1
|
Tong TH, Do XH, Nguyen TT, Pham BH, Le QD, Nguyen XH, Hoang NTM, Nguyen TH, Nguyen NH, Than UTT. Umbilical cord blood-derived platelet-rich plasma as a coating substrate supporting cell adhesion and biological activities of wound healing. Eur J Med Res 2025; 30:145. [PMID: 40022270 PMCID: PMC11869680 DOI: 10.1186/s40001-025-02388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Platelet-rich plasma (PrP) is a blood derivative with positive roles in regenerative medicine, particularly in wound healing. Evidence has been reported for using peripheral blood-derived PrP in disease treatments, but umbilical cord blood (UCB)-derived PrP remains limited. Thus, we investigate the roles of UCB-derived PrP in cellular behaviours in vitro and in wound healing in vivo models. METHODS We used 2D and 3D cell culture models to investigate the role of UCB-derived PrP gels in stimulating the attachment, proliferation, migration, and spheroid formation of umbilical cord-derived mesenchymal stem cell (UCMSC) and human dermal fibroblast (hFB). In addition, immunoassay and PCR were used to understand the enrichment of growth factors in UCB-derived PrP and the change of ECM genes in PrP-treated cells. Finally, a rat model was used to investigate the cutaneous wound healing process. RESULTS UCB-derived PrP gels were enriched with platelet-derived growth factor-BB (PDGF-BB) (3394.1 ± 2658.3 pg/mL), vascular endothelial growth factor-A (VEGF-A) (282.0 ± 53.0 pg/mL), hepatocyte growth factor (HFG) (762.7 ± 117.5 pg/mL), and fibroblast growth factor 2 (FGF-2) (17.734 ± 8 pg/mL). In addition, these UCB-derived PrP gels promoted cell attachment (> 154 % and > 117 % for UCMSCs and hFBs, respectively), proliferation (UCMSCs > 121 % and hFBs > 117 % at all time points), migration increased by 27 % and 26 % for UCMSCs and hFBs, and spheroid formation and fusion compared to the control. UCB-derived PrP gels also induced different expression of ECM genes, including COL1, COL3, HAS1, HAS2, HAS3, and ENL, in both UCMSCs and hFBs. Finally, this product from UCBs could enhance the wound healing process in excised skin rat models by reducing the wound area by 80 % compared to 27 % in controls after 14 days. CONCLUSIONS UCB-derived PrP gels facilitate cell behaviours in vitro, including cell adhesion, growth, and migration. In addition, in animal models, UCB-derived PrP reduced the wound healing time and enhanced the completion of skin tissues by increasing granulation tissue formation and reducing neutrophils at wound sites. These UCB-derived PrP gels will be used to support spheroid formation that will be used as biomaterials for 3D printing, engraftment, and wound healing treatment.
Collapse
Affiliation(s)
| | - Xuan-Hai Do
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi, Vietnam
| | - Thanh-Thao Nguyen
- VNU University of Science, Vietnam National University, Hanoi, 100000, Vietnam
| | - Bich-Hanh Pham
- VNU University of Science, Vietnam National University, Hanoi, 100000, Vietnam
| | - Quang-Dung Le
- VNU University of Science, Vietnam National University, Hanoi, 100000, Vietnam
| | - Xuan-Hung Nguyen
- Vinmec Hi-Tech Center, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 100000, Vietnam
- Vinmec-VinUni Institute of Immunology, College of Health Sciences, VinUniversity, Hanoi, 100000, Vietnam
- College of Health Sciences, VinUniversity, Hanoi, 100000, Vietnam
| | - Nhung Thi My Hoang
- VNU University of Science, Vietnam National University, Hanoi, 100000, Vietnam
| | - Thu-Huyen Nguyen
- Vinmec-VinUni Institute of Immunology, College of Health Sciences, VinUniversity, Hanoi, 100000, Vietnam
| | - Nam Hoang Nguyen
- VNU University of Science, Vietnam National University, Hanoi, 100000, Vietnam
| | - Uyen Thi Trang Than
- Vinmec Hi-Tech Center, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 100000, Vietnam.
- Vinmec-VinUni Institute of Immunology, College of Health Sciences, VinUniversity, Hanoi, 100000, Vietnam.
| |
Collapse
|
2
|
Wei W, Jiang T, Hu F, Liu H. Tibial transverse transport combined with platelet-rich plasma sustained-release microspheres activates the VEGFA/VEGFR2 pathway to promote microcirculatory reconstruction in diabetic foot ulcer. Growth Factors 2024; 42:128-144. [PMID: 39329304 DOI: 10.1080/08977194.2024.2407318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
This study proposes to investigate the therapeutic efficacy and mechanism of combining tibial transverse transport (TTT) with platelet-rich plasma (PRP) for diabetic foot ulcer (DFU). The diabetic rabbit model was constructed with Streptozotocin, which was intervened with TTT and PRP. PRP injection combined with TTT significantly promoted vascularisation and enhanced CD31, VEGFA, and VEGFR2 expressions compared to traditional TTT. However, the VEGFR2 inhibitor suppressed these phenomena. In the in vitro injury model, PRP reversed the diminished human umbilical vein endothelial cells (HUVECs) function and vascularisation caused by high-glucose damage. Additionally, PRP reduced inflammation and oxidative stress (approximately 47% ROS level) and enhanced VEGFA and VEGFR2 expression in HUVECs. However, the knockdown of VEGFR2 reversed the effect of PRP. In conclusion, TTT combined with intraosseous flap injection of PRP sustained-release microspheres activated the VEGFA/VEGFR2 pathway to promote microcirculatory reconstruction in DFU. These findings may provide new potential therapeutic strategies for DFU.
Collapse
Affiliation(s)
- Weiqiang Wei
- Department of Orthopaedics, The Fourth Hospital of Changsha, Changsha, China
| | - Tenglong Jiang
- Department of Orthopaedics, The Fourth Hospital of Changsha, Changsha, China
| | - Fan Hu
- Department of Orthopaedics, The Fourth Hospital of Changsha, Changsha, China
| | - Hong Liu
- Department of Orthopaedics, The Fourth Hospital of Changsha, Changsha, China
| |
Collapse
|
3
|
Kamal R, Awasthi A, Pundir M, Thakur S. Healing the diabetic wound: Unlocking the secrets of genes and pathways. Eur J Pharmacol 2024; 975:176645. [PMID: 38759707 DOI: 10.1016/j.ejphar.2024.176645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Diabetic wounds (DWs) are open sores that can occur anywhere on a diabetic patient's body. They are often complicated by infections, hypoxia, oxidative stress, hyperglycemia, and reduced growth factors and nucleic acids. The healing process involves four phases: homeostasis, inflammation, proliferation, and remodeling, regulated by various cellular and molecular events. Numerous genes and signaling pathways such as VEGF, TGF-β, NF-κB, PPAR-γ, MMPs, IGF, FGF, PDGF, EGF, NOX, TLR, JAK-STAT, PI3K-Akt, MAPK, ERK, JNK, p38, Wnt/β-catenin, Hedgehog, Notch, Hippo, FAK, Integrin, and Src pathways are involved in these events. These pathways and genes are often dysregulated in DWs leading to impaired healing. The present review sheds light on the pathogenesis, healing process, signaling pathways, and genes involved in DW. Further, various therapeutic strategies that target these pathways and genes via nanotechnology are also discussed. Additionally, clinical trials on DW related to gene therapy are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Mandeep Pundir
- School of Pharmaceutical Sciences, RIMT University, Punjab, 142001, India; Chitkara College of Pharmacy, Chitkara University, Punjab, 142001, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
4
|
Song J, Zhu K, Wang H, Wu M, Wu Y, Zhang Q. Deciphering The Emerging Role of Programmed Cell Death in Diabetic Wound Healing. Int J Biol Sci 2023; 19:4989-5003. [PMID: 37781514 PMCID: PMC10539695 DOI: 10.7150/ijbs.88461] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Diabetic wounds are characterized by delayed and incomplete healing. As one of the most common complications of diabetes, diabetic wounds can be fatal in some cases. Programmed cell death (PCD) is an active and ordered cell death mode determined by genes, including apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis. It is currently believed that PCD plays a crucial role in diabetic wound healing. Diabetic hyperglycemic environments can lead to abnormal PCD in various cells during healing processes, thereby affecting the activity and function of cells and interfering with diabetic wound healing. Therefore, this review focuses on the new roles and mechanisms of PCD in diabetic wound healing. Moreover, the challenges and perspectives related to PCD in diabetic wound healing are presented, which will bring new insights to improve diabetic wound healing.
Collapse
Affiliation(s)
| | | | - Haiping Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
5
|
Niu H, Guan Y, Zhong T, Ma L, Zayed M, Guan J. Thermosensitive and antioxidant wound dressings capable of adaptively regulating TGFβ pathways promote diabetic wound healing. NPJ Regen Med 2023; 8:32. [PMID: 37422462 PMCID: PMC10329719 DOI: 10.1038/s41536-023-00313-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023] Open
Abstract
Various therapies have been utilized for treating diabetic wounds, yet current regiments do not simultaneously address the key intrinsic causes of slow wound healing, i.e., abnormal skin cell functions (particularly migration), delayed angiogenesis, and chronic inflammation. To address this clinical gap, we develop a wound dressing that contains a peptide-based TGFβ receptor II inhibitor (PTβR2I), and a thermosensitive and reactive oxygen species (ROS)-scavenging hydrogel. The wound dressing can quickly solidify on the diabetic wounds following administration. The released PTβR2I inhibits the TGFβ1/p38 pathway, leading to improved cell migration and angiogenesis, and decreased inflammation. Meanwhile, the PTβR2I does not interfere with the TGFβ1/Smad2/3 pathway that is required to regulate myofibroblasts, a critical cell type for wound healing. The hydrogel's ability to scavenge ROS in diabetic wounds further decreases inflammation. Single-dose application of the wound dressing significantly accelerates wound healing with complete wound closure after 14 days. Overall, using wound dressings capable of adaptively modulating TGFβ pathways provides a new strategy for diabetic wound treatment.
Collapse
Affiliation(s)
- Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Ting Zhong
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Liang Ma
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohamed Zayed
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
6
|
Tognazzo E, Berndt S, Abdulcadir J. Autologous Platelet-Rich Plasma in Clitoral Reconstructive Surgery After Female Genital Mutilation/Cutting: A Pilot Case Study. Aesthet Surg J 2023; 43:340-350. [PMID: 36251970 DOI: 10.1093/asj/sjac265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Postoperative healing after clitoral reconstruction (CR) for female genital mutilation/cutting can be long and painful due to prolonged clitoral re-epithelialization time (up to 3 months). Autologous platelet-rich plasma (A-PRP) might reduce postoperative clitoral epithelialization time and pain. OBJECTIVES The authors assessed postoperative clitoral re-epithelialization time and pain after intraoperative clitoral administration of A-PRP. METHODS Five consecutive women underwent CR (Foldès technique) followed by the administration of A-PRP Regen Lab SA (Le Mont-sur-Lausanne, Switzerland) plasma and glue, injected inside and applied above the re-exposed clitoris, respectively. We recorded surgical complications, postoperative clitoral pain (visual analogue scale), painkiller intake, time to complete re-epithelialization, and the experienced subjective changes in sexual response and perception of their own body image referred by women. RESULTS Sexual distress/dysfunction as well as the desire to be physically and symbolically "repaired" were the reasons behind women's requests for surgery. None of the women suffered from chronic vulvar or non-vulvar pain. All women achieved complete clitoral epithelialization by day 80, 3 women between day 54 and 70, and only 1 woman was still taking 1 g of paracetamol twice a day at 2 months postoperative. She had stopped it before the 3-month control. There were no short- or long-term complications. All women described easier access and stimulation of their clitoris as well as improved sexual arousal, lubrication, and pleasure and claimed to be satisfied with their restored body image. CONCLUSIONS A-PRP could expedite postoperative clitoral epithelialization and reduce postoperative pain after CR after female genital mutilation/cutting. LEVEL OF EVIDENCE: 4
Collapse
|
7
|
Nandanwar M, Sharma V, Karade A, Sharma A, Kansagara A, Sakhalkar U, Sidhu Y, Gupta S, Patel M, Ghorpade P. Assessment of wound healing efficacy of Growth Factor Concentrate (GFC) in non-diabetic and diabetic Sprague Dawley rats. J Diabetes Metab Disord 2021; 20:1583-1595. [PMID: 34900810 DOI: 10.1007/s40200-021-00906-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022]
Abstract
Backgrounds The investigation of wound healing potential of human GFC (growth factor concentrate) was undertaken in diabetic and non-diabetic rats. Primarily, GFC is the combination of several growth factors present in blood which has potential of wound healing. In present study, WCK-GFC kit, a single step optimized kit was used for obtaining human GFC. Methods Diabetes in rats was induced by intraperitoneal single injection of 40 mg/kg streptozotocin (STZ). The full thickness circular wounds of 2 cm2 area were created using sterilized stainless steel biopsy punch. Non-diabetic wounds were topically treated with 100µL and 300µL of GFC, while diabetic wounds were treated with 300µL of GFC. The standard of care treatment groups were included, wherein the non-diabetic and diabetic wound were topically treated with Nadoxin and Z-AD-G skin cream, respectively. The percentage of wound contraction was measured on weekly intervals. At the end of study duration, tissues from wound were collected for histopathological evaluation. Results Both diabetic and non-diabetic GFC treated rats exhibited a significantly higher rate of wound contraction on day 8 and 15 compared to normal untreated control group and standard-of-care treated rats. Wound healing was induced by GFC through rapid re-epithelialization. On comparing wound healing with standard-of care agent, the GFC treated wounds demonstrated a faster remodeling phase, a better organization and lower inflammation. Conclusions The current study demonstrates that topically applied GFC promotes healing of wounds, with enhanced wound contraction in both non-diabetic and diabetic rats.
Collapse
Affiliation(s)
- Manohar Nandanwar
- Wockhardt Research Centre, D-4, MIDC, Chikalthana, Aurangabad, 431 006 Maharashtra India
| | - Vijay Sharma
- Wockhardt Hospitals Ltd, Dr. Anand Rao Nair Marg, Mumbai, 400 011 Maharashtra India
| | - Avinash Karade
- Wockhardt Research Centre, D-4, MIDC, Chikalthana, Aurangabad, 431 006 Maharashtra India
| | - Anuka Sharma
- Wockhardt Hospitals Ltd, Dr. Anand Rao Nair Marg, Mumbai, 400 011 Maharashtra India
| | - Atul Kansagara
- Wockhardt Research Centre, D-4, MIDC, Chikalthana, Aurangabad, 431 006 Maharashtra India
| | - Ulka Sakhalkar
- Wockhardt Hospitals Ltd, Dr. Anand Rao Nair Marg, Mumbai, 400 011 Maharashtra India
| | - Yasmeen Sidhu
- Wockhardt Hospitals Ltd, Dr. Anand Rao Nair Marg, Mumbai, 400 011 Maharashtra India
| | - Sangita Gupta
- Wockhardt Research Centre, D-4, MIDC, Chikalthana, Aurangabad, 431 006 Maharashtra India
| | - Muftedar Patel
- Wockhardt Research Centre, D-4, MIDC, Chikalthana, Aurangabad, 431 006 Maharashtra India
| | - Parag Ghorpade
- Wockhardt Hospitals Ltd, Dr. Anand Rao Nair Marg, Mumbai, 400 011 Maharashtra India
| |
Collapse
|
8
|
Barakat M, DiPietro LA, Chen L. Limited Treatment Options for Diabetic Wounds: Barriers to Clinical Translation Despite Therapeutic Success in Murine Models. Adv Wound Care (New Rochelle) 2021; 10:436-460. [PMID: 33050829 PMCID: PMC8236303 DOI: 10.1089/wound.2020.1254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Significance: Millions of people worldwide suffer from diabetes mellitus and its complications, including chronic diabetic wounds. To date, there are few widely successful clinical therapies specific to diabetic wounds beyond general wound care, despite the vast number of scientific discoveries in the pathogenesis of defective healing in diabetes. Recent Advances: In recent years, murine animal models of diabetes have enabled the investigation of many possible therapeutics for diabetic wound care. These include specific cell types, growth factors, cytokines, peptides, small molecules, plant extracts, microRNAs, extracellular vesicles, novel wound dressings, mechanical interventions, bioengineered materials, and more. Critical Issues: Despite many research discoveries, few have been translated from their success in murine models to clinical use in humans. This massive gap between bench discovery and bedside application begs the simple and critical question: what is still missing? The complexity and multiplicity of the diabetic wound makes it an immensely challenging therapeutic target, and this lopsided progress highlights the need for new methods to overcome the bench-to-bedside barrier. How can laboratory discoveries in animal models be effectively translated to novel clinical therapies for human patients? Future Directions: As research continues to decipher deficient healing in diabetes, new approaches and considerations are required to ensure that these discoveries can become translational, clinically usable therapies. Clinical progress requires the development of new, more accurate models of the human disease state, multifaceted investigations that address multiple critical components in wound repair, and more innovative research strategies that harness both the existing knowledge and the potential of new advances across disciplines.
Collapse
Affiliation(s)
- May Barakat
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Luisa A. DiPietro
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lin Chen
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
9
|
Ebrahim N, Dessouky AA, Mostafa O, Hassouna A, Yousef MM, Seleem Y, El Gebaly EAEAM, Allam MM, Farid AS, Saffaf BA, Sabry D, Nawar A, Shoulah AA, Khalil AH, Abdalla SF, El-Sherbiny M, Elsherbiny NM, Salim RF. Adipose mesenchymal stem cells combined with platelet-rich plasma accelerate diabetic wound healing by modulating the Notch pathway. Stem Cell Res Ther 2021; 12:392. [PMID: 34256844 PMCID: PMC8276220 DOI: 10.1186/s13287-021-02454-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/12/2021] [Indexed: 02/08/2023] Open
Abstract
Background Diabetic foot ulceration is a serious chronic complication of diabetes mellitus characterized by high disability, mortality, and morbidity. Platelet-rich plasma (PRP) has been widely used for diabetic wound healing due to its high content of growth factors. However, its application is limited due to the rapid degradation of growth factors. The present study aimed to evaluate the efficacy of combined adipose-derived mesenchymal stem cells (ADSCs) and PRP therapy in promoting diabetic wound healing in relation to the Notch signaling pathway. Methods Albino rats were allocated into 6 groups [control (unwounded), sham (wounded but non-diabetic), diabetic, PRP-treated, ADSC-treated, and PRP+ADSCs-treated groups]. The effect of individual and combined therapy was evaluated by assessing wound closure rate, epidermal thickness, dermal collagen, and angiogenesis. Moreover, gene and protein expression of key elements of the Notch signaling pathway (Notch1, Delta-like canonical Notch ligand 4 (DLL4), Hairy Enhancer of Split-1 (Hes1), Hey1, Jagged-1), gene expression of angiogenic marker (vascular endothelial growth factor and stromal cell-derived factor 1) and epidermal stem cells (EPSCs) related gene (ß1 Integrin) were assessed. Results Our data showed better wound healing of PRP+ADSCs compared to their individual use after 7 and 14 days as the combined therapy caused reepithelialization and granulation tissue formation with a marked increase in area percentage of collagen, epidermal thickness, and angiogenesis. Moreover, Notch signaling was significantly downregulated, and EPSC proliferation and recruitment were enhanced compared to other treated groups and diabetic groups. Conclusions These data demonstrated that PRP and ADSCs combined therapy significantly accelerated healing of diabetic wounds induced experimentally in rats via modulating the Notch pathway, promoting angiogenesis and EPSC proliferation.
Collapse
Affiliation(s)
- Nesrine Ebrahim
- Department of Histology and Cell Biology Faculty of Medicine, Benha University, Benha, Egypt.,Stem Cell Unit, Faculty of Medicine, Benha University, Benha, Egypt
| | - Arigue A Dessouky
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ola Mostafa
- Department of Histology and Cell Biology Faculty of Medicine, Benha University, Benha, Egypt
| | - Amira Hassouna
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, AUT University, Auckland, New Zealand
| | - Mohamed M Yousef
- Department of Histology and Cell Biology Faculty of Medicine, Benha University, Benha, Egypt
| | - Yasmin Seleem
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Mona M Allam
- Department of Medical Physiology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubia, 13736, Egypt
| | - Bayan A Saffaf
- Department of Pharmacology, Faculty of Pharmacy, Future University, New Cairo, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University, Cairo, 11562, Egypt
| | - Ahmed Nawar
- Department of General Surgery, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ahmed A Shoulah
- Department of General Surgery, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ahmed H Khalil
- Department of Surgery, & Radiology Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Sami F Abdalla
- Clinical Department, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia.,Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nehal M Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt. .,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Rabab F Salim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt.
| |
Collapse
|
10
|
Lv H, Liu J, Zhen C, Wang Y, Wei Y, Ren W, Shang P. Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trials. Cell Prolif 2021; 54:e12982. [PMID: 33554390 PMCID: PMC7941227 DOI: 10.1111/cpr.12982] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/26/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder with various complications that poses a huge worldwide healthcare burden. Wounds in diabetes, especially diabetic foot ulcers (DFUs), are difficult to manage, often leading to prolonged wound repair and even amputation. Wound management in people with diabetes is an extremely clinical and social concern. Nowadays, physical interventions gain much attention and have been widely developed in the fields of tissue regeneration and wound healing. Magnetic fields (MFs)-based devices are translated into clinical practice for the treatment of bone diseases and neurodegenerative disorder. This review attempts to give insight into the mechanisms and applications of MFs in wound care, especially in improving the healing outcomes of diabetic wounds. First, we discuss the pathological conditions associated with chronic diabetic wounds. Next, the mechanisms involved in MFs' effects on wounds are explored. At last, studies and reports regarding the effects of MFs on diabetic wounds from both animal experiments and clinical trials are reviewed. MFs exhibit great potential in promoting wound healing and have been practised in the management of diabetic wounds. Further studies on the exact mechanism of MFs on diabetic wounds and the development of suitable MF-based devices could lead to their increased applications into clinical practice.
Collapse
Affiliation(s)
- Huanhuan Lv
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Heye Health Technology Co., Ltd.AnjiZhejiangChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Junyu Liu
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Chenxiao Zhen
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Yijia Wang
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Yunpeng Wei
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
| | - Weihao Ren
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| | - Peng Shang
- School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina
- Research & Development InstituteNorthwestern Polytechnical UniversityShenzhenChina
- Key Laboratory for Space Bioscience and BiotechnologyNorthwestern Polytechnical UniversityXi’anChina
| |
Collapse
|
11
|
Li M, Shen Q, Lu W, Chen J, Yu L, Liu S, Nie X, Shao L, Liu Y, Gao S, Hu R. Development and evaluation of controlled release of metformin hydrochloride for improving the oral bioavailability based on a novel enteric osmotic pump capsule. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Fan J, Liu H, Wang J, Zeng J, Tan Y, Wang Y, Yu X, Li W, Wang P, Yang Z, Dai X. Procyanidin B2 improves endothelial progenitor cell function and promotes wound healing in diabetic mice via activating Nrf2. J Cell Mol Med 2020; 25:652-665. [PMID: 33215883 PMCID: PMC7812287 DOI: 10.1111/jcmm.16111] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
One of the major reasons for the delayed wound healing in diabetes is the dysfunction of endothelial progenitor cells (EPCs) induced by hyperglycaemia. Improvement of EPC function may be a potential strategy for accelerating wound healing in diabetes. Procyanidin B2 (PCB2) is one of the major components of procyanidins, which exhibits a variety of potent pharmacological activities. However, the effects of PCB2 on EPC function and diabetic wound repair remain elusive. We evaluated the protective effects of PCB2 in EPCs with high glucose (HG) treatment and in a diabetic wound healing model. EPCs derived from human umbilical cord blood were treated with HG. The results showed that PCB2 significantly preserved the angiogenic function, survival and migration abilities of EPCs with HG treatment, and attenuated HG‐induced oxidative stress of EPCs by scavenging excessive reactive oxygen species (ROS). A mechanistic study found the protective role of PCB2 is dependent on activating nuclear factor erythroid 2‐related factor 2 (Nrf2). PCB2 increased the expression of Nrf2 and its downstream antioxidant genes to attenuate the oxidative stress induced by HG in EPCs, which were abolished by knockdown of Nrf2 expression. An in vivo study showed that intraperitoneal administration of PCB2 promoted wound healing and angiogenesis in diabetic mice, which was accompanied by a significant reduction in ROS level and an increase in circulating EPC number. Taken together, our results indicate that PCB2 treatment accelerates wound healing and increases angiogenesis in diabetic mice, which may be mediated by improving the mobilization and function of EPCs.
Collapse
Affiliation(s)
- Jiawei Fan
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Hairong Liu
- Experimental Research Center, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jinwu Wang
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Jiang Zeng
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Yi Tan
- Wendy Novak Diabetes Center, Louisville, KY, USA.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Yashu Wang
- Department of Clinical Laboratory, Xinjiang Provincial Corps Hospital of Chinese People's Armed Police, Urumqi, China
| | - Xiaoping Yu
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Wenlian Li
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, China
| | - Peijian Wang
- Department of Cardiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zheng Yang
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
13
|
Dai J, Jiang C, Sun Y, Chen H. Autologous platelet-rich plasma treatment for patients with diabetic foot ulcers: a meta-analysis of randomized studies. J Diabetes Complications 2020; 34:107611. [PMID: 32402839 DOI: 10.1016/j.jdiacomp.2020.107611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND This study will explore the effectiveness and safety of autologous PRP in the treatment of patients with DFU. METHODS The electronic databases of PubMed, EMBASE, BIOSIS, Cochrane central, and Google Scholar internet were searched updated on Jan 30, 2020. Evaluated outcomes included rate of complete ulcer healing, time to healing and adverse events. Statistical analysis was performed with RevMan 5.0 software and STATA 10.0 software. RESULTS Ten RCTs with 456 patients were included in this study. The meta-analysis showed a higher complete ulcer healing rate (RR = 1.32, 95% CI 1.06 to 1.65, P = 0.01, I2 = 57%), a shorter healing time (MD = -23.42, 95% CI -37.33 to -9.51, P = 0.01, I2 = 78%), with no increasing the incidence of adverse events (RR = 0.48, 95% CI 0.22 to 1.05, P = 0.75, I2 = 0%) in PRP group compared with control. Mixed evidence was seen for publication bias, but analyses by using the trim-and-fill method did not appreciably alter results. CONCLUSION Our findings suggest that autologous PRP may improve the complete ulcer healing rate, shorten the healing time, with no increasing the incidence of adverse events.
Collapse
Affiliation(s)
- Jiezhi Dai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Chaoyin Jiang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer center, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Hua Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China.
| |
Collapse
|
14
|
Jaseem M, Alungal S, Dhiyaneswaran, Shamsudeen J. Effectiveness of autologous PRP therapy in chronic nonhealing ulcer: A 2-year retrospective descriptive study. J Family Med Prim Care 2020; 9:2818-2822. [PMID: 32984132 PMCID: PMC7491759 DOI: 10.4103/jfmpc.jfmpc_177_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 01/25/2023] Open
Abstract
CONTEXT Chronic nonhealing ulcer is a troublesome condition in patients especially with diabetes. Autologous PRP therapy can safely and effectively heal a chronic nonhealing ulcer in such patients. AIMS To study the effectiveness of autologous PRP therapy in a chronic nonhealing ulcer. SETTINGS AND DESIGN A retrospective descriptive study from previous case records of chronic nonhealing ulcer patients who were treated with autologous PRP therapy at a specialty orthopedic hospital from September 2017 to August 2019. METHODS AND MATERIALS Data on patients who presented with chronic nonhealing ulcers of >4 weeks duration who were treated with autologous PRP therapy and followed up for 20 weeks. STATISTICAL ANALYSIS USED Statistical Package for the Social Sciences (SPSS) version 20 was used to calculate mean. Microsoft Excel was used for preparing the chart. RESULTS The mean age of patients treated with autologous PRP therapy was 61.24 years, and the follow-up period was 20 weeks. The mean duration of ulcer healing following PRP therapy was 11.25 weeks, 80% of the patient showed ulcer size reduction of >75% following therapy. CONCLUSIONS In this retrospective descriptive study, it has demonstrated the effectiveness and safety of autologous PRP therapy in the healing of chronic nonhealing ulcers.
Collapse
Affiliation(s)
- Muhammed Jaseem
- Department of Orthopedics, Department of General Medicine, Asten Specialty Orthopedic Hospital, Pantheerankav, Calicut, Kerala, India
| | - Shana Alungal
- Department of Orthopedics, Department of General Medicine, Asten Specialty Orthopedic Hospital, Pantheerankav, Calicut, Kerala, India
| | - Dhiyaneswaran
- Department of Orthopedics, Department of General Medicine, Asten Specialty Orthopedic Hospital, Pantheerankav, Calicut, Kerala, India
| | - Jaseem Shamsudeen
- Department of Orthopedics, Department of General Medicine, Asten Specialty Orthopedic Hospital, Pantheerankav, Calicut, Kerala, India
| |
Collapse
|