tumor oxygenation by PAI not only supports optimal therapeutic design but also serves as a highly effective tool to predict therapeutic outcomes.
Collapse
Affiliation(s)
| | - Leu-Wei Lo
- Department of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan;
| |
Collapse
|
24
|
Vermeulen I, Isin EM, Barton P, Cillero-Pastor B, Heeren RM. Multimodal molecular imaging in drug discovery and development. Drug Discov Today 2022; 27:2086-2099. [DOI: 10.1016/j.drudis.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/03/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
|
25
|
Lin L, Wang LV. The emerging role of photoacoustic imaging in clinical oncology. Nat Rev Clin Oncol 2022; 19:365-384. [PMID: 35322236 DOI: 10.1038/s41571-022-00615-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Clinical oncology can benefit substantially from imaging technologies that reveal physiological characteristics with multiscale observations. Complementing conventional imaging modalities, photoacoustic imaging (PAI) offers rapid imaging (for example, cross-sectional imaging in real time or whole-breast scanning in 10-15 s), scalably high levels of spatial resolution, safe operation and adaptable configurations. Most importantly, this novel imaging modality provides informative optical contrast that reveals details on anatomical, functional, molecular and histological features. In this Review, we describe the current state of development of PAI and the emerging roles of this technology in cancer screening, diagnosis and therapy. We comment on the performance of cutting-edge photoacoustic platforms, and discuss their clinical applications and utility in various clinical studies. Notably, the clinical translation of PAI is accelerating in the areas of macroscopic and mesoscopic imaging for patients with breast or skin cancers, as well as in microscopic imaging for histopathology. We also highlight the potential of future developments in technological capabilities and their clinical implications, which we anticipate will lead to PAI becoming a desirable and widely used imaging modality in oncological research and practice.
Collapse
Affiliation(s)
- Li Lin
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA. .,Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
26
|
Kyrkou SG, Vrettos EI, Gorpas D, Crook T, Syed N, Tzakos AG. Design Principles Governing the Development of Theranostic Anticancer Agents and Their Nanoformulations with Photoacoustic Properties. Pharmaceutics 2022; 14:362. [PMID: 35214094 PMCID: PMC8877540 DOI: 10.3390/pharmaceutics14020362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
The unmet need to develop novel approaches for cancer diagnosis and treatment has led to the evolution of theranostic agents, which usually include, in addition to the anticancer drug, an imaging agent based mostly on fluorescent agents. Over the past few years, a non-invasive photoacoustic imaging modality has been effectively integrated into theranostic agents. Herein, we shed light on the design principles governing the development of theranostic agents with photoacoustic properties, which can be formulated into nanocarriers to enhance their potency. Specifically, we provide an extensive analysis of their individual constituents including the imaging dyes, drugs, linkers, targeting moieties, and their formulation into nanocarriers. Along these lines, we present numerous relevant paradigms. Finally, we discuss the clinical relevance of the specific strategy, as also the limitations and future perspectives, and through this review, we envisage paving the way for the development of theranostic agents endowed with photoacoustic properties as effective anticancer medicines.
Collapse
Affiliation(s)
- Stavroula G. Kyrkou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
| | - Eirinaios I. Vrettos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
| | - Dimitris Gorpas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, D-85764 Oberschleißheim, Germany;
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
| | - Timothy Crook
- John Fulcher Neuro-Oncology Laboratory, Department of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Department of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
27
|
Das A, Raposo GCC, Lopes DS, da Silva EJ, Carneiro VSM, Mota CCBDO, Amaral MM, Zezell DM, Barbosa-Silva R, Gomes ASL. Exploiting Nanomaterials for Optical Coherence Tomography and Photoacoustic Imaging in Nanodentistry. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:506. [PMID: 35159853 PMCID: PMC8838952 DOI: 10.3390/nano12030506] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
There is already a societal awareness of the growing impact of nanoscience and nanotechnology, with nanomaterials (with at least one dimension less than 100 nm) now incorporated in items as diverse as mobile phones, clothes or dentifrices. In the healthcare area, nanoparticles of biocompatible materials have already been used for cancer treatment or bioimaging enhancement. Nanotechnology in dentistry, or nanodentistry, has already found some developments in dental nanomaterials for caries management, restorative dentistry and orthodontic adhesives. In this review, we present state-of-the-art scientific development in nanodentistry with an emphasis on two imaging techniques exploiting nanomaterials: optical coherence tomography (OCT) and photoacoustic imaging (PAI). Examples will be given using OCT with nanomaterials to enhance the acquired imaging, acting as optical clearing agents for OCT. A novel application of gold nanoparticles and nanorods for imaging enhancement of incipient occlusal caries using OCT will be described. Additionally, we will highlight how the OCT technique can be properly managed to provide imaging with spatial resolution down to 10's-100's nm resolution. For PAI, we will describe how new nanoparticles, namely TiN, prepared by femtosecond laser ablation, can be used in nanodentistry and will show photoacoustic microscopy and tomography images for such exogenous agents.
Collapse
Affiliation(s)
- Avishek Das
- Physics Department, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (R.B.-S.); (A.S.L.G.)
| | - Gisele Cruz Camboim Raposo
- Graduate Program in Dentistry, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (G.C.C.R.); (E.J.d.S.)
| | - Daniela Siqueira Lopes
- Faculty of Dentistry, Campus Arcoverde, Universidade de Pernambuco, Arcoverde 56503-146, PE, Brazil;
| | - Evair Josino da Silva
- Graduate Program in Dentistry, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (G.C.C.R.); (E.J.d.S.)
| | | | | | - Marcello Magri Amaral
- Scientific and Technological Institute, Universidade Brasil, Fernandópolis 15600-000, SP, Brazil;
| | - Denise Maria Zezell
- Center for Lasers and Applications, Instituto de Pesquisas Energéticas e Nucleares IPEN—CNEN, São Paulo 05411-000, SP, Brazil;
| | - Renato Barbosa-Silva
- Physics Department, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (R.B.-S.); (A.S.L.G.)
| | - Anderson Stevens Leonidas Gomes
- Physics Department, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (R.B.-S.); (A.S.L.G.)
- Graduate Program in Dentistry, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (G.C.C.R.); (E.J.d.S.)
| |
Collapse
|
28
|
Farooq A, Sabah S, Dhou S, Alsawaftah N, Husseini G. Exogenous Contrast Agents in Photoacoustic Imaging: An In Vivo Review for Tumor Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:393. [PMID: 35159738 PMCID: PMC8840344 DOI: 10.3390/nano12030393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
The field of cancer theranostics has grown rapidly in the past decade and innovative 'biosmart' theranostic materials are being synthesized and studied to combat the fast growth of cancer metastases. While current state-of-the-art oncology imaging techniques have decreased mortality rates, patients still face a diminished quality of life due to treatment. Therefore, improved diagnostics are needed to define in vivo tumor growths on a molecular level to achieve image-guided therapies and tailored dosage needs. This review summarizes in vivo studies that utilize contrast agents within the field of photoacoustic imaging-a relatively new imaging modality-for tumor detection, with a special focus on imaging and transducer parameters. This paper also details the different types of contrast agents used in this novel diagnostic field, i.e., organic-based, metal/inorganic-based, and dye-based contrast agents. We conclude this review by discussing the challenges and future direction of photoacoustic imaging.
Collapse
Affiliation(s)
- Afifa Farooq
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Shafiya Sabah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Salam Dhou
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Nour Alsawaftah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Ghaleb Husseini
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
- Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| |
Collapse
|
29
|
Peng C, Chen M, Spicer JB, Jiang X. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review.: Part II: Nanoacoustics for biomedical imaging and therapy. SENSORS AND ACTUATORS. A, PHYSICAL 2021; 332:112925. [PMID: 34937992 PMCID: PMC8691754 DOI: 10.1016/j.sna.2021.112925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the past decade, acoustics at the nanoscale (i.e., nanoacoustics) has evolved rapidly with continuous and substantial expansion of capabilities and refinement of techniques. Motivated by research innovations in the last decade, for the first time, recent advancements of acoustics-associated nanomaterials/nanostructures and nanodevices for different applications are outlined in this comprehensive review, which is written in two parts. As part II of this two-part review, this paper concentrates on nanoacoustics in biomedical imaging and therapy applications, including molecular ultrasound imaging, photoacoustic imaging, ultrasound-mediated drug delivery and therapy, and photoacoustic drug delivery and therapy. Firstly, the recent developments of nanosized ultrasound and photoacoustic contrast agents as well as their various imaging applications are examined. Secondly, different types of nanomaterials/nanostructures as nanocarriers for ultrasound and photoacoustic therapies are discussed. Finally, a discussion of challenges and future research directions are provided for nanoacoustics in medical imaging and therapy.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James B. Spicer
- Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
30
|
Schmitthenner HF, Barrett TM, Beach SA, Heese LE, Weidman C, Dobson DE, Mahoney ER, Schug NC, Jones KG, Durmaz C, Otasowie O, Aronow S, Lee YP, Ophardt HD, Becker AE, Hornak JP, Evans IM, Ferran MC. Modular Synthesis of Peptide-Based Single- and Multimodal Targeted Molecular Imaging Agents. ACS APPLIED BIO MATERIALS 2021; 4:5435-5448. [PMID: 35006725 PMCID: PMC9633131 DOI: 10.1021/acsabm.1c00157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A practical, modular synthesis of targeted molecular imaging agents (TMIAs) containing near-infrared dyes for optical molecular imaging (OMI) or chelated metals for magnetic resonance imaging (MRI) and single-photon emission correlation tomography (SPECT) or positron emission tomography (PET) has been developed. In the method, imaging modules are formed early in the synthesis by attaching imaging agents to the side chain of protected lysines. These modules may be assembled to provide a given set of single- or dual-modal imaging agents, which may be conjugated in the last steps of the synthesis under mild conditions to linkers and targeting groups. A key discovery was the ability of a metal such as gadolinium, useful in MRI, to serve as a protecting group for the chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). It was further discovered that two lanthanide metals, La and Ce, can double as protecting groups and placeholder metals, which may be transmetalated under mild conditions by metals used for PET in the final step. The modular method enabled the synthesis of discrete targeted probes with two of the same or different dyes, two same or different metals, or mixtures of dyes and metals. The approach was exemplified by the synthesis of single- or dual-modal imaging modules for MRI-OMI, PET-OMI, and PET-MRI, followed by conjugation to the integrin-seeking peptide, c(RGDyK). For Gd modules, their efficacy for MRI was verified by measuring the NMR spin-lattice relaxivity. To validate functional imaging of TMIAs, dual-modal agents containing Cy5.5 were shown to target A549 cancer cells by confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Hans F Schmitthenner
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Taylor M Barrett
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Stephanie A Beach
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Lauren E Heese
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Chelsea Weidman
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Damien E Dobson
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Emily R Mahoney
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Nicholas C Schug
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Kelsea G Jones
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Ceyda Durmaz
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Osarhuwense Otasowie
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Sean Aronow
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Yin Peng Lee
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Henry D Ophardt
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Amy E Becker
- Chester Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Joseph P Hornak
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
- Chester Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Irene M Evans
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Maureen C Ferran
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|
31
|
Hariri A, Palma-Chavez J, Wear KA, Pfefer TJ, Jokerst JV, Vogt WC. Polyacrylamide hydrogel phantoms for performance evaluation of multispectral photoacoustic imaging systems. PHOTOACOUSTICS 2021; 22:100245. [PMID: 33747787 PMCID: PMC7972966 DOI: 10.1016/j.pacs.2021.100245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 05/21/2023]
Abstract
As photoacoustic imaging (PAI) begins to mature and undergo clinical translation, there is a need for well-validated, standardized performance test methods to support device development, quality control, and regulatory evaluation. Despite recent progress, current PAI phantoms may not adequately replicate tissue light and sound transport over the full range of optical wavelengths and acoustic frequencies employed by reported PAI devices. Here we introduce polyacrylamide (PAA) hydrogel as a candidate material for fabricating stable phantoms with well-characterized optical and acoustic properties that are biologically relevant over a broad range of system design parameters. We evaluated suitability of PAA phantoms for conducting image quality assessment of three PAI systems with substantially different operating parameters including two commercial systems and a custom system. Imaging results indicated that appropriately tuned PAA phantoms are useful tools for assessing and comparing PAI system image quality. These phantoms may also facilitate future standardization of performance test methodology.
Collapse
Affiliation(s)
- Ali Hariri
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jorge Palma-Chavez
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Keith A Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - T Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - William C Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
32
|
Sun J, Wang J, Hu W, Wang Y, Chou T, Zhang Q, Zhang B, Yu Z, Yang Y, Ren L, Wang H. Camouflaged Gold Nanodendrites Enable Synergistic Photodynamic Therapy and NIR Biowindow II Photothermal Therapy and Multimodal Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10778-10795. [PMID: 33646767 DOI: 10.1021/acsami.1c01238] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Gold nanodendrite (AuND)-based nanotheranostic agents with versatile capabilities were fabricated by optimizing the geometrical configurations (dendrite length and density) of AuND to achieve localized surface plasmon resonance (LSPR) in near-infrared biowindow II (NIR-II), and then subsequently functionalizing with a mitochondria-targeting compound (triphenylphosphonium, TPP), loading with an NIR-photosensitizer (indocyanine green, ICG) and coating with the macrophage cell membrane (MCM) to trap ICG within AuND and selectively interact with MDA-MB-231 cells. The novel AuND-TPP-ICG@MCM system enabled the integration of multimodal fluorescence/photoacoustic/surface-enhanced Raman imaging with synergistic therapies of NIR-II photothermal therapy and NIR-I photodynamic therapy for cancer treatment. Enhanced hyperthermia and elevated production of reactive oxygen species within the tumors via MCM coating and mitochondria targeting afforded a synergistic efficacy for tumor eradication with limited side effects. The demonstrated biocompatibility, multi-imaging capability, and high therapeutic efficiency under NIR laser irradiation indicate the potentials of this multifunctional nanotheranostic platform for clinical utility in cancer therapy.
Collapse
Affiliation(s)
- Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jinping Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Wei Hu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Yuhao Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Tsengming Chou
- Laboratory for Multiscale Imaging, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Qiang Zhang
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Beilu Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Zhengqian Yu
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Yamin Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Lei Ren
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hongjun Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
33
|
Yan Y, Basij M, Garg A, Varrey A, Alhousseini A, Hsu R, Hernandez-Andrade E, Romero R, Hassan SS, Mehrmohammadi M. Spectroscopic photoacoustic imaging of cervical tissue composition in excised human samples. PLoS One 2021; 16:e0247385. [PMID: 33657136 PMCID: PMC7928441 DOI: 10.1371/journal.pone.0247385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/06/2021] [Indexed: 02/04/2023] Open
Abstract
Objective Cervical remodeling is an important component in determining the pathway of parturition; therefore, assessing changes in cervical tissue composition may provide information about the cervix’s status beyond the measurement of cervical length. Photoacoustic imaging is a non-invasive ultrasound-based technology that captures acoustic signals emitted by tissue components in response to laser pulses. This optical information allows for the determination of the collagen-to-water ratio (CWR). The purpose of this study was to compare the CWR evaluated by using spectroscopic photoacoustic (sPA) imaging in cervical samples obtained from pregnant and non-pregnant women. Methods This cross-sectional study comprised cervical biopsies obtained at the time of hysterectomy (n = 8) and at the scheduled cesarean delivery in pregnant women at term who were not in labor (n = 8). The cervical CWR was analyzed using a fiber-optic light-delivery system integrated to an ultrasound probe. The photoacoustic signals were acquired within the range of wavelengths that cover the peak absorption of collagen and water. Differences in the CWR between cervical samples from pregnant and non-pregnant women were analyzed. Hematoxylin and eosin and Sirius Red stains were used to compare the collagen content of cervical samples in these two groups. Results Eight cervix samples were obtained after hysterectomy, four from women ≤41 years of age and four from women ≥43 years of age; all cervical samples (n = 8) from pregnant women were obtained after 37 weeks of gestation at the time of cesarean section. The average CWR in cervical tissue samples from pregnant women was 18.7% (SD 7.5%), while in samples from non-pregnant women, it was 55.0% (SD 20.3%). There was a significantly higher CWR in the non-pregnant group compared to the pregnant group with a p-value <0.001. A subgroup analysis that compared the CWR in cervical samples from pregnant women and non-pregnant women ≤41 years of age (mean 46.3%, SD 23.1%) also showed a significantly higher CWR (p <0.01). Lower collagen content in the pregnancy group was confirmed by histological analysis, which revealed the loss of tissue composition, increased water content, and collagen degradation. Conclusion The proposed bimodal ultrasound and sPA imaging system can provide information on the biochemical composition of cervical tissue in pregnant and non-pregnant women. Photoacoustic imaging showed a higher collagen content in cervical samples from non-pregnant women as compared to those from pregnant women, which matched with the histological analysis. This novel imaging method envisions a new potential for a sensitive diagnostic tool in the evaluation of cervical tissue composition.
Collapse
Affiliation(s)
- Yan Yan
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Maryam Basij
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Alpana Garg
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Aneesha Varrey
- Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ali Alhousseini
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, William Beaumont Hospital, Royal Oak, Michigan, United States of America
| | - Richard Hsu
- Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, Michigan, United States of America
| | - Edgar Hernandez-Andrade
- Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas, Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Roberto Romero
- Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Detroit Medical Center, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, United States of America
| | - Sonia S. Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Office of Women’s Health, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan, United States of America
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
34
|
Karmacharya MB, Sultan LR, Sehgal CM. Photoacoustic monitoring of oxygenation changes induced by therapeutic ultrasound in murine hepatocellular carcinoma. Sci Rep 2021; 11:4100. [PMID: 33603035 PMCID: PMC7893035 DOI: 10.1038/s41598-021-83439-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly vascular solid tumor. We have previously shown that ultrasound (US) therapy significantly reduces tumor vascularity. This study monitors US-induced changes in tumor oxygenation on murine HCC by photoacoustic imaging (PAI). Oxygen saturation and total hemoglobin were assessed by PAI before and after US treatments performed at different intensities of continuous wave (CW) bursts and pulsed wave (PW) bursts US. PAI revealed significant reduction both in HCC oxygen saturation and in total hemoglobin, proportional to the US intensity. Both CW bursts US (1.6 W/cm2) and the PW bursts US (0.8 W/cm2) significantly reduced HCC oxygen saturation and total hemoglobin which continued to diminish with time following the US treatment. The effects of US therapy were confirmed by power Doppler and histological examination of the hemorrhage in tumors. By each measure, the changes observed in US-treated HCC were more prevalent than those in sham-treated tumors and were statistically significant. In conclusion, the results show that US is an effective vascular-targeting therapy for HCC. The changes in oxygenation induced by the US treatment can be noninvasively monitored longitudinally by PAI without the use of exogenous image-enhancing agents. The combined use of PAI and the therapeutic US has potential for image-guided vascular therapy for HCC.
Collapse
Affiliation(s)
- Mrigendra B Karmacharya
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Laith R Sultan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Chandra M Sehgal
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
35
|
Zelepukin IV, Popov AA, Shipunova VO, Tikhonowski GV, Mirkasymov AB, Popova-Kuznetsova EA, Klimentov SM, Kabashin AV, Deyev SM. Laser-synthesized TiN nanoparticles for biomedical applications: Evaluation of safety, biodistribution and pharmacokinetics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111717. [PMID: 33545869 DOI: 10.1016/j.msec.2020.111717] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 01/10/2023]
Abstract
Having plasmonic absorption within the biological transparency window, titanium nitride (TiN) nanoparticles (NPs) can potentially outperform gold counterparts in phototheranostic applications, but characteristics of available TiN NPs are still far from required parameters. Recently emerged laser-ablative synthesis opens up opportunities to match these parameters as it makes possible the production of ultrapure low size-dispersed spherical TiN NPs, capable of generating a strong phototherapy effect under 750-800 nm excitation. This study presents the first assessment of toxicity, biodistribution and pharmacokinetics of laser-synthesized TiN NPs. Tests in vitro using 8 cell lines from different tissues evidenced safety of both as-synthesized and PEG-coated NPs (TiN-PEG NPs). After systemic administration in mice, they mainly accumulated in liver and spleen, but did not cause any sign of toxicity or organ damage up to concentration of 6 mg kg-1, which was confirmed by the invariability of blood biochemical parameters, weight and hemotoxicity examination. The NPs demonstrated efficient passive accumulation in EMT6/P mammary tumor, while concentration of TiN-PEG NPs was 2.2-fold higher due to "stealth" effect yielding 7-times longer circulation in blood. The obtained results evidence high safety of laser-synthesized TiN NPs for biological systems, which promises a major advancement of phototheranostic modalities on their basis.
Collapse
Affiliation(s)
- Ivan V Zelepukin
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anton A Popov
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Moscow, Russia
| | - Victoria O Shipunova
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Gleb V Tikhonowski
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Moscow, Russia
| | - Aziz B Mirkasymov
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey M Klimentov
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Moscow, Russia
| | - Andrei V Kabashin
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Moscow, Russia; Aix-Marseille University, CNRS, LP3, Marseille, France.
| | - Sergey M Deyev
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Moscow, Russia; Sechenov University, Center of Biomedical Engineering, Moscow, Russia; Tomsk Polytechnic University, Research Centrum for Oncotheranostics, Tomsk, Russia.
| |
Collapse
|
36
|
Nishio N, van den Berg NS, Martin BA, van Keulen S, Fakurnejad S, Rosenthal EL, Wilson KE. Photoacoustic Molecular Imaging for the Identification of Lymph Node Metastasis in Head and Neck Cancer Using an Anti-EGFR Antibody-Dye Conjugate. J Nucl Med 2020; 62:648-655. [PMID: 33008927 PMCID: PMC8844260 DOI: 10.2967/jnumed.120.245241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
The presence of lymph node (LN) metastases is an essential prognostic indicator in patients with head and neck squamous cell carcinoma (HNSCC). This study assessed photoacoustic molecular imaging (PAMI) of the antiepidermal growth factor receptor antibody (panitumumab) conjugated to a near-infrared fluorescent dye, IRDye800CW (panitumumab-IRDye800CW; pan800), for the identification of occult metastatic LNs in patients with HNSCC (n = 7). Methods: After in vitro photoacoustic imaging characterization of pan800, PAMI was performed on excised neck specimens from patients infused with pan800 before surgery. Freshly obtained neck specimens were imaged with 3-dimensional, multiwavelength spectroscopic PAMI (wavelengths of 680, 686, 740, 800, 860, 924, and 958 nm). Harvested LNs were then imaged with a closed-field near-infrared fluorescence imager and histologically examined by the pathologist to determine their metastatic status. Results: In total, 53 LNs with a maximum diameter of 10 mm were analyzed with photoacoustic and fluorescence imaging, of which 4 were determined to be metastatic on the final histopathologic report. Photoacoustic signals in the LNs corresponding to accumulated pan800 were spectrally unmixed using a linear least-square-error classification algorithm. The average thresholded photoacoustic signal intensity corresponding to pan800 was 5-fold higher for metastatic LNs than for benign LNs (2.50 ± 1.09 arbitrary units [a.u.] vs. 0.53 ± 0.32 a.u., P < 0.001). Fluorescence imaging showed that metastatic LNs had a 2-fold increase in fluorescence signal compared with benign LNs ex vivo (P < 0.01, 0.068 ± 0.027 a.u. vs. 0.035 ± 0.018 a.u.). Moreover, the ratio of the average of the highest 10% of the photoacoustic signal intensity over the total average, representative of the degree of heterogeneity in the pan800 signal in LNs, showed a significant difference between metastatic LNs and benign LNs (11.6 ± 13.4 vs. 1.8 ± 0.7, P < 0.01) and an area under the receiver-operating-characteristic curve of 0.96 (95% CI, 0.91-1.00). Conclusion: The data indicate that PAMI of IRDye800-labeled tumor-specific antibody may have the potential to identify occult LN metastasis perioperatively in HNSCC patients.
Collapse
Affiliation(s)
- Naoki Nishio
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California.,Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Nynke S van den Berg
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Brock A Martin
- Department of Pathology, Stanford University School of Medicine, Stanford, California; and
| | - Stan van Keulen
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Shayan Fakurnejad
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Eben L Rosenthal
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Katheryne E Wilson
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
37
|
Photoacoustic Imaging for Assessing Tissue Oxygenation Changes in Rat Hepatic Fibrosis. Diagnostics (Basel) 2020; 10:diagnostics10090705. [PMID: 32957666 PMCID: PMC7555416 DOI: 10.3390/diagnostics10090705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/18/2020] [Accepted: 09/11/2020] [Indexed: 12/29/2022] Open
Abstract
Chronic liver inflammation progressively evokes fibrosis and cirrhosis resulting in compromised liver function, and often leading to cancer. Early diagnosis and staging of fibrosis is crucial because the five-year survival rate of early-stage liver cancer is high. This study investigates the progression of hepatic fibrosis induced in rats following ingestion of diethylnitrosamine (DEN). Changes in oxygen saturation and hemoglobin concentration resulting from chronic inflammation were assayed longitudinally during DEN ingestion by photoacoustic imaging (PAI). Accompanying liver tissue changes were monitored simultaneously by B-mode sonographic imaging. Oxygen saturation and hemoglobin levels in the liver increased over 5 weeks and peaked at 10 weeks before decreasing at 13 weeks of DEN ingestion. The oxygenation changes were accompanied by an increase in hepatic echogenicity and coarseness in the ultrasound image. Histology at 13 weeks confirmed the development of severe fibrosis and cirrhosis. The observed increase in PA signal representing enhanced blood oxygenation is likely an inflammatory physiological response to the dietary DEN insult that increases blood flow by the development of neovasculature to supply oxygen to a fibrotic liver during the progression of hepatic fibrosis. Assessment of oxygenation by PAI may play an important role in the future assessment of hepatic fibrosis.
Collapse
|
38
|
Nikam AN, Pandey A, Fernandes G, Kulkarni S, Mutalik SP, Padya BS, George SD, Mutalik S. Copper sulphide based heterogeneous nanoplatforms for multimodal therapy and imaging of cancer: Recent advances and toxicological perspectives. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
An Automatic Unmixing Approach to Detect Tissue Chromophores from Multispectral Photoacoustic Imaging. SENSORS 2020; 20:s20113235. [PMID: 32517204 PMCID: PMC7308815 DOI: 10.3390/s20113235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Multispectral photoacoustic imaging has been widely explored as an emerging tool to visualize and quantify tissue chromophores noninvasively. This modality can capture the spectral absorption signature of prominent tissue chromophores, such as oxygenated, deoxygenated hemoglobin, and other biomarkers in the tissue by using spectral unmixing methods. Currently, most of the reported image processing algorithms use standard unmixing procedures, which include user interaction in the form of providing the expected spectral signatures. For translational research with patients, these types of supervised spectral unmixing can be challenging, as the spectral signature of the tissues can differ with respect to the disease condition. Imaging exogenous contrast agents and accessing their biodistribution can also be problematic, as some of the contrast agents are susceptible to change in spectral properties after the tissue interaction. In this work, we investigated the feasibility of an unsupervised spectral unmixing algorithm to detect and extract the tissue chromophores without any a-priori knowledge and user interaction. The algorithm has been optimized for multispectral photoacoustic imaging in the spectral range of 680-900 nm. The performance of the algorithm has been tested on simulated data, tissue-mimicking phantom, and also on the detection of exogenous contrast agents after the intravenous injection in mice. Our finding shows that the proposed automatic, unsupervised spectral unmixing method has great potential to extract and quantify the tissue chromophores, and this can be used in any wavelength range of the multispectral photoacoustic images.
Collapse
|
40
|
Abstract
Photoacoustic imaging has demonstrated its potential for diagnosis over the last few decades. In recent years, its unique imaging capabilities, such as detecting structural, functional and molecular information in deep regions with optical contrast and ultrasound resolution, have opened up many opportunities for photoacoustic imaging to be used during image-guided interventions. Numerous studies have investigated the capability of photoacoustic imaging to guide various interventions such as drug delivery, therapies, surgeries, and biopsies. These studies have demonstrated that photoacoustic imaging can guide these interventions effectively and non-invasively in real-time. In this minireview, we will elucidate the potential of photoacoustic imaging in guiding active and passive drug deliveries, photothermal therapy, and other surgeries and therapies using endogenous and exogenous contrast agents including organic, inorganic, and hybrid nanoparticles, as well as needle-based biopsy procedures. The advantages of photoacoustic imaging in guided interventions will be discussed. It will, therefore, show that photoacoustic imaging has great potential in real-time interventions due to its advantages over current imaging modalities like computed tomography, magnetic resonance imaging, and ultrasound imaging.
Collapse
Affiliation(s)
- Madhumithra S Karthikesh
- Bioengineering Program and Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
| | - Xinmai Yang
- Bioengineering Program and Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
41
|
Photoacoustic Imaging for Management of Breast Cancer: A Literature Review and Future Perspectives. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review article, a detailed chronological account of the research related to photoacoustic imaging for the management of breast cancer is presented. Performing a detailed analysis of the breast cancer detection related photoacoustic imaging studies undertaken by different research groups, this review attempts to present the clinical evidence in support of using photoacoustic imaging for breast cancer detection. Based on the experimental evidence obtained from the clinical studies conducted so far, the performance of photoacoustic imaging is compared with that of conventional breast imaging modalities. While we find that there is enough experimental evidence to support the use of photoacoustic imaging for breast cancer detection, additional clinical studies are required to be performed to evaluate the diagnostic potential of photoacoustic imaging for identifying different types of breast cancer. To establish the utility of photoacoustic imaging for breast cancer screening, clinical studies with high-risk asymptomatic patients need to be done.
Collapse
|
42
|
Sui Y, Li Y, Li Y, Jin H, Zheng Y, Huang W, Chen S. Tumor-specific design of PEGylated gadolinium-based nanoscale particles: Facile synthesis, characterization, and improved magnetic resonance imaging of metastasis lung cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111669. [PMID: 31739258 DOI: 10.1016/j.jphotobiol.2019.111669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/20/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Herein we report the synthesis and characterization of the antifouling Gadolinium oxide (Gd2O3) nanoparticles (NPs) modified with PEG with improved biocompatibility for MR imaging purposes. In this report, using the solvothermal decomposition of Gadolinium (III) in the presence of Na3cit, monitored by surface modification with PEG and L-Cys. The synthesized nanoparticles were confirmed by the TEM, DLS and UV-Visible spectroscopy. The morphological results show normal distance across of the flawless Gd2O3-PEG-Cys-NPs show 7.9 ± 0.4 nm, discretely, with a thin size exchange. This infers the surface adjustment does not obviously alteration the center size of the Gd2O3-NPs when contrasted with the perfect sodium citrate-balanced out Gd2O3-NPs. The Gd2O3-PEG-L-Cys-NPs are highly stable at room temperature, water dispersible and importantly less cytotoxic at high concentration of the NPs. The T1-weighted MR phantasm readings evidentially displayed that the formed PEG coated Gd2O3-PEG and Gd2O3-PEG-Cys-NPs with and without Cys may be performed as the promising T1-weighted MR imaging. The NPs displays no signs of toxicity against the human blood, which represents the biocompatibility for the human medicine applications. The Gd2O3-PEG-Cys-NPs shows relatively, high r1 acceptable cytocompatibility, target specific cancer cells and activate the dual mode MR imaging of lung metastasis cancer model in vitro. The development of versatile zwitterion functionalized Gd2O3 may be promising as an active nanoparticle probe for improved multi-model of MR imaging agents for various cancer diseases.
Collapse
Affiliation(s)
- Yuan Sui
- Medical Imaging Center, The First People's Hospital of Shangqiu, Henan Province, PR China
| | - Yuzhou Li
- Medical Imaging Center, The First People's Hospital of Shangqiu, Henan Province, PR China
| | - Yiming Li
- Medical Imaging Center, The First People's Hospital of Shangqiu, Henan Province, PR China
| | - Hongrui Jin
- Department of Magnetic Resonance, First Affiliated Hospital of Zhengzhou University, PR China
| | - Yinshi Zheng
- Medical Imaging Center, The First People's Hospital of Shangqiu, Henan Province, PR China
| | - Wenqi Huang
- Medical Imaging Center, The First People's Hospital of Shangqiu, Henan Province, PR China
| | - Shuo Chen
- Department of Lung, Spleen and Stomach, Nanping People's Hospital, No. 29 Jiefang Road, Nanping District, Nanping 353000, Fujian Province, PR China.
| |
Collapse
|
43
|
Preclinical Molecular Imaging for Precision Medicine in Breast Cancer Mouse Models. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:8946729. [PMID: 31598114 PMCID: PMC6778915 DOI: 10.1155/2019/8946729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/28/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022]
Abstract
Precision and personalized medicine is gaining importance in modern clinical medicine, as it aims to improve diagnostic precision and to reduce consequent therapeutic failures. In this regard, prior to use in human trials, animal models can help evaluate novel imaging approaches and therapeutic strategies and can help discover new biomarkers. Breast cancer is the most common malignancy in women worldwide, accounting for 25% of cases of all cancers and is responsible for approximately 500,000 deaths per year. Thus, it is important to identify accurate biomarkers for precise stratification of affected patients and for early detection of responsiveness to the selected therapeutic protocol. This review aims to summarize the latest advancements in preclinical molecular imaging in breast cancer mouse models. Positron emission tomography (PET) imaging remains one of the most common preclinical techniques used to evaluate biomarker expression in vivo, whereas magnetic resonance imaging (MRI), particularly diffusion-weighted (DW) sequences, has been demonstrated as capable of distinguishing responders from nonresponders for both conventional and innovative chemo- and immune-therapies with high sensitivity and in a noninvasive manner. The ability to customize therapies is desirable, as this will enable early detection of diseases and tailoring of treatments to individual patient profiles. Animal models remain irreplaceable in the effort to understand the molecular mechanisms and patterns of oncologic diseases.
Collapse
|