1
|
Khalil HB. Genome-Wide Characterization and Expression Profiling of Phytosulfokine Receptor Genes ( PSKRs) in Triticum aestivum with Docking Simulations of Their Interactions with Phytosulfokine (PSK): A Bioinformatics Study. Genes (Basel) 2024; 15:1306. [PMID: 39457430 PMCID: PMC11507999 DOI: 10.3390/genes15101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The phytosulfokine receptor (PSKR) gene family plays a crucial role in regulating plant growth, development, and stress response. Here, the PSKR gene family was characterized in Triticum aestivum L. The study aimed to bridge knowledge gaps and clarify the functional roles of TaPSKRs to create a solid foundation for examining the structure, functions, and regulatory aspects. Methods: The investigation involved genome-wide identification of PSKRs through collection and chromosomal assignment, followed by phylogenetic analysis and gene expression profiling. Additionally, interactions with their interactors were stimulated and analyzed to elucidate their function. Results: The wide-genome inspection of all TaPSKRs led to 25 genes with various homeologs, resulting in 57 TaPSKR members distributed among the A, B, and D subgenomes. Investigating the expression of 61 TaPSKR cDNAs in RNA-seq datasets generated from different growth stages at 14, 21, and 60 days old and diverse tissues such as leaves, shoots, and roots provided further insight into their functional purposes. The expression profile of the TaPSKRs resulted in three key clusters. Gene cluster 1 (GC 1) is partially associated with root growth, suggesting that specific TaPSKRs control root development. The GC 2 cluster targeted genes that show high levels of expression in all tested leaf growth stages and the early developmental stage of the shoots and roots. Furthermore, the GC 3 cluster was composed of genes that are constantly expressed, highlighting their crucial role in regulating various processes during the entire life cycle of wheat. Molecular docking simulations showed that phytosulfokine type α (PSK-α) interacted with all TaPSKRs and had a strong binding affinity with certain TaPSKR proteins, encompassing TaPSKR1A, TaPSKR3B, and TaPSKR13A, that support their involvement in PSK signaling pathways. The crucial arbitration of the affinity may depend on interactions between wheat PSK-α and PSKRs, especially in the LRR domain region. Conclusions: These discoveries deepened our knowledge of the role of the TaPSKR gene family in wheat growth and development, opening up possibilities for further studies to enhance wheat durability and yield via focused innovation approaches.
Collapse
Affiliation(s)
- Hala Badr Khalil
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia;
- Department of Genetics, Faculty of Agriculture, Ain Shams University, 68 Hadayek Shoubra, Cairo 11241, Egypt
| |
Collapse
|
2
|
Miroshnichenko DN, Pigolev AV, Pushin AS, Alekseeva VV, Degtyaryova VI, Degtyaryov EA, Pronina IV, Frolov A, Dolgov SV, Savchenko TV. Genetic Transformation of Triticum dicoccum and Triticum aestivum with Genes of Jasmonate Biosynthesis Pathway Affects Growth and Productivity Characteristics. PLANTS (BASEL, SWITZERLAND) 2024; 13:2781. [PMID: 39409651 PMCID: PMC11478715 DOI: 10.3390/plants13192781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
The transformation protocol based on the dual selection approach (fluorescent protein and herbicide resistance) has been applied here to produce transgenic plants of two cereal species, emmer wheat and bread wheat, with the goal of activating the synthesis of the stress hormone jasmonates by overexpressing ALLENE OXIDE SYNTHASE from Arabidopsis thaliana (AtAOS) and bread wheat (TaAOS) and OXOPHYTODIENOATE REDUCTASE 3 from A. thaliana (AtOPR3) under the strong constitutive promoter (ZmUbi1), either individually or both genes simultaneously. The delivery of the expression cassette encoding AOS was found to affect morphogenesis in both wheat species negatively. The effect of transgene expression on the accumulation of individual jasmonates in hexaploid and tetraploid wheat was observed. Among the introduced genes, overexpression of TaAOS was the most successful in increasing stress-inducible phytohormone levels in transgenic plants, resulting in higher accumulations of JA and JA-Ile in emmer wheat and 12-OPDA in bread wheat. In general, overexpression of AOS, alone or together with AtOPR3, negatively affected leaf lamina length and grain numbers per spike in both wheat species. Double (AtAOS + AtOPR3) transgenic wheat plants were characterized by significantly reduced plant height and seed numbers, especially in emmer wheat, where several primary plants failed to produce seeds.
Collapse
Affiliation(s)
- Dmitry N. Miroshnichenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.V.P.); (E.A.D.); (T.V.S.)
- Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.V.A.); (V.I.D.); (S.V.D.)
| | - Alexey V. Pigolev
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.V.P.); (E.A.D.); (T.V.S.)
| | - Alexander S. Pushin
- Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.V.A.); (V.I.D.); (S.V.D.)
| | - Valeria V. Alekseeva
- Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.V.A.); (V.I.D.); (S.V.D.)
| | - Vlada I. Degtyaryova
- Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.V.A.); (V.I.D.); (S.V.D.)
| | - Evgeny A. Degtyaryov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.V.P.); (E.A.D.); (T.V.S.)
| | - Irina V. Pronina
- Department of Physiology, Human Ecology and Medical and Biological Sciences, State University of Education, 141014 Mytishi, Russia;
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia;
| | - Sergey V. Dolgov
- Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.V.A.); (V.I.D.); (S.V.D.)
| | - Tatyana V. Savchenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.V.P.); (E.A.D.); (T.V.S.)
| |
Collapse
|
3
|
Ebrahimi V, Hashemi A. CRISPR-based gene editing in plants: Focus on reagents and their delivery tools. BIOIMPACTS : BI 2024; 15:30019. [PMID: 39963563 PMCID: PMC11830140 DOI: 10.34172/bi.30019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2025]
Abstract
Introduction CRISPR-Cas9 technology has revolutionized plant genome editing, providing precise and efficient methods for genetic modification. This study focuses on the advancements and delivery of CRISPR-Cas9 in plant gene editing. Methods A comprehensive search in scientific databases, including PubMed, ScienceDirect, and Google Scholar, was conducted to gather information on CRISPR-Cas9 gene editing and its delivery in precise gene modification in plants. Results The evolving landscape of CRISPR nucleases has led to the development of innovative technologies, enhancing plant research. However, successful editing is contingent on efficient delivery of genome engineering reagents. CRISPR-based gene editing in plants utilizes diverse delivery methods: Agrobacterium-mediated transformation for bacterial transfer, biolistic transformation for physical gene insertion, electroporation for direct gene entry, expression of developmental regulators for gene expression modulation, and tobacco rattle virus as a viral vector, each offering distinct advantages for precise and efficient genetic modification in plants. Conclusion CRISPR-Cas9 gene editing stands as a pivotal advancement in plant genetics, offering precise gene manipulation with applications in agriculture and biotechnology. The continuous refinement of reagent delivery tools reinforces CRISPR-Cas9's transformative role in plant genome editing, with significant implications for broader scientific applications.
Collapse
Affiliation(s)
- Vida Ebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
5
|
Guo Y, Zhao G, Gao X, Zhang L, Zhang Y, Cai X, Yuan X, Guo X. CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement. PLANTA 2023; 258:36. [PMID: 37395789 DOI: 10.1007/s00425-023-04187-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
MAIN CONCLUSION This review provides a direction for crop quality improvement and ideas for further research on the application of CRISPR/Cas9 gene editing technology for crop improvement. Various important crops, such as wheat, rice, soybean and tomato, are among the main sources of food and energy for humans. Breeders have long attempted to improve crop yield and quality through traditional breeding methods such as crossbreeding. However, crop breeding progress has been slow due to the limitations of traditional breeding methods. In recent years, clustered regularly spaced short palindromic repeat (CRISPR)/Cas9 gene editing technology has been continuously developed. And with the refinement of crop genome data, CRISPR/Cas9 technology has enabled significant breakthroughs in editing specific genes of crops due to its accuracy and efficiency. Precise editing of certain key genes in crops by means of CRISPR/Cas9 technology has improved crop quality and yield and has become a popular strategy for many breeders to focus on and adopt. In this paper, the present status and achievements of CRISPR/Cas9 gene technology as applied to the improvement of quality in several crops are reviewed. In addition, the shortcomings, challenges and development prospects of CRISPR/Cas9 gene editing technology are discussed.
Collapse
Affiliation(s)
- Yingxin Guo
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Guangdong Zhao
- College of Life Sciences, Linyi University, Linyi, 276000, Shandong, People's Republic of China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Lin Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Yanan Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Xiaoming Cai
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Xuejiao Yuan
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Liu M, Huang J, Ma S, Yu G, Liao A, Pan L, Hou Y. Allergenicity of wheat protein in diet: Mechanisms, modifications and challenges. Food Res Int 2023; 169:112913. [PMID: 37254349 DOI: 10.1016/j.foodres.2023.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Wheat is widely available in people's daily diets. However, some people are currently experiencing IgE-mediated allergic reactions to wheat-based foods, which seriously impact their quality of life. Thus, it is imperative to provide comprehensive knowledge and effective methods to reduce the risk of wheat allergy (WA) in food. In the present review, recent advances in WA symptoms, the major allergens, detection methods, opportunities and challenges in establishing animal models of WA are summarized and discussed. Furthermore, an updated overview of the different modification methods that are currently being applied to wheat-based foods is provided. This study concludes that future approaches to food allergen detection will focus on combining multiple tools to rapidly and accurately quantify individual allergens in complex food matrices. Besides, biological modification has many advantages over physical or chemical modification methods in the development of hypoallergenic wheat products, such as enzymatic hydrolysis and fermentation. It is worth noting that using biotechnology to edit wheat allergen genes to produce allergen-free food may be a promising method in the future which could improve the safety of wheat foods and the health of allergy sufferers.
Collapse
Affiliation(s)
- Ming Liu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jihong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, PR China; School of Food and Pharmacy, Xuchang University, Xuchang 461000, PR China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Guanghai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Aimei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, PR China
| |
Collapse
|
7
|
Ye X, Shrawat A, Moeller L, Rode R, Rivlin A, Kelm D, Martinell BJ, Williams EJ, Paisley A, Duncan DR, Armstrong CL. Agrobacterium-mediated direct transformation of wheat mature embryos through organogenesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1202235. [PMID: 37324676 PMCID: PMC10264787 DOI: 10.3389/fpls.2023.1202235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Transgenic plant production in monocotyledonous species has primarily relied on embryogenic callus induction from both immature and mature embryos as the pathway for plant regeneration. We have efficiently regenerated fertile transgenic wheat plants through organogenesis after Agrobacterium-mediated direct transformation of mechanically isolated mature embryos from field-grown seed. Centrifugation of the mature embryos in the presence of Agrobacterium was found to be essential for efficient T-DNA delivery to the relevant regenerable cells. The inoculated mature embryos formed multiple buds/shoots on high-cytokinin medium, which directly regenerated into transgenic shoots on hormone-free medium containing glyphosate for selection. Rooted transgenic plantlets were obtained within 10-12 weeks after inoculation. Further optimization of this transformation protocol resulted in significant reduction of chimeric plants to below 5%, as indicated by leaf GUS staining and T1 transgene segregation analysis. Direct transformation of wheat mature embryos has substantial advantages over traditional immature embryo-based transformation systems, including long-term storability of the mature dry explants, scalability, and greatly improved flexibility and consistency in transformation experiments.
Collapse
|
8
|
Szabała BM. A bifunctional selectable marker for wheat transformation contributes to the characterization of male-sterile phenotype induced by a synthetic Ms2 gene. PLANT CELL REPORTS 2023; 42:895-907. [PMID: 36867203 DOI: 10.1007/s00299-023-02998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/17/2023] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE An engineered selectable marker combining herbicide resistance and yellow fluorescence contributes to the characterization of male-sterile phenotype in wheat, the severity of which correlates with expression levels of a synthetic Ms2 gene. Genetic transformation of wheat is conducted using selectable markers, such as herbicide and antibiotic resistance genes. Despite their proven effectiveness, they do not provide visual control of the transformation process and transgene status in progeny, which creates uncertainty and prolongs screening procedures. To overcome this limitation, this study developed a fusion protein by combining gene sequences encoding phosphinothricin acetyltransferase and mCitrine fluorescent protein. The fusion gene, introduced into wheat cells by particle bombardment, enabled herbicide selection, and visual identification of primary transformants along with their progeny. This marker was then used to select transgenic plants containing a synthetic Ms2 gene. Ms2 is a dominant gene whose activation in wheat anthers leads to male sterility, but the relationship between the expression levels and the male-sterile phenotype is unknown. The Ms2 gene was driven either by a truncated Ms2 promoter containing a TRIM element or a rice promoter OsLTP6. The expression of these synthetic genes resulted in complete male sterility or partial fertility, respectively. The low-fertility phenotype was characterized by smaller anthers than the wild type, many defective pollen grains, and low seed sets. The reduction in the size of anthers was observed at earlier and later stages of their development. Consistently, Ms2 transcripts were detected in these organs, but their levels were significantly lower than those in completely sterile Ms2TRIM::Ms2 plants. These results suggested that the severity of the male-sterile phenotype was modulated by Ms2 expression levels and that higher levels may be key to activating total male sterility.
Collapse
Affiliation(s)
- Bartosz M Szabała
- Institute of Biology, Department of Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166 St., 02-787, Warsaw, Poland.
| |
Collapse
|
9
|
Zhao Y, Islam S, Alhabbar Z, Zhang J, O'Hara G, Anwar M, Ma W. Current Progress and Future Prospect of Wheat Genetics Research towards an Enhanced Nitrogen Use Efficiency. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091753. [PMID: 37176811 PMCID: PMC10180859 DOI: 10.3390/plants12091753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 05/15/2023]
Abstract
To improve the yield and quality of wheat is of great importance for food security worldwide. One of the most effective and significant approaches to achieve this goal is to enhance the nitrogen use efficiency (NUE) in wheat. In this review, a comprehensive understanding of the factors involved in the process of the wheat nitrogen uptake, assimilation and remobilization of nitrogen in wheat were introduced. An appropriate definition of NUE is vital prior to its precise evaluation for the following gene identification and breeding process. Apart from grain yield (GY) and grain protein content (GPC), the commonly recognized major indicators of NUE, grain protein deviation (GPD) could also be considered as a potential trait for NUE evaluation. As a complex quantitative trait, NUE is affected by transporter proteins, kinases, transcription factors (TFs) and micro RNAs (miRNAs), which participate in the nitrogen uptake process, as well as key enzymes, circadian regulators, cross-talks between carbon metabolism, which are associated with nitrogen assimilation and remobilization. A series of quantitative genetic loci (QTLs) and linking markers were compiled in the hope to help discover more efficient and useful genetic resources for breeding program. For future NUE improvement, an exploration for other criteria during selection process that incorporates morphological, physiological and biochemical traits is needed. Applying new technologies from phenomics will allow high-throughput NUE phenotyping and accelerate the breeding process. A combination of multi-omics techniques and the previously verified QTLs and molecular markers will facilitate the NUE QTL-mapping and novel gene identification.
Collapse
Affiliation(s)
- Yun Zhao
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, China
| | - Shahidul Islam
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zaid Alhabbar
- Department of Field Crops, College of Agriculture and Forestry, University of Mosul, Mosul 41002, Iraq
| | - Jingjuan Zhang
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Graham O'Hara
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Masood Anwar
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Wujun Ma
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- College of Agronomy, Qingdao Agriculture University, Qingdao 266109, China
| |
Collapse
|
10
|
SEN A, Kecoglu I, Ahmed M, Parlatan U, Unlu MB. Differentiation of advanced generation mutant wheat lines: Conventional techniques versus Raman spectroscopy. FRONTIERS IN PLANT SCIENCE 2023; 14:1116876. [PMID: 36909443 PMCID: PMC9997642 DOI: 10.3389/fpls.2023.1116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
This research aimed to assess the feasibility of utilizing Raman spectroscopy in plant breeding programs. For this purpose, the evaluation of the mutant populations set up the application of 4 mM NaN3 to the somatic embryos obtained from mature wheat (Triticum aestivum L. Adana-99 cv.) embryos. Advanced wheat mutant lines, which were brought up to the seventh generation with salt stress tolerance by following in vitro and in vivo environments constructed by mutated populations, were evaluated using conventional techniques [measurement of antioxidant enzyme activities (SOD, CAT, and POX), total chlorophyll, TBARS, and proline contents; measurement of the concentration of Na+ and K+ ions; and evaluation of gene expression by qPCR (TaHKT2;1, TaHKT1;5, TaSOS1, TaNa+/H+ vacuolar antiporter, TaV-PPase, TaV-ATPase, and TaP5CS)] and Raman spectroscopy. In this research, no significant difference was found in the increase of SOD, CAT, and POX antioxidant enzyme activities between the salt-treated and untreated experimental groups of the commercial cultivar, while there was a statistically significant increase in salt-treated advanced generation mutant lines as compared to control and the salt-treated commercial cultivar. Proline showed a statistically significant increase in all experimental groups compared to the untreated commercial cultivar. The degradation in the amount of chlorophyll was lower in the salt-treated advanced generation mutant lines than in the salt-treated commercial cultivar. According to gene expression studies, there were statistical differences at various levels in terms of Na+ and/or K+ uptake from soil to plant (TaHKT2;1, TaHKT1;5, and TaSOS1), and Na+ compartmentalizes into the cell vacuole (TaNa+/H+ vacuolar antiporter, Ta vacuolar pyrophosphatase, and Ta vacuolar H+-ATPase). The expression activity of TaP5CS, which is responsible for the transcription of proline, is similar to the content of proline in the current study. As a result of Raman spectroscopy, the differences in peaks represent the protein-related bands in mutant lines having a general decreasing trend in intensity when compared to the commercial cultivar. Amide-I (1,630 and 1,668 cm-1), Histidine, Lysine, Arginine, and Leucine bands (823, 849, 1,241, 1,443, and 1,582 cm-1) showed decreasing wavenumbers. Beta-carotene peaks at 1,153 and 1,519 cm-1 showed increasing trends when the normalized Raman intensities of the mutant lines were compared.
Collapse
Affiliation(s)
- Ayse SEN
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Ibrahim Kecoglu
- Department of Physics, Bogazici University, Istanbul, Türkiye
| | - Muhammad Ahmed
- Graduate School of Engineering and Science, Istanbul University, Istanbul, Türkiye
| | - Ugur Parlatan
- Department of Physics, Bogazici University, Istanbul, Türkiye
| | - Mehmet Burcin Unlu
- Department of Physics, Bogazici University, Istanbul, Türkiye
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
- Global Center for Biomedical Science and Engineering Quantum Medical Science and Engineering (GI-CoRE Cooperating Hub), Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Wijerathna-Yapa A, Ramtekey V, Ranawaka B, Basnet BR. Applications of In Vitro Tissue Culture Technologies in Breeding and Genetic Improvement of Wheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:2273. [PMID: 36079653 PMCID: PMC9459818 DOI: 10.3390/plants11172273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/13/2022] [Accepted: 08/29/2022] [Indexed: 12/20/2022]
Abstract
Sources of new genetic variability have been limited to existing germplasm in the past. Wheat has been studied extensively for various agronomic traits located throughout the genome. The large size of the chromosomes and the ability of its polyploid genome to tolerate the addition or loss of chromosomes facilitated rapid progress in the early study of wheat genetics using cytogenetic techniques. At the same time, its large genome size has limited the progress in genetic characterization studies focused on diploid species, with a small genome and genetic engineering procedures already developed. Today, the genetic transformation and gene editing procedures offer attractive alternatives to conventional techniques for breeding wheat because they allow one or more of the genes to be introduced or altered into an elite cultivar without affecting its genetic background. Recently, significant advances have been made in regenerating various plant tissues, providing the essential basis for regenerating transgenic plants. In addition, Agrobacterium-mediated, biolistic, and in planta particle bombardment (iPB) gene delivery procedures have been developed for wheat transformation and advanced transgenic wheat development. As a result, several useful genes are now available that have been transferred or would be helpful to be transferred to wheat in addition to the current traditional effort to improve trait values, such as resistance to abiotic and biotic factors, grain quality, and plant architecture. Furthermore, the in planta genome editing method will significantly contribute to the social implementation of genome-edited crops to innovate the breeding pipeline and leverage unique climate adaptations.
Collapse
Affiliation(s)
- Akila Wijerathna-Yapa
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Vinita Ramtekey
- ICAR-Indian Institute of Seed Science, Kushmaur, Mau, Uttar Pradesh 275103, India
| | - Buddhini Ranawaka
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD 4072, Australia
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Bhoja Raj Basnet
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), El Batán 56237, Mexico
| |
Collapse
|
12
|
Dong G, Xiong H, Zeng W, Li J, Du D. Ectopic Expression of the Rice Grain-Size-Affecting Gene GS5 in Maize Affects Kernel Size by Regulating Endosperm Starch Synthesis. Genes (Basel) 2022; 13:1542. [PMID: 36140710 PMCID: PMC9498353 DOI: 10.3390/genes13091542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Maize is one of the most important food crops, and maize kernel is one of the important components of maize yield. Studies have shown that the rice grain-size affecting gene GS5 increases the thousand-kernel weight by positively regulating the rice grain width and grain grouting rate. In this study, based on the GS5 transgenic maize obtained through transgenic technology with specific expression in the endosperm, molecular assays were performed on the transformed plants. Southern blotting results showed that the GS5 gene was integrated into the maize genome in a low copy number, and RT-PCR analysis showed that the exogenous GS5 gene was normally and highly expressed in maize. The agronomic traits of two successive generations showed that certain lines were significantly improved in yield-related traits, and the most significant changes were observed in the OE-34 line, where the kernel width increased significantly by 8.99% and 10.96%, the 100-kernel weight increased by 14.10% and 10.82%, and the ear weight increased by 13.96% and 15.71%, respectively; however, no significant differences were observed in the plant height, ear height, kernel length, kernel row number, or kernel number. In addition, the overexpression of the GS5 gene increased the grain grouting rate and affected starch synthesis in the rice grains. The kernels' starch content in OE-25, OE-34, and OE-57 increased by 10.30%, 7.39%, and 6.39%, respectively. Scanning electron microscopy was performed to observe changes in the starch granule size, and the starch granule diameter of the transgenic line(s) was significantly reduced. RT-PCR was performed to detect the expression levels of related genes in starch synthesis, and the expression of these genes was generally upregulated. It was speculated that the exogenous GS5 gene changed the size of the starch granules by regulating the expression of related genes in the starch synthesis pathway, thus increasing the starch content. The trans-GS5 gene was able to be stably expressed in the hybrids with the genetic backgrounds of the four materials, with significant increases in the kernel width, 100-kernel weight, and ear weight. In this study, the maize kernel size was significantly increased through the endosperm-specific expression of the rice GS5 gene, and good material for the functional analysis of the GS5 gene was created, which was of great importance in theory and application.
Collapse
Affiliation(s)
- Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hanxian Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanyong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinhua Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dengxiang Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
13
|
Pandey DM, Hu YG, Shavrukov Y, Gupta NK. Editorial: Drought Threat: Responses and Molecular-Genetic Mechanisms of Adaptation and Tolerance in Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:960162. [PMID: 35845689 PMCID: PMC9280666 DOI: 10.3389/fpls.2022.960162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Dev Mani Pandey
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, India
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yuri Shavrukov
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | | |
Collapse
|
14
|
Eliby S, Bekkuzhina S, Kishchenko O, Iskakova G, Kylyshbayeva G, Jatayev S, Soole K, Langridge P, Borisjuk N, Shavrukov Y. Developments and prospects for doubled haploid wheat. Biotechnol Adv 2022; 60:108007. [PMID: 35732257 DOI: 10.1016/j.biotechadv.2022.108007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/28/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
Doubled haploid production is a valuable biotechnology that can accelerate the breeding of new wheat varieties by several years through the one-step creation of 100% homozygous plants. The technology also plays important role in studying the genetic control of traits in wheat, in marker-assisted selection, in genomics and in genetic engineering. In this paper, recent advances in androgenesis and gynogenesis techniques, emphasizing predominantly the in vitro culture phase, as well as the emerging innovative approaches in researching and producing wheat doubled haploids are reviewed. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing, that allows targeted mutagenesis and gene targeting, is being tested extensively as a powerful and precise tool to induce doubled haploids in wheat. The review provides the reader with recent examples of gene modifications in wheat to induce haploidy.
Collapse
Affiliation(s)
- Serik Eliby
- University of Adelaide, Urrbrae, SA, Australia
| | - Sara Bekkuzhina
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Gulnur Iskakova
- Kazakh Agrarian National University, Almaty, Kazakhstan; Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | - Satyvaldy Jatayev
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Kathleen Soole
- College of Science and Engineering, Biological Sciences, Flinders University, SA, Australia
| | - Peter Langridge
- University of Adelaide, Urrbrae, SA, Australia; Wheat Initiative, Julius-Kühn-Institute, Berlin, Germany
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, SA, Australia.
| |
Collapse
|
15
|
Integrate Small RNA and Degradome Sequencing to Reveal Drought Memory Response in Wheat ( Triticum aestivum L.). Int J Mol Sci 2022; 23:ijms23115917. [PMID: 35682597 PMCID: PMC9180835 DOI: 10.3390/ijms23115917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/28/2022] Open
Abstract
Drought has gradually become one of the most severe abiotic stresses on plants. Plants that experience stress training can exhibit enhanced stress tolerance. According to MicroRNA (miRNA) sequencing data, this study identified 195 candidate drought memory-related miRNAs in wheat, and targets of 64 (32.8%) candidate miRNAs were validated by degradome sequencing. Several drought memory-related miRNAs such as tae-miR9676-5p, tae-MIR9676-p3_1ss21GA, tae-miR171a, tae-miR531_L-2, tae-miR408_L-1, PC-3p-5049_3565, tae-miR396c-5p, tae-miR9778, tae-miR164a-5p, and tae-miR9662a-3p were validated as having a strong response to drought memory by regulating the expression of their target genes. In addition, overexpression of drought memory-related miRNA, tae-miR531_L-2, can remarkably improve the drought tolerance of transgenic Arabidopsisthaliana. Drought memory can regulate plant cellular signal transduction, plant biosynthetic processes, and other biological processes to cope with drought via transcriptional memory. In addition, drought memory-related miRNAs can promote starch and sucrose catabolism and soluble sugar accumulation and regulate proline homeostasis to improve plant drought resistance. Our results could contribute to an understanding of drought memory in wheat seedlings and may provide a new strategy for drought-resistant breeding.
Collapse
|
16
|
John Martin JJ, Yarra R, Wei L, Cao H. Oil Palm Breeding in the Modern Era: Challenges and Opportunities. PLANTS 2022; 11:plants11111395. [PMID: 35684168 PMCID: PMC9183044 DOI: 10.3390/plants11111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Oil palm, a cross-pollinated crop with long generation time, poses a lot of challenges in achieving sustainable oil palm with high yield and quality. The African oil palm (Elaeis guineensis Jacq.) is the most productive and versatile oil-yielding crop in the world, producing more than any other oil-yielding crop. Despite recent challenges, such as stress tolerance, superior oil quality, disease tolerance, and the need for new market niches, there is a growing need to explore and develop new varieties with high yield potential and the genetic diversity required to maintain oil palm yield stability. Breeding is an indispensable part of producing high-quality planting materials to increase oil palm yield. Biotechnological technologies have transformed conventional plant breeding approaches by introducing novel genotypes for breeding. Innovative pre-breeding and breeding approaches, such as identifying candidate genes in wild or land races using genomics tools, can pave the way for genetic improvement in oil palm. In this review, we highlighted the modern breeding tools, including genomics, marker-assisted breeding, genetic engineering, and genome editing techniques in oil palm crops, and we explored certain concerns connected to the techniques and their applications in practical breeding.
Collapse
Affiliation(s)
- Jerome Jeyakumar John Martin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
| | - Rajesh Yarra
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
| | - Lu Wei
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
| |
Collapse
|
17
|
Ben-Abu Y, Itsko M. Metabolome dynamics during wheat domestication. Sci Rep 2022; 12:8532. [PMID: 35595776 PMCID: PMC9122938 DOI: 10.1038/s41598-022-11952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
One of the most important crops worldwide is wheat. Wheat domestication took place about 10,000 years ago. Not only that its wild progenitors have been discovered and phenotypically characterized, but their genomes were also sequenced and compared to modern wheat. While comparative genomics is essential to track genes that contribute to improvement in crop yield, comparative analyses of functional biological end-products, such as metabolites, are still lacking. With the advent of rigorous mass-spectrometry technologies, it is now possible to address that problem on a big-data scale. In attempt to reveal classes of metabolites, which are associated with wheat domestication, we analyzed the metabolomes of wheat kernel samples from various wheat lines. These wheat lines represented subspecies of tetraploid wheat along primary and secondary domestications, including wild emmer, domesticated emmer, landraces durum, and modern durum. We detected that the groups of plant metabolites such as plant-defense metabolites, antioxidants and plant hormones underwent significant changes during wheat domestication. Our data suggest that these metabolites may have contributed to the improvement in the agricultural fitness of wheat. Closer evaluation of specific metabolic pathways may result in the future in genetically-engineered high-yield crops.
Collapse
Affiliation(s)
- Yuval Ben-Abu
- Department of Physics and Project Unit, Sapir Academic College, 79165, Sderot, Hof Ashkelon, Israel. .,Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| | - Mark Itsko
- WDS Inc., Contractor to Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30033, USA
| |
Collapse
|
18
|
Shi JH, Liu H, Pham TC, Hu XJ, Liu L, Wang C, Foba CN, Wang SB, Wang MQ. Volatiles and hormones mediated root-knot nematode induced wheat defense response to foliar herbivore aphid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152840. [PMID: 34995605 DOI: 10.1016/j.scitotenv.2021.152840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 11/26/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Plant root-leaf communication signals are critical for plant defense. Numerous studies show that belowground organisms can alter systemically resistance traits in aboveground parts against herbivores. However, there are limited studies on root-knot nematode-aphid interaction. Moreover, the impact of nematode's initial density and infection time on plant defense is poorly understood. Here we aim to examine the induced defense responses by root-knot nematode Meloidogyne incognita against aboveground feeding aphid Sitobion avenae in wheat. Further, we investigated the influence of the nematode infection density as well as the length of infection in these interactions. We tested the direct and indirect defense responses triggered by M. incognita against S. avenae as well as how the responses affect the preference of Harmonia axyridis. Plant volatiles and hormones were determined to explore plant defense mechanisms that mediate aboveground-belowground defense. The photosynthetic rate was tested to examine plant tolerance strategy. We found that, both low and high densities M. incognita root infection at 7 days post inoculation (dpi) reduced the feeding of the aphid S. avenae. Behavioral assay showed that H. axyridis preferred plants co-damaged by both M. incognita and S. avenae at 7 dpi. M. incognita infection induced the changes of jasmonic acid, salicylic acid and volatile content, which mediated plant response to S. avenae. Furthermore, photosynthetic rate in wheat increased at 5 dpi under 300 M. incognita or 1000 M. incognita infection. These results suggest that plant roots induced multiple defense strategies against foliar herbivores as damages increased. Our study provides evidence of a complex dynamic response of wheat aboveground defense against aphids in response to belowground nematode damage on a temporal scale.
Collapse
Affiliation(s)
- Jin-Hua Shi
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - The Cuong Pham
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin-Jun Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Le Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Caroline Ngichop Foba
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu-Bo Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
19
|
Goncharov NP, Kosolapov VM. Plant breeding is the food security basis in the Russian Federation. Vavilovskii Zhurnal Genet Selektsii 2022; 25:361-366. [PMID: 35088006 PMCID: PMC8765775 DOI: 10.18699/vj21.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This issue of the Vavilov Journal of Genetics and Breeding is composed of reports of top Russian breeders delivered at the scientific session of the RAS Department of Agricultural Sciences “Scientific support of the efficient development of crop breeding and seed production in the Russian Federation” held in Moscow on December 7, 2020.
Collapse
Affiliation(s)
- N P Goncharov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V M Kosolapov
- Federal Williams Research Center of Forage Production and Agroecology, Lobnya, Moscow region, Russia
| |
Collapse
|
20
|
Goncharov NP. Scientific support to plant breeding and seed production in Siberia in the XXI century. Vavilovskii Zhurnal Genet Selektsii 2022; 25:448-459. [PMID: 35088017 PMCID: PMC8765777 DOI: 10.18699/vj21.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 11/19/2022] Open
Abstract
Agriculture in the Russian Federation is fundamental to the country’s economic performance, living
standards, the wellbeing of people and state safety. Considerations relating to food security, prospects of and
challenges before plant breeding in the Siberian Federal District (SFD), the largest agricultural area of the Russian
Federation, are provided in the article. The agricultural area used in the SFD is about 50 million hectares and accounts for 13 % of the country’s gross grain production. The need for the introduction of modern molecular biological methods, bioengineering and IT technology is demonstrated and discussed. As Russia as a whole, Siberia
is largely engaged in unpromising extensive farming practices, which rely on natural soil fertility, and this factor
should be taken into account. Another issue is noncompliance with intensive farming technologies used for cultivating new-generation commercial cultivars. Although capital investments in plant breeding are the most cost
effective investments in crop production, breeders’ efforts remain underfunded. The article explains the need for
fundamental reform in this economic sector: the recognition of plant breeding as being a fundamental science;
a fair increase in its funding; the development of a breeding strategy, nationally and regionally; the further expansion of the network of the Breeding Centers; the re-establishment and improvement of the universities’ departments specialized in plant breeding and seed production; having more state-funded places in the universities for
training plant breeders to be able to maintain and cement the country’s advanced position in plant breeding and
to develop new globally competitive next-generation cultivars of main crops. Should these issues be ignored, all
the problems that have accumulated to date will lead to risks of long-term instability in this economic sector. The
need for the careful preservation of continuity in plant breeders and plants being bred is stated. The regulatory
functions of the state and agricultural science in plant breeding, plant industry and seed production are considered.
Collapse
Affiliation(s)
- N P Goncharov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
21
|
Salaria S, Boatwright JL, Thavarajah P, Kumar S, Thavarajah D. Protein Biofortification in Lentils ( Lens culinaris Medik.) Toward Human Health. FRONTIERS IN PLANT SCIENCE 2022; 13:869713. [PMID: 35449893 PMCID: PMC9016278 DOI: 10.3389/fpls.2022.869713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/14/2022] [Indexed: 05/11/2023]
Abstract
Lentil (Lens culinaris Medik.) is a nutritionally dense crop with significant quantities of protein, low-digestible carbohydrates, minerals, and vitamins. The amino acid composition of lentil protein can impact human health by maintaining amino acid balance for physiological functions and preventing protein-energy malnutrition and non-communicable diseases (NCDs). Thus, enhancing lentil protein quality through genetic biofortification, i.e., conventional plant breeding and molecular technologies, is vital for the nutritional improvement of lentil crops across the globe. This review highlights variation in protein concentration and quality across Lens species, genetic mechanisms controlling amino acid synthesis in plants, functions of amino acids, and the effect of antinutrients on the absorption of amino acids into the human body. Successful breeding strategies in lentils and other pulses are reviewed to demonstrate robust breeding approaches for protein biofortification. Future lentil breeding approaches will include rapid germplasm selection, phenotypic evaluation, genome-wide association studies, genetic engineering, and genome editing to select sequences that improve protein concentration and quality.
Collapse
Affiliation(s)
- Sonia Salaria
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Jon Lucas Boatwright
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | | | - Shiv Kumar
- Biodiversity and Crop Improvement Program, International Centre for Agricultural Research in the Dry Areas (ICARDA), Rabat-Institute, Rabat, Morocco
| | - Dil Thavarajah
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
- *Correspondence: Dil Thavarajah,
| |
Collapse
|
22
|
Yadav B, Jogawat A, Rahman MS, Narayan OP. Secondary metabolites in the drought stress tolerance of crop plants: A review. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
EMS Derived Wheat Mutant BIG8-1 ( Triticum aestivum L.)-A New Drought Tolerant Mutant Wheat Line. Int J Mol Sci 2021; 22:ijms22105314. [PMID: 34070033 PMCID: PMC8158095 DOI: 10.3390/ijms22105314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Drought response in wheat is considered a highly complex process, since it is a multigenic trait; nevertheless, breeding programs are continuously searching for new wheat varieties with characteristics for drought tolerance. In a previous study, we demonstrated the effectiveness of a mutant known as RYNO3936 that could survive 14 days without water. In this study, we reveal another mutant known as BIG8-1 that can endure severe water deficit stress (21 days without water) with superior drought response characteristics. Phenotypically, the mutant plants had broader leaves, including a densely packed fibrous root architecture that was not visible in the WT parent plants. During mild (day 7) drought stress, the mutant could maintain its relative water content, chlorophyll content, maximum quantum yield of PSII (Fv/Fm) and stomatal conductance, with no phenotypic symptoms such as wilting or senescence despite a decrease in soil moisture content. It was only during moderate (day 14) and severe (day 21) water deficit stress that a decline in those variables was evident. Furthermore, the mutant plants also displayed a unique preservation of metabolic activity, which was confirmed by assessing the accumulation of free amino acids and increase of antioxidative enzymes (peroxidases and glutathione S-transferase). Proteome reshuffling was also observed, allowing slow degradation of essential proteins such as RuBisCO during water deficit stress. The LC-MS/MS data revealed a high abundance of proteins involved in energy and photosynthesis under well-watered conditions, particularly Serpin-Z2A and Z2B, SGT1 and Calnexin-like protein. However, after 21 days of water stress, the mutants expressed ABC transporter permeases and xylanase inhibitor protein, which are involved in the transport of amino acids and protecting cells, respectively. This study characterizes a new mutant BIG8-1 with drought-tolerant characteristics suited for breeding programs.
Collapse
|
24
|
Asri N, Rostami-Nejad M, Anderson RP, Rostami K. The Gluten Gene: Unlocking the Understanding of Gluten Sensitivity and Intolerance. Appl Clin Genet 2021; 14:37-50. [PMID: 33603437 PMCID: PMC7886246 DOI: 10.2147/tacg.s276596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
Wheat flour is one of the most important food ingredients containing several essential nutrients including proteins. Gluten is one of the major protein components of wheat consisted of glutenin (encoded on chromosome 1) and gliadin (encoded on chromosome 1 and 6) and there are around hundred genes encoding it in wheat. Gluten proteins have the ability of eliciting the pathogenic immune responses and hypersensitivity reactions in susceptible individuals called "gluten-related disorders (GRDs)", which include celiac disease (CD), wheat allergy (WA), and non-celiac gluten sensitivity (NCGS). Currently removing gluten from the diet is the only effective treatment for mentioned GRDs and studies for the appropriate and alternative therapeutic approaches are ongoing. Accordingly, several genetic studies have focused on breeding wheat with low immunological properties through gene editing methods. The present review considers genetic characteristics of gluten protein components, focusing on their role in the incidence of gluten-related diseases, and genetic modifications conducted to produce wheat with less immunological properties.
Collapse
Affiliation(s)
- Nastaran Asri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Robert P Anderson
- Wesley Medical Research - The Wesley Hospital, Brisbane, Queensland, Australia
| | - Kamran Rostami
- Department of Gastroenterology, MidCentral DHB, Palmerston North, New Zealand
| |
Collapse
|
25
|
Zhang Y, Restall J, Crisp P, Godwin I, Liu G. Current status and prospects of plant genome editing in Australia. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2021; 57:574-583. [PMID: 34054265 PMCID: PMC8143062 DOI: 10.1007/s11627-021-10188-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/13/2021] [Indexed: 05/22/2023]
Abstract
Plant genome editing, particularly CRISPR-Cas biotechnologies, has rapidly evolved and drawn enormous attention all around the world in the last decade. The cutting-edge technologies have had substantial impact on precise genome editing for manipulating gene expression, stacking gene mutations, and improving crop agronomic traits. Following the global trends, investigations on CRISPR-Cas have been thriving in Australia, especially in agriculture sciences. Importantly, CRISPR-edited plants, classified as SDN-1 organisms (SDN: site-directed nuclease), have been given a green light in Australia, with regulatory bodies indicating they will not be classified as a genetically modified organism (GMO) if no foreign DNA is present in an edited plant. As a result, genome-edited products would not attract the onerous regulation required for the introduction of a GMO, which could mean more rapid deployment of new varieties and products that could be traded freely in Australia, and potentially to export markets. In the present review, we discuss the current status and prospects of plant genome editing in Australia by highlighting several species of interest. Using these species as case studies, we discuss the priorities and potential of plant genome editing, as well as the remaining challenges.
Collapse
Affiliation(s)
- Yan Zhang
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072 Australia
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Jemma Restall
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Peter Crisp
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Ian Godwin
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Guoquan Liu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
26
|
Chen G, Zhou Y, Kishchenko O, Stepanenko A, Jatayev S, Zhang D, Borisjuk N. Gene editing to facilitate hybrid crop production. Biotechnol Adv 2020; 46:107676. [PMID: 33285253 DOI: 10.1016/j.biotechadv.2020.107676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022]
Abstract
Capturing heterosis (hybrid vigor) is a promising way to increase productivity in many crops; hybrid crops often have superior yields, disease resistance, and stress tolerance compared with their parental inbred lines. The full utilization of heterosis faces a number of technical problems related to the specifics of crop reproductive biology, such as difficulties with generating and maintaining male-sterile lines and the low efficiency of natural cross-pollination for some genetic combinations. Innovative technologies, such as development of artificial in vitro systems for hybrid production and apomixis-based systems for maintenance of the resulting heterotic progeny, may substantially facilitate the production of hybrids. Genome editing using specifically targeted nucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (CRISPR/Cas9) systems, which recognize targets by RNA:DNA complementarity, has recently become an integral part of research and development in life science. In this review, we summarize the progress of genome editing technologies for facilitating the generation of mutant male sterile lines, applications of haploids for hybrid production, and the use of apomixis for the clonal propagation of elite hybrid lines.
Collapse
Affiliation(s)
- Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| | - Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology & Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine.
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology & Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine.
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia.
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| |
Collapse
|
27
|
Kaul T, Sony SK, Verma R, Motelb KFA, Prakash AT, Eswaran M, Bharti J, Nehra M, Kaul R. Revisiting CRISPR/Cas-mediated crop improvement: Special focus on nutrition. J Biosci 2020. [DOI: 10.1007/s12038-020-00094-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Kishchenko O, Zhou Y, Jatayev S, Shavrukov Y, Borisjuk N. Gene editing applications to modulate crop flowering time and seed dormancy. ABIOTECH 2020; 1:233-245. [PMID: 36304127 PMCID: PMC9590486 DOI: 10.1007/s42994-020-00032-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
Gene editing technologies such as CRISPR/Cas9 have been used to improve many agricultural traits, from disease resistance to grain quality. Now, emerging research has used CRISPR/Cas9 and other gene editing technologies to target plant reproduction, including major areas such as flowering time and seed dormancy. Traits related to these areas have important implications for agriculture, as manipulation of flowering time has multiple applications, including tailoring crops for regional adaptation and improving yield. Moreover, understanding seed dormancy will enable approaches to improve germination upon planting and prevent pre-harvest sprouting. Here, we summarize trends and recent advances in using gene editing to gain a better understanding of plant reproduction and apply the resulting information for crop improvement.
Collapse
Affiliation(s)
- Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
- Institute of Cell Biology and Genetic Engineering, NAS of Ukraine, Kiev, Ukraine
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, Australia
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
29
|
Hensel G. Genetic transformation of Triticeae cereals – Summary of almost three-decade's development. Biotechnol Adv 2020; 40:107484. [DOI: 10.1016/j.biotechadv.2019.107484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/23/2019] [Accepted: 11/16/2019] [Indexed: 10/25/2022]
|
30
|
Khan S, Anwar S, Yu S, Sun M, Yang Z, Gao ZQ. Development of Drought-Tolerant Transgenic Wheat: Achievements and Limitations. Int J Mol Sci 2019; 20:E3350. [PMID: 31288392 PMCID: PMC6651533 DOI: 10.3390/ijms20133350] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/25/2023] Open
Abstract
Crop yield improvement is necessary to keep pace with increasing demand for food. Due to climatic variability, the incidence of drought stress at crop growth stages is becoming a major hindering factor to yield improvement. New techniques are required to increase drought tolerance along with improved yield. Genetic modification for increasing drought tolerance is highly desirable, and genetic engineering for drought tolerance requires the expression of certain stress-related genes. Genes have been identified which confer drought tolerance and improve plant growth and survival in transgenic wheat. However, less research has been conducted for the development of transgenic wheat as compared to rice, maize, and other staple food. Furthermore, enhanced tolerance to drought without any yield penalty is a major task of genetic engineering. In this review, we have focused on the progress in the development of transgenic wheat cultivars for improving drought tolerance and discussed the physiological mechanisms and testing of their tolerance in response to inserted genes under control or field conditions.
Collapse
Affiliation(s)
- Shahbaz Khan
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Sumera Anwar
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaobo Yu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Min Sun
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhi-Qiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
31
|
Utebayev M, Dashkevich S, Bome N, Bulatova K, Shavrukov Y. Genetic diversity of gliadin-coding alleles in bread wheat ( Triticum aestivum L.) from Northern Kazakhstan. PeerJ 2019; 7:e7082. [PMID: 31223532 PMCID: PMC6571009 DOI: 10.7717/peerj.7082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/02/2019] [Indexed: 11/20/2022] Open
Abstract
Background Spring bread wheat (Triticum aestivum L.) represents the main cereal crop in Northern Kazakhstan. The quality of wheat grain and flour strongly depends on the structure of gluten, comprised of gliadin and glutenin proteins. Electrophoresis spectra of gliadins are not altered by environmental conditions or plant growth, are easily reproducible and very useful for wheat germplasm identification in addition to DNA markers. Genetic polymorphism of two Gli loci encoding gliadins can be used for selection of preferable genotypes of wheat with high grain quality. Methods Polyacrylamide gel electrophoresis was used to analyse genetic diversity of gliadins in a germplasm collection of spring bread wheat from Northern Kazakhstan. Results The highest frequencies of gliadin alleles were found as follows, in Gli1: -A1f (39.3%), -B1e (71.9%), and -D1a (41.0%); and in Gli-2: -A2q (17.8%), -B2t (13.5%), and -D2q (20.4%). The combination of these alleles in a single genotype may be associated with higher quality of grain as well as better adaptation to the dry environment of Northern Kazakhstan; preferable for wheat breeding in locations with similar conditions.
Collapse
Affiliation(s)
- Maral Utebayev
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan.,Institute of Biology, University of Tyumen, Tyumen, Russia
| | - Svetlana Dashkevich
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Nina Bome
- Institute of Biology, University of Tyumen, Tyumen, Russia
| | - Kulpash Bulatova
- Kazakh Research Institute of Agriculture and Plant Growing, Almaty region, Kazakhstan
| | - Yuri Shavrukov
- College of Science and Engineering, School of Biological Sciences, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|