1
|
Yuan Z, Yao Z, Mao X, Gao X, Wu S, Mao H. Epigenetic mechanisms in stem cell therapies for achilles tendinopathy. Front Cell Dev Biol 2025; 13:1516250. [PMID: 40181824 PMCID: PMC11965899 DOI: 10.3389/fcell.2025.1516250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025] Open
Abstract
Achilles tendinopathy (AT) is a chronic degenerative tendinopathy that affects people's daily lives. Multiple clinical studies have found that current conservative treatments fail to promote quality tendon healing. Recent studies have found that stem cell therapy can target pathophysiological changes in the tendon by replenishing tendon-derived cells, promoting extracellular matrix (ECM) remodeling, and modulating the inflammatory response to improve the microenvironment of Achilles tendon regeneration. And epigenetic modifications play an important role in stem cell fate determination and function. In this review, we provided a brief overview of the biological properties of relevant stem cells. The influence of epigenetic modifications on stem cell proliferation, differentiation, and immune regulatory function in the treatment of AT was also explored. We focused on gene regulatory mechanisms controlled by DNA methylation, histones and non-coding RNAs including microRNAs, circRNAs and long non-coding RNAs. We also discuss the current challenges faced by stem cell therapies in treating AT and their potential solutions. Further research in this area will provide a more comprehensive epigenetic explanation for stem cell therapy for AT, leading to the development of stable, safe and effective stem cell therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Haijiao Mao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Shi X, Zhang K, Yu F, Qi Q, Cai X, Zhang Y. Advancements and Innovative Strategies in Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cell Therapy: A Comprehensive Review. Stem Cells Int 2024; 2024:4073485. [PMID: 39377039 PMCID: PMC11458320 DOI: 10.1155/2024/4073485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/24/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
The effectiveness and safety of mesenchymal stem cell (MSC) therapy have been substantiated across various diseases. Nevertheless, challenges such as the restricted in vitro expansion capacity of tissue-derived MSCs and the clinical instability due to the high heterogeneity of isolated cells require urgent resolution. The induced pluripotent stem cell-derived MSCs (iPSC-MSCs), which is differentiated from iPSCs via specific experimental pathways, holds considerable potential as a substitute for tissue derived MSCs. Multiple studies have demonstrated that iPSCs can be differentiated into iPSC-MSCs through diverse differentiation strategies. Research suggests that iPSC-MSCs, when compared to tissue derived MSCs, exhibit superior characteristics in terms of proliferation ability, immune modulation capacity, and biological efficiency. In this review, we meticulously described and summarized the experimental methods of iPSC differentiation into iPSC-MSCs, the application of iPSC-MSCs in various disease models, the latest advancements in clinically relevant iPSC-derived cell products, and the development strategies for the next generation of iPSC-derived therapy products (not only cell products but also their derivatives).
Collapse
Affiliation(s)
- Xiaoyu Shi
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Kun Zhang
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Fengshi Yu
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Qi Qi
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Xiaoyu Cai
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Yu Zhang
- VCANBIO Cell and Gene Engineering Corp. Ltd., Tianjin, China
| |
Collapse
|
3
|
Winston T, Song Y, Shi H, Yang J, Alsudais M, Kontaridis MI, Wu Y, Gaborski TR, Meng Q, Cooney RN, Ma Z. Lineage-Specific Mesenchymal Stromal Cells Derived from Human iPSCs Showed Distinct Patterns in Transcriptomic Profile and Extracellular Vesicle Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308975. [PMID: 38757640 PMCID: PMC11267277 DOI: 10.1002/advs.202308975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Over the past decades, mesenchymal stromal cells (MSCs) have been extensively investigated as a potential therapeutic cell source for the treatment of various disorders. Differentiation of MSCs from human induced pluripotent stem cells (iMSCs) has provided a scalable approach for the biomanufacturing of MSCs and related biological products. Although iMSCs shared typical MSC markers and functions as primary MSCs (pMSCs), there is a lack of lineage specificity in many iMSC differentiation protocols. Here, a stepwise hiPSC-to-iMSC differentiation method is employed via intermediate cell stages of neural crest and cytotrophoblast to generate lineage-specific MSCs with varying differentiation efficiencies and gene expression. Through a comprehensive comparison between early developmental cell types (hiPSCs, neural crest, and cytotrophoblast), two lineage-specific iMSCs, and six source-specific pMSCs, are able to not only distinguish the transcriptomic differences between MSCs and early developmental cells, but also determine the transcriptomic similarities of iMSC subtypes to postnatal or perinatal pMSCs. Additionally, it is demonstrated that different iMSC subtypes and priming conditions affected EV production, exosomal protein expression, and cytokine cargo.
Collapse
Affiliation(s)
- Tackla Winston
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Yuanhui Song
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Huaiyu Shi
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Junhui Yang
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Munther Alsudais
- Departments of Biomedical and Chemical EngineeringRochester Institute of TechnologyOne Lomb Memorial DriveRochesterNY14623USA
| | - Maria I. Kontaridis
- Department of Biomedical Research and Translational MedicineMasonic Medical Research Institute2150 Bleecker StreetUticaNY13501USA
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical CenterHarvard Medical School330 Brookline AveBostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBuilding C, 240 Longwood AveBostonMA02115USA
| | - Yaoying Wu
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
- Department of Microbiology & ImmunologySUNY Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Thomas R. Gaborski
- Departments of Biomedical and Chemical EngineeringRochester Institute of TechnologyOne Lomb Memorial DriveRochesterNY14623USA
| | - Qinghe Meng
- Department of SurgeryState University of New York Upstate Medical University750 East Adams StreetSyracuseNY13210USA
- Sepsis Interdisciplinary Research CenterState University of New York Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Robert N. Cooney
- Department of SurgeryState University of New York Upstate Medical University750 East Adams StreetSyracuseNY13210USA
- Sepsis Interdisciplinary Research CenterState University of New York Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Zhen Ma
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
- Department of BiologySyracuse University107 College PlSyracuseNY13210USA
| |
Collapse
|
4
|
Toma M, Singh-Gryzbon S, Frankini E, Wei Z(A, Yoganathan AP. Clinical Impact of Computational Heart Valve Models. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3302. [PMID: 35591636 PMCID: PMC9101262 DOI: 10.3390/ma15093302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022]
Abstract
This paper provides a review of engineering applications and computational methods used to analyze the dynamics of heart valve closures in healthy and diseased states. Computational methods are a cost-effective tool that can be used to evaluate the flow parameters of heart valves. Valve repair and replacement have long-term stability and biocompatibility issues, highlighting the need for a more robust method for resolving valvular disease. For example, while fluid-structure interaction analyses are still scarcely utilized to study aortic valves, computational fluid dynamics is used to assess the effect of different aortic valve morphologies on velocity profiles, flow patterns, helicity, wall shear stress, and oscillatory shear index in the thoracic aorta. It has been analyzed that computational flow dynamic analyses can be integrated with other methods to create a superior, more compatible method of understanding risk and compatibility.
Collapse
Affiliation(s)
- Milan Toma
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA;
| | - Shelly Singh-Gryzbon
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.-G.); (A.P.Y.)
| | - Elisabeth Frankini
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA;
| | - Zhenglun (Alan) Wei
- Department of Biomedical Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Ajit P. Yoganathan
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.-G.); (A.P.Y.)
| |
Collapse
|
5
|
Winston TS, Chen C, Suddhapas K, Tarris BA, Elattar S, Sun S, Zhang T, Ma Z. Controlling Mesenchyme Tissue Remodeling via Spatial Arrangement of Mechanical Constraints. Front Bioeng Biotechnol 2022; 10:833595. [PMID: 35252142 PMCID: PMC8896258 DOI: 10.3389/fbioe.2022.833595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
Tissue morphogenetic remodeling plays an important role in tissue repair and homeostasis and is often governed by mechanical stresses. In this study, we integrated an in vitro mesenchymal tissue experimental model with a volumetric contraction-based computational model to investigate how geometrical designs of tissue mechanical constraints affect the tissue remodeling processes. Both experimental data and simulation results verified that the standing posts resisted the bulk contraction of the tissues, leading to tissue thinning around the posts as gap extension and inward remodeling at the edges as tissue compaction. We changed the geometrical designs for the engineered mesenchymal tissues with different shapes of posts arrangements (triangle vs. square), different side lengths (6 mm vs. 8 mm), and insertion of a center post. Both experimental data and simulation results showed similar trends of tissue morphological changes of significant increase of gap extension and deflection compaction with larger tissues. Additionally, insertion of center post changed the mechanical stress distribution within the tissues and stabilized the tissue remodeling. This experimental-computational integrated model can be considered as a promising initiative for future mechanistic understanding of the relationship between mechanical design and tissue remodeling, which could possibly provide design rationale for tissue stability and manufacturing.
Collapse
Affiliation(s)
- Tackla S. Winston
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States
- BioInspired Syracuse Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
| | - Chao Chen
- BioInspired Syracuse Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, United States
| | - Kantaphon Suddhapas
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States
- BioInspired Syracuse Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
| | - Bearett A. Tarris
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States
- BioInspired Syracuse Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
| | - Saif Elattar
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, United States
| | - Shiyang Sun
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States
- BioInspired Syracuse Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
| | - Teng Zhang
- BioInspired Syracuse Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, United States
- *Correspondence: Teng Zhang, ; Zhen Ma,
| | - Zhen Ma
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States
- BioInspired Syracuse Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
- *Correspondence: Teng Zhang, ; Zhen Ma,
| |
Collapse
|
6
|
Tsutsumi H, Kurimoto R, Nakamichi R, Chiba T, Matsushima T, Fujii Y, Sanada R, Kato T, Shishido K, Sakamaki Y, Kimura T, Kishida A, Asahara H. Generation of a tendon-like tissue from human iPS cells. J Tissue Eng 2022; 13:20417314221074018. [PMID: 35083031 PMCID: PMC8785341 DOI: 10.1177/20417314221074018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/01/2022] [Indexed: 12/29/2022] Open
Abstract
Tendons and ligaments are essential connective tissues that connect the muscle and bone. Their recovery from injuries is known to be poor, highlighting the crucial need for an effective therapy. A few reports have described the development of artificial ligaments with sufficient strength from human cells. In this study, we successfully generated a tendon-like tissue (bio-tendon) using human induced pluripotent stem cells (iPSCs). We first differentiated human iPSCs into mesenchymal stem cells (iPSC-MSCs) and transfected them with Mohawk (Mkx) to obtain Mkx-iPSC-MSCs, which were applied to a newly designed chamber with a mechanical stretch incubation system. The embedded Mkx-iPSC-MSCs created bio-tendons and exhibited an aligned extracellular matrix structure. Transplantation of the bio-tendons into a mouse Achilles tendon rupture model showed host-derived cell infiltration with improved histological score and biomechanical properties. Taken together, the bio-tendon generated in this study has potential clinical applications for tendon/ligament-related injuries and diseases.
Collapse
Affiliation(s)
- Hiroki Tsutsumi
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Bunkyo City, Japan
| | - Ryota Kurimoto
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Bunkyo City, Japan
| | - Ryo Nakamichi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomoki Chiba
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Bunkyo City, Japan
| | - Takahide Matsushima
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Bunkyo City, Japan
| | - Yuta Fujii
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Bunkyo City, Japan
| | - Risa Sanada
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Bunkyo City, Japan
| | - Tomomi Kato
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Bunkyo City, Japan
| | - Kana Shishido
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Bunkyo City, Japan
| | - Yuriko Sakamaki
- Research Core, Tokyo Medical and Dental University, Bunkyo City, Japan
| | - Tsuyoshi Kimura
- Department of Material-Based Medical Engineering, Tokyo Medical and Dental University, Bunkyo City, Japan
| | - Akio Kishida
- Department of Material-Based Medical Engineering, Tokyo Medical and Dental University, Bunkyo City, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Bunkyo City, Japan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
7
|
Multifactorial Modeling Reveals a Dominant Role of Wnt Signaling in Lineage Commitment of Human Pluripotent Stem Cells. Bioengineering (Basel) 2019; 6:bioengineering6030071. [PMID: 31443254 PMCID: PMC6783940 DOI: 10.3390/bioengineering6030071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
The human primed pluripotent state is maintained by a complex balance of several signaling pathways governing pluripotency maintenance and commitment. Here, we explore a multiparameter approach using a full factorial design and a simple well-defined culture system to assess individual and synergistic contributions of Wnt, FGF and TGFβ signaling to pluripotency and lineage specification of human induced pluripotent stem cells (hiPSC). Hierarchical clustering and quadratic models highlighted a dominant effect of Wnt signaling over FGF and TGFβ signaling, drawing hiPSCs towards mesendoderm lineages. In addition, a synergistic effect between Wnt signaling and FGF was observed to have a negative contribution to pluripotency maintenance and a positive contribution to ectoderm and mesoderm commitment. Furthermore, FGF and TGFβ signaling only contributed significantly for negative ectoderm scores, suggesting that the effect of both factors for pluripotency maintenance resides in a balance of inhibitory signals instead of proactive stimulation of hiPSC pluripotency. Overall, our dry-signaling multiparameter modeling approach can contribute to elucidate individual and synergistic inputs, providing an additional degree of comprehension of the complex regulatory mechanisms of human pluripotency and commitment.
Collapse
|