1
|
Mohanty D, Padhee S, Priyadarshini A, Kerry RG, Dash B, Sahoo A, Jena S, Panda PC, Khan HA, Nayak S, Ray A. Integrative approach to decipher pharmacological mechanism of Cinnamomum zeylanicum essential oil in prostate cancer. Med Oncol 2025; 42:100. [PMID: 40072751 DOI: 10.1007/s12032-025-02665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Prostate cancer has garnered much importance in recent years due to its rising incidence and mortality among men worldwide. The ineffectiveness of existing therapies and adverse events associated with conventional treatment have led patients to turn towards traditional medicine for the management of prostate cancer. Cinnamomum zeylanicum bark essential oil (CZEO) possesses promising anticancer properties, yet the exact mechanism of action of CZEO for the management of prostate cancer remains unclear. Therefore, the current study tried to elucidate the bioactive components and key potential targets through which CZEO may exert its anticancer effect for treating prostate cancer. Fifty-nine constituents were identified by GC-MS, of which 52 were drug-like constituents. A total of 2847 targets related to CZEO and 2283 targets related to prostate cancer were obtained from public databases and the GEO dataset. Twenty-three overlapping targets exist between CZEO and disease targets. Compound-disease-target network analysis revealed camphor, eugenol, methyl eugenol, trans farnesyl acetate and nerol as the core bioactive ingredients of CZEO. The topological screening of the PPI network revealed BCL2, TNF, NFKBIA, CREBBP and IL7R as potential hub targets. These hub targets were validated based on mRNA expression level, pathological stages, overall survival, immune infiltrate and genetic alteration analysis in prostate adenocarcinoma and normal patients. KEGG enrichment analysis proposed that CZEO exhibits its anticancer effect mainly by modulating the PI3-AKT and MAPK signalling pathway. Moreover, molecular docking and dynamics simulation studies revealed a good binding affinity of these core compounds with TNF, NFKBIA and BCL2. CZEO exhibited a remarkable anti-proliferative effect against PC-3 cells with an IC50 value of 13.56 µg/mL. CZEO promoted apoptosis and cell cycle arrest in the G2/M phase in PC-3 cells. CZEO-induced apoptosis was due to loss of mitochondrial membrane potential, increase in reactive oxygen species levels and activation of caspases (caspase 3, caspase 8 and caspase 9). RT-qPCR analysis revealed that CZEO modulated the mRNA expression level of hub genes (BCL2, TNF, NFKBIA, CREBBP, and IL7R, caspase 3, caspase 8 and caspase 9). The present study provides a mechanistic approach of Cinnamomum zeylanicum essential oil against prostate cancer.
Collapse
Affiliation(s)
- Debajani Mohanty
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Sucheesmita Padhee
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Arpita Priyadarshini
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Rout George Kerry
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Biswabhusan Dash
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Haseeb Ahmad Khan
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Asit Ray
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
2
|
Sivamaruthi BS, Kesika P, Sisubalan N, Chaiyasut C. The Role of Essential Oils on Sleep Quality and Other Sleep-related Issues: Evidence from Clinical Trials. Mini Rev Med Chem 2025; 25:234-258. [PMID: 39225207 DOI: 10.2174/0113895575315700240821054716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 09/04/2024]
Abstract
Essential oils (EOs) are a volatile mixture of bioactive compounds extracted from aromatic plants. The composition of EOs varies, which majorly depends on the extraction methods and plant parts. Aromatherapy using EOs has been reported for its several beneficial effects in humans. Aromatherapy is considered a complementary and/ or adjuvant therapeutic approach for treating several illnesses, especially to improve mental health and well-being. The incidence of sleep disorders, specifically insomnia, is nowadays increased, possibly due to urbanization and lifestyle. The studies showed that EOs-based treatments using lavender EO, bergamot EO, cinnamon EO, and rosemary EO (alone or in combinations) could improve sleep quality, duration, and deprivation in healthy subjects and patients, those who suffer from sleep-related issues. The current manuscript details the outcomes of EO-based treatments on the sleep quality of humans and the possible mechanisms associated with the health-promoting properties of EOs. Also, the toxicity and adverse effects of EOs have been discussed. The study indicated that EOs are potent adjuvant therapeutic candidates to manage mood-associated complications in humans. Moreover, the aromatherapeutic field requires detailed studies on toxicity and dose determination, which could provide safe and effective therapeutic results.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Faculty of Pharmacy, Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, , Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Faculty of Pharmacy, Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, , Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Faculty of Pharmacy, Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, , Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chaiyavat Chaiyasut
- Faculty of Pharmacy, Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, , Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
3
|
Mozaffari N, Mohammadi R, Delirezh N, Hobbenaghi R, Mohammadi V. Effect of macrophages combined with supernatant of mesenchymal stem cell culture and macrophage culture on wound healing in rats. Tissue Cell 2024; 90:102474. [PMID: 39079451 DOI: 10.1016/j.tice.2024.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/22/2024] [Accepted: 07/11/2024] [Indexed: 09/03/2024]
Abstract
Wound healing is an orderly sequence of events restoring the integrity of the damaged tissue. It consists of inflammatory, proliferation, and remodeling phases. The objective of the current study was to investigate the effect of local transplantation of cultured macrophage loaded with mesenchymal stem cell/macrophage culture supernatants on wound healing. Sixty-four healthy adult male Wistar rats were randomized into 4 groups of sixteen animals each: 1) SHAM group. 2) MAC-MSC/SN group: One-milliliter application of a mixture comprising mesenchymal stem cell and macrophage culture supernatants in a 1:1 ratio was administered locally to the wound bed. 3) MAC group: Local transplantation of macrophage cells cultured in the wound bed. 4) MAC + MAC-MSC/SN group: Local transplantation of cultured macrophage in combination with mesenchymal stem cell/ macrophage culture supernatants in the wound bed. An incisional wound model was used for biomechanical studies, while an excisional wound model was used for biochemical, histopathological, and planimetric assessments. The wound area was significantly reduced in the MAC + MAC-MSC/SN group compared to other groups (P < 0.05). Biomechanical measurements from the MAC + MAC-MSC/SN group were significantly higher compared to other experimental groups (P < 0.05). Biochemical and quantitative histopathological analyses revealed a significant difference between MAC + MAC-MSC/SN and other groups (P < 0.05). MAC + MAC-MSC/SN showed the potential to improve wound healing significantly. This appears to work by angiogenesis stimulation, fibroblast proliferation, inflammation reduction, and granulation tissue formation during the initial stages of the healing process. This accelerated healing leads to earlier wound area reduction and enhanced tensile strength of the damaged area due to the reorganization of granulation tissue and collagen fibers.
Collapse
Affiliation(s)
- Nima Mozaffari
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Mohammadi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Nowruz Delirezh
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Hobbenaghi
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Vahid Mohammadi
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
4
|
Gheorghe-Irimia RA, Tăpăloagă D, Tăpăloagă PR, Ghimpețeanu OM, Tudor L, Militaru M. Spicing Up Meat Preservation: Cinnamomum zeylanicum Essential Oil in Meat-Based Functional Foods-A Five-Year Review. Foods 2024; 13:2479. [PMID: 39200406 PMCID: PMC11353328 DOI: 10.3390/foods13162479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Today, in the modern consumer era, we are facing a significant change in terms of preferences and behaviour. This tendency is not only a basic desire, but rather a significant social and cultural movement that exerts a tremendous influence on the food industry and correlated sectors. In this direction, food authorities and experts have thoroughly evaluated the practicality of employing natural preservation methods to enhance the quality and safety of foodstuffs, while preserving their nutritional and sensory attributes. Given this context, the development of meat products enhanced with Cinnamomum zeylanicum essential oil (CZEO) poses promising avenues, such as extended shelf-life due to its antimicrobial, antifungal, and antioxidant properties. CZEO also has many health benefits, rendering it as a promising ingredient in functional meat product formulations. Conversely, challenges such as higher associated costs, sensory interactions, and variability arise. Hence, the aim of this review is to offer a novel critical perspective on CZEO's potential application as a functional ingredient in meat products formulations and to address the inherent associated challenges, based on the last five years of scholarly publications.
Collapse
Affiliation(s)
- Raluca-Aniela Gheorghe-Irimia
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 050097 Bucharest, Romania; (R.-A.G.-I.); (O.-M.G.); (L.T.); (M.M.)
| | - Dana Tăpăloagă
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 050097 Bucharest, Romania; (R.-A.G.-I.); (O.-M.G.); (L.T.); (M.M.)
| | - Paul-Rodian Tăpăloagă
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine Bucharest, 011464 Bucharest, Romania;
| | - Oana-Mărgărita Ghimpețeanu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 050097 Bucharest, Romania; (R.-A.G.-I.); (O.-M.G.); (L.T.); (M.M.)
| | - Laurențiu Tudor
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 050097 Bucharest, Romania; (R.-A.G.-I.); (O.-M.G.); (L.T.); (M.M.)
| | - Manuella Militaru
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine Bucharest, 050097 Bucharest, Romania; (R.-A.G.-I.); (O.-M.G.); (L.T.); (M.M.)
| |
Collapse
|
5
|
Scheau C, Pop CR, Rotar AM, Socaci S, Mălinaș A, Zăhan M, Coldea ȘD, Pop VC, Fit NI, Chirilă F, Criveanu HR, Oltean I. The Influence of Physical Fields (Magnetic and Electric) and LASER Exposure on the Composition and Bioactivity of Cinnamon Bark, Patchouli, and Geranium Essential Oils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1992. [PMID: 39065519 PMCID: PMC11281253 DOI: 10.3390/plants13141992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
In recent years, essential oils (EOs) have received increased attention from the research community, and the EOs of cinnamon, patchouli, and geranium have become highly recognized for their antibacterial, antifungal, antiviral, and antioxidant effects. Due to these properties, they have become valuable and promising candidates for addressing the worldwide threat of antimicrobial resistance and other diseases. Simultaneously, studies have revealed promising new results regarding the effects of physical fields (magnetic and electric) and LASER (MEL) exposure on seed germination, plant growth, biomass accumulation, and the yield and composition of EOs. In this frame, the present study aims to investigate the influence of MEL treatments on cinnamon, patchouli, and geranium EOs, by specifically examining their composition, antimicrobial properties, and antioxidant activities. Results showed that the magnetic influence has improved the potency of patchouli EO against L. monocytogenes, S. enteritidis, and P. aeruginosa, while the antimicrobial activity of cinnamon EO against L. monocytogenes was enhanced by the electric and laser treatments. All exposures have increased the antifungal effect of geranium EO against C. albicans. The antioxidant activity was not modified by any of the treatments. These findings could potentially pave the way for a deeper understanding of the efficiency, the mechanisms of action, and the utilization of EOs, offering new insights for further exploration and application.
Collapse
Affiliation(s)
- Camelia Scheau
- PhD School of Agricultural Engineering Sciences, USAMV Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Ancuța Mihaela Rotar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Sonia Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 64, Floresti Street, 400509 Cluj-Napoca, Romania; (C.R.P.); (A.M.R.); (S.S.)
| | - Anamaria Mălinaș
- Department of Environmental Protection and Engineering, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Marius Zăhan
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania; (M.Z.); (Ș.D.C.)
| | - Ștefania Dana Coldea
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania; (M.Z.); (Ș.D.C.)
| | - Viorel Cornel Pop
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5, Mănăştur Street, 400372 Cluj-Napoca, Romania
| | - Nicodim Iosif Fit
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania; (N.I.F.); (F.C.)
| | - Flore Chirilă
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania; (N.I.F.); (F.C.)
| | - Horia Radu Criveanu
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania;
| | - Ion Oltean
- Department of Plant Protection, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăstur Street, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
6
|
Kardan T, Mohammadi R, Tukmechi A, Mohammadi V. Curcumin-Polyethylene Glycol Loaded on Chitosan-Gelatin Nanoparticles Enhances Infected Wound Healing. INT J LOW EXTR WOUND 2024:15347346241251734. [PMID: 38755962 DOI: 10.1177/15347346241251734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The aim of the present study was to evaluate effects of curcumin-polyethylene glycol loaded on chitosan-gelatin nanoparticles (C-PEG-CGNPs) on healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds in rat as a model study. Forty male Wistar rats were randomized into 5 groups of 8 animals each. In CNTRL group, no infected/no treated wounds were covered with sterile saline 0.9% solution (0.1 mL). In MRSA group, MRSA-infected wounds were only treated with sterile saline 0.9% solution (0.1 mL). In MRSA/CP group, 0.1 mL curcumin nanoparticles (1 mg/mL) was applied topically to treat MRSA-infected wounds. In MRSA/CG group, 0.1 mL CG (1 mg/mL) was applied topically to treat MRSA-infected wounds. In MRSA/CP-CG group, 0.1 mL CP-CG (1 mg/mL) was applied topically to treat MRSA-infected wounds. Microbiological examination; planimetric, biochemical, histological, morphometric studies, angiogenesis, hydroxyproline levels, and reverse transcription polymerase chain reaction for caspase 3, Bcl-2, and p53 showed significant difference between rats in MRSA/CP-CG group in comparison with other groups (P < .05). Accelerated and improved healing in wounds infected with MRSA were observed in animals treated with C-PEG-CGNPs. Via increasing solubility of curcumin in C-PEG-CGNP, this harmless and easily available composition could be considered to be topically applied in infected wounds.
Collapse
Affiliation(s)
- Tara Kardan
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Mohammadi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Amir Tukmechi
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Vahid Mohammadi
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
7
|
Mohammadabadi T, Jain R. Cinnamon: a nutraceutical supplement for the cardiovascular system. Arch Med Sci Atheroscler Dis 2024; 9:e72-e81. [PMID: 38846056 PMCID: PMC11155465 DOI: 10.5114/amsad/184245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/19/2024] [Indexed: 06/09/2024] Open
Abstract
Common therapies for cardiovascular diseases (CVDs) are associated with wide side effects. Thus, herbal medicines have been regarded due to fewer side effects, availability, cultural beliefs, and being cheap. For thousand years, herbal medicine has been used for bacterial infections, colds, coughs, and CVDs. Cinnamon bark contains phenolic compounds such as cinnamaldehyde and cinnamic acid with protective properties which can reduce the risk of cardiovascular diseases, cardiac ischemia and hypertrophy, and myocardial infarction. Furthermore, cinnamon has antioxidant and anti-inflammatory properties and exhibits beneficial effects on the complications of diabetes, obesity, hypercholesterolemia, and hypertension which cause CVDs. Although the protective effects of cinnamon on the heart have been reported in many studies, it needs more clinical studies to prove the pharmaceutical and therapeutic efficacy of cinnamon on risk factors of CVDs.
Collapse
Affiliation(s)
- Taherah Mohammadabadi
- Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University, Khuzestan, Iran
| | | |
Collapse
|
8
|
Pezantes-Orellana C, German Bermúdez F, Matías De la Cruz C, Montalvo JL, Orellana-Manzano A. Essential oils: a systematic review on revolutionizing health, nutrition, and omics for optimal well-being. Front Med (Lausanne) 2024; 11:1337785. [PMID: 38435393 PMCID: PMC10905622 DOI: 10.3389/fmed.2024.1337785] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose Essential oils from various plants have diverse therapeutic properties and are researched extensively. They have applications in medicine, aromatherapy, microbiology, agriculture, livestock, and the food industry, benefiting the population. Methods This systematic review followed the PRISMA verification protocol. The study focused on the anti-inflammatory effects, nutraceutical properties, antioxidant and antibacterial activity of essential oils in lemon, orange, cumin, cinnamon, coriander, rosemary, thyme, and parsley. We also looked at their presence in the diet, their effect, their mechanism of action on health, and the most important active compounds. The search was conducted in the PubMed database for the last 12 years of publications, including in vitro, in vivo, and online cell model tests. Results Essential oils have been shown to have multiple health benefits, primarily due to their antimicrobial and anti-inflammatory effects. The mechanism of action of cinnamon oil alters bacterial membranes, modifies lipid profiles, and inhibits cell division, giving a potential benefit in protection against colitis. On the other hand, a significant improvement was observed in the diastolic pressure of patients with metabolic syndrome when supplementing them with cumin essential oil. The antimicrobial properties of coriander essential oil, especially its application in seafood like tilapia, demonstrate efficacy in improving health and resistance to bacterial infections. Cumin essential oil treats inflammation. Parsley essential oil is an antioxidant. Orange peel oil is antibacterial, antifungal, antiparasitic, and pro-oxidative. Lemon essential oil affects mouse intestinal microbiota. Thyme essential oil protects the colon against damage and DNA methylation. Carnosic acid in rosemary oil can reduce prostate cancer cell viability by modifying the endoplasmic reticulum function. Conclusion and discussion Essential oils have many therapeutic and antiparasitic properties. They are beneficial to human health in many ways. However, to understand their potential benefits, more research is needed regarding essential oils such as coriander, parsley, rosemary, cumin, and thyme. These research gaps are relevant since they restrict understanding of the possible benefits of these crucial oils for health-related contexts.
Collapse
Affiliation(s)
| | - Fátima German Bermúdez
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Carmen Matías De la Cruz
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | | | - Andrea Orellana-Manzano
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| |
Collapse
|
9
|
Abd Rashid N, Mohamad Najib NH, Abdul Jalil NA, Teoh SL. Essential Oils in Cervical Cancer: Narrative Review on Current Insights and Future Prospects. Antioxidants (Basel) 2023; 12:2109. [PMID: 38136228 PMCID: PMC10740549 DOI: 10.3390/antiox12122109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Cervical cancer is a prevalent and often devastating disease affecting women worldwide. Traditional treatment modalities such as surgery, chemotherapy, and radiation therapy have significantly improved survival rates, but they are often accompanied by side effects and challenges that can impact a patient's quality of life. In recent years, the integration of essential oils into the management of cervical cancer has gained attention. This review provides an in-depth exploration of the role of various essential oils in cervical cancer, offering insights into their potential benefits and the existing body of research. The review also delves into future directions and challenges in this emerging field, emphasizing promising research areas and advanced delivery systems. The encapsulation of essential oils with solid lipid nanoparticles, nanoemulsification of essential oils, or the combination of essential oils with conventional treatments showed promising results by increasing the anticancer properties of essential oils. As the use of essential oils in cervical cancer treatment or management evolves, this review aims to provide a comprehensive perspective, balancing the potential of these natural remedies with the challenges and considerations that need to be addressed.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Malaysia;
| | - Nor Haliza Mohamad Najib
- Unit of Anatomy, Faculty Medicine & Health Defence, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
10
|
Abdelkader I, Ben Mabrouk S, Hadrich B, Refai M, Fendri A, Sayari A. Optimization using response surface methodology of phospholipase C production from Bacillus cereus suitable for soybean oil degumming. Prep Biochem Biotechnol 2023; 53:1165-1175. [PMID: 36794326 DOI: 10.1080/10826068.2023.2177867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
This work deals with the optimization of an extracellular phospholipase C production by Bacillus cereus (PLCBc) using Response Surface Methodology (RMS) and Box-Behnken design. In fact, after optimization, a maximum phospholipase activity (51 U/ml) was obtained after 6 h of cultivation on tryptone (10 g/L), yeast extract (10 g/L), NaCl (8.125 g/L), pH 7.5 with initial OD (0.15). The PLCBc activity, esteemed by the model (51 U) was very approximate to activity gutted experimentally (50 U). The PLCBc can be considered as thermoactive phospholipase since it showed a maximal activity of 50 U/mL at 60 °C using egg yolk or egg phosphatidylcholine (PC) as substrate. In addition, the enzyme was active at pH 7 and is stable after incubation at 55 °C for 30 min. The application of B. cereus phospholipase C in soybean oil degumming was investigated. Our results showed that when using enzymatic degumming, the residual phosphorus decrease more than with water degumming, indeed, it passes from 718 ppm in soybean crude oil to 100 ppm and 52 ppm by degumming using water and enzymatic process, respectively. The diacylgycerol (DAG) yield showed an increase of 1.2% with enzymatic degumming compared to soybean crude oil. This makes our enzyme a potential candidate for food industrial applications such as enzymatic degumming of vegetable oils.
Collapse
Affiliation(s)
- Ines Abdelkader
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Sameh Ben Mabrouk
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Bilel Hadrich
- Department of Chemical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh, Saudi Arabia
| | - Mohammed Refai
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahmed Fendri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Adel Sayari
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
de Sousa DP, Damasceno ROS, Amorati R, Elshabrawy HA, de Castro RD, Bezerra DP, Nunes VRV, Gomes RC, Lima TC. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023; 13:1144. [PMID: 37509180 PMCID: PMC10377445 DOI: 10.3390/biom13071144] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In this review, we provide an overview of the current understanding of the main mechanisms of pharmacological action of essential oils and their components in various biological systems. A brief introduction on essential oil chemistry is presented to better understand the relationship of chemical aspects with the bioactivity of these products. Next, the antioxidant, anti-inflammatory, antitumor, and antimicrobial activities are discussed. The mechanisms of action against various types of viruses are also addressed. The data show that the multiplicity of pharmacological properties of essential oils occurs due to the chemical diversity in their composition and their ability to interfere with biological processes at cellular and multicellular levels via interaction with various biological targets. Therefore, these natural products can be a promising source for the development of new drugs.
Collapse
Affiliation(s)
- Damião P de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Renan Oliveira S Damasceno
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via Gobetti 83, 40129 Bologna, Italy
| | - Hatem A Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Ricardo D de Castro
- Department of Clinical and Social Dentistry, Federal University of Paraíba, João Pessoa 58051-970, Brazil
| | - Daniel P Bezerra
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | - Vitória Regina V Nunes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Rebeca C Gomes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Tamires C Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Brazil
| |
Collapse
|
12
|
Kuttithodi AM, Narayanankutty A, Visakh NU, Job JT, Pathrose B, Olatunji OJ, Alfarhan A, Ramesh V. Chemical Composition of the Cinnamomum malabatrum Leaf Essential Oil and Analysis of Its Antioxidant, Enzyme Inhibitory and Antibacterial Activities. Antibiotics (Basel) 2023; 12:antibiotics12050940. [PMID: 37237843 DOI: 10.3390/antibiotics12050940] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 05/28/2023] Open
Abstract
Cinnamomum species are a group of plants belonging to the Lauraceae family. These plants are predominantly used as spices in various food preparations and other culinary purposes. Furthermore, these plants are attributed to having cosmetic and pharmacological potential. Cinnamomum malabatrum (Burm. f.) J. Presl is an underexplored plant in the Cinnamomum genus. The present study evaluated the chemical composition by a GC-MS analysis and antioxidant properties of the essential oil from C. malabatrum (CMEO). Further, the pharmacological effects were determined as radical quenching, enzyme inhibition and antibacterial activity. The results of the GC-MS analysis indicated the presence of 38.26 % of linalool and 12.43% of caryophyllene in the essential oil. Furthermore, the benzyl benzoate (9.60%), eugenol (8.75%), cinnamaldehyde (7.01%) and humulene (5.32%) were also present in the essential oil. The antioxidant activity was indicated by radical quenching properties, ferric-reducing potential and lipid peroxidation inhibition ex vivo. Further, the enzyme-inhibitory potential was confirmed against the enzymes involved in diabetes and diabetic complications. The results also indicated the antibacterial activity of these essential oils against different Gram-positive and Gram-negative bacteria. The disc diffusion method and minimum inhibitory concentration analysis revealed a higher antibacterial potential for C. malabatrum essential oil. Overall, the results identified the predominant chemical compounds of C. malabatrum essential oil and its biological and pharmacological effects.
Collapse
Affiliation(s)
- Aswathi Moothakoottil Kuttithodi
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Calicut 673008, Kerala, India
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Calicut 673008, Kerala, India
| | - Naduvilthara U Visakh
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - Joice Tom Job
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Calicut 673008, Kerala, India
| | - Berin Pathrose
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - Opeyemi Joshua Olatunji
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Varsha Ramesh
- Department of Biotechnology, Deakin University, Geelong, VIC 3217, Australia
| |
Collapse
|
13
|
Pudžiuvelytė L, Drulytė E, Bernatonienė J. Nitrocellulose Based Film-Forming Gels with Cinnamon Essential Oil for Covering Surface Wounds. Polymers (Basel) 2023; 15:1057. [PMID: 36850340 PMCID: PMC9959663 DOI: 10.3390/polym15041057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Acute and chronic wounds caused by assorted reasons impact patient's quality of life. Films are one of the main types of moisture retentive dressings for wounds. To improve the healing of the wound, films must ensure there is no microorganism contamination, protect from negative environmental effects, and support optimal moisture content. The aim of this study was to formulate optimal film-forming gel compositions that would have good physico-chemical properties and be suitable for wound treatment. Nitrocellulose, castor oil, ethanol (96%), ethyl acetate, and cinnamon leaf essential oil were used to create formulations. During the study, the drying rate, adhesion, flexibility, tensile strength, cohesiveness, swelling, water vapor penetration, pH value, and morphology properties of films were examined. Results showed that optimal concentrations of nitrocellulose for film-forming gel production were 13.4% and 15%. The concentrations of nitrocellulose and cinnamon leaf essential oil impacted the films' physicochemical properties (drying rate, swelling, adhesion, flexibility, etc.). The swelling test showed that films of formulations could absorb significant amounts of simulant wound exudate. Film-forming gels and films showed no microbial contamination and were stable three months after production.
Collapse
Affiliation(s)
- Lauryna Pudžiuvelytė
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Evelina Drulytė
- Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Jurga Bernatonienė
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
14
|
Novel formulation for co-delivery of cinnamon- and cumin-loaded polymeric nanoparticles to enhance their oral bioavailability. 3 Biotech 2023; 13:63. [PMID: 36718410 PMCID: PMC9883368 DOI: 10.1007/s13205-023-03480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Nanobiotechnology has been an encouraging approach to improving the efficacy of hydrophobic bioactive compounds. The biologically active constituents present in herbal extracts are poorly absorbed, resulting in loss of bioavailability and efficacy. Hence, herbal medicine and nanotechnology are combined to overcome these limitations. The surface-to-volume ratio of nanoparticles is high and as the size is small, the functional properties are enhanced. The present study reports the synthesis of cinnamon and cumin (Ci-Cu) dual drug-loaded poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) to overcome the limitations of oral bioavailability and extend the effect of these drugs for alleviating health problems. The solvent evaporation method was adopted for the synthesis, and the as-prepared nanoparticles were characterized by Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The average size of the formed spherical Ci-Cu nanoparticles ranged between 90 and 120 nm. The encapsulation efficiency of the drug was found to be 79% ± 4.5%. XRD analysis demonstrated that cinnamon and cumin were amorphously scattered in the PLGA matrix. The FTIR bands showed no evident changes suggesting the no direct molecular interactions between the drug and the polymer. At pH 6.9, the release studies in vitro exhibited a burst initially followed by a tendency to obtain a slower steady release. The results indicated that the Cu-Ci dual drug-loaded polymeric NPs has drug release at a slower rate. The time taken for 25% release of drug in Ci-Cu-loaded PLGA NPs was twice as compared to cumin-loaded PLGA Nps, and three times compared to cinnamon-loaded PLGA NPs.
Collapse
|
15
|
Ravanfar K, Amniattalab A, Mohammadi R. Curcumin-Polyethylene Glycol Loaded on Chitosan-Gelatin Nanoparticles Enhances Burn Wound Healing in Rat. J Burn Care Res 2022; 43:1399-1409. [PMID: 35420679 DOI: 10.1093/jbcr/irac048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of the present study was to evaluate effects of curcumin-polyethylene glycol loaded on chitosan-gelatin nanoparticles (C-PEG-CGNPs) on burn wound healing in rat as a model study. Sixty healthy male White Wistar rats were randomized into four experimental groups of 15 animals each: Control group (Control) was treated with normal saline. Carrier group was treated with CGNPs-based ointment (0.05 mg/ml). Silver sulfadiazine group was treated with silver sulfadiazine 1% ointment. Treatment group was treated with C-PEG-CGNPs (0.05 mg/ml). Wound size was measured on 7, 14, and 21 days after surgery. The expression of p53, Bcl-2, caspase-3 were evaluated using reverse transcription-polymerase chain reaction and immunohistochemical staining. Reduction in wound area indicated that there was significant difference between Treatment group and other groups (P < .05). Quantitative histological and morphometric studies, and mean rank of the qualitative studies demonstrated that there was a significant difference between Treatment group and other groups (P < .05). Observations demonstrated C-PEG-CGNPs significantly shortened the inflammatory phase and accelerated the cellular proliferation. Accordingly, the animals in Treatment group revealed significantly (P < .05) higher fibroblast distribution/one mm2 of wound area and rapid reepithelialization. The mRNA levels of Bcl-2, p53, and caspase-3 were remarkably (P < .05) higher in Treatment group compared to control animals. The immunohistochemical analyses confirmed the reverse transcription-polymerase chain reaction findings. C-PEG-CGNPs offered potential advantages in burn wound healing acceleration and improvement.
Collapse
Affiliation(s)
- Kimia Ravanfar
- Department of Pathology, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Amir Amniattalab
- Department of Pathology, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Rahim Mohammadi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
16
|
Das G, Gonçalves S, Basilio Heredia J, Romano A, Jiménez-Ortega LA, Gutiérrez-Grijalva EP, Shin HS, Patra JK. Cardiovascular protective effect of cinnamon and its major bioactive constituents: An update. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
17
|
Badr MM, Badawy MEI, Taktak NEM. Preparation, characterization, and antimicrobial activity of cinnamon essential oil and cinnamaldehyde nanoemulsions. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Mai M. Badr
- Department of Environmental Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Mohamad E. I. Badawy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Nehad E. M. Taktak
- Department of Environmental Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Farag MA, Khaled SE, El Gingeehy Z, Shamma SN, Zayed A. Comparative Metabolite Profiling and Fingerprinting of Medicinal Cinnamon Bark and Its Commercial Preparations via a Multiplex Approach of GC–MS, UV, and NMR Techniques. Metabolites 2022; 12:metabo12070614. [PMID: 35888738 PMCID: PMC9322727 DOI: 10.3390/metabo12070614] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Various species of cinnamon (Cinnamomum sp.) are consumed as traditional medicine and popular spice worldwide. The current research aimed to provide the first comparative metabolomics study in nine cinnamon drugs and their different commercial preparations based on three analytical platforms, i.e., solid-phase microextraction coupled to gas chromatography–mass spectrometry method (SPME/GC–MS), nuclear magnetic resonance (NMR), and ultraviolet-visible spectrophotometry (UV/Vis) targeting its metabolome. SPME/GC–MS of cinnamon aroma compounds showed a total of 126 peaks, where (E)-cinnamaldehyde was the major volatile detected at 4.2–60.9% and 6.3–64.5% in authenticated and commercial preparations, respectively. Asides, modeling of the GC/MS dataset could relate the commercial products CP-1 and CP-3 to C. cassia attributed to their higher coumarin and low (E)-cinnamaldehyde content. In contrast, NMR fingerprinting identified (E)-methoxy cinnamaldehyde and coumarin as alternative markers for C. verum and C. iners, respectively. Additionally, quantitative NMR (qNMR) standardized cinnamon extracts based on major metabolites. UV/Vis showed to be of low discrimination power, but its orthogonal projections to latent structures discriminant analysis (OPLS-DA) S-plot showed that C. iners was more abundant in cinnamic acid compared to other samples. Results of this study provide potential insights into cinnamon drugs QC analysis and identify alternative markers for their discrimination.
Collapse
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
- Correspondence:
| | - Sally E. Khaled
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Zeina El Gingeehy
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Samir Nabhan Shamma
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt;
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta 31527, Egypt;
| |
Collapse
|
19
|
Advances in Biosynthesis and Pharmacological Effects of Cinnamomum camphora (L.) Presl Essential Oil. FORESTS 2022. [DOI: 10.3390/f13071020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cinnamomum camphora (L.) Presl essential oil (CCEO) is a volatile oil with aroma and is extracted from various tissues of Cinnamomum camphora. It is traditionally used as a spice, preservative, as an anti-inflammatory and for sterilization. Terpenoids are the main active components in CCEO. Based on currently available research, considerable effort is still needed to study the biosynthesis and regulation of terpenoids in CCEO. In this review, the research progress related to terpenoid biosynthesis and bioactivity in CCEO in recent years is summarized, with the data compiled and presented mainly from online resources such as PubMed, Scopus and CNKI in China up to May 2022. The research advances related to key enzymes in the terpenoid biosynthesis pathway are mainly discussed. Previous studies have isolated some genes encoding key enzymes involved in terpenoid biosynthesis; however, among these genes, only a few TPS genes have been verified to catalyze the production of terpenoid synthases at the protein level. Most genes encoding key enzymes have been cloned and isolated, but no transgenic experiments have been carried out to verify gene function. In-depth study of the biosynthesis of terpenoids in CCEO may contribute to a better understanding of the differential accumulation of terpenoids in different types of C. camphora and provide reference for improving terpenoid content in CCEO.
Collapse
|
20
|
Hajati Ziabari A, Asadi Heris M, Mohammad Doodmani S, Jahandideh A, Koorehpaz K, Mohammadi R. Cinnamon Nanoparticles Loaded on Chitosan- Gelatin Nanoparticles Enhanced Burn Wound Healing in Diabetic Foot Ulcers in Rats. INT J LOW EXTR WOUND 2022:15347346221101245. [PMID: 35658599 DOI: 10.1177/15347346221101245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this work was to investigate impact of Cinnamon nanoparticles loaded on chitosan- gelatin nanoparticles on burn wound healing in diabetic foot ulcers in rat. We included sixty male rats into four groups. There were 15 animals in each group as follow: DFU group: We treated the burn wounds with normal saline (0.1 mL). DFU/SSD group: In this group, the wounds were with silver sulfadiazine 1% ointment. DFU/CGNP: In this group, the burn wounds were treated with chitosan-gelatin nanoparticles based ointment (0.05 mg/mL). DFU/CNP-CGNP group: In this group, the wounds were treated with CN-CGNPs (0.05 mg/mL). Wound area reduction measurements, biochemistry, histomorphometrical studies, hydroxyproline levels and reverse transcription polymerase chain reaction for caspase 3, Bcl-2, and p53 showed significant difference between rats in DFU/CNP-CGNP group in comparison with other groups (P < .05). Accelerated repair of the wounds in DFU/CNP-CGNP group showed that local application of Cinnamon nanoparticles loaded on chitosan- gelatin nanoparticles could be taken into consideration in burn wound healing in diabetic foot ulcers.
Collapse
Affiliation(s)
- Amirreza Hajati Ziabari
- Department of Clinical Sciences, Faculty of Specialized Veterinary Sciences, Science and Research Branch, 125643Islamic Azad University, Tehran, Iran
| | - Mostafa Asadi Heris
- Department of Clinical Sciences, Faculty of Specialized Veterinary Sciences, Science and Research Branch, 125643Islamic Azad University, Tehran, Iran
| | - Seyed Mohammad Doodmani
- Department of Clinical Sciences, Faculty of Specialized Veterinary Sciences, Science and Research Branch, 125643Islamic Azad University, Tehran, Iran
| | - Alireza Jahandideh
- Department of Clinical Sciences, Faculty of Specialized Veterinary Sciences, Science and Research Branch, 125643Islamic Azad University, Tehran, Iran
| | - Kave Koorehpaz
- Department of Theriogenology, Faculty of Veterinary Medicine, 117045Urmia University, Urmia, Iran
| | - Rahim Mohammadi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, 117045Urmia University, Urmia, Iran
| |
Collapse
|
21
|
Ribeiro JS, Bordini EAF, Pereira GKR, Polasani RR, Squarize CH, Kantorski KZ, Valandro LF, Bottino MC. Novel cinnamon-laden nanofibers as a potential antifungal coating for poly(methyl methacrylate) denture base materials. Clin Oral Investig 2022; 26:3697-3706. [PMID: 35028732 DOI: 10.1007/s00784-021-04341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To modify the surface of denture base material by coating it with cinnamon-laden nanofibers to reduce Candida albicans (C. albicans) adhesion and/or proliferation. MATERIALS AND METHODS Heat-cured poly(methyl methacrylate) (PMMA) specimens were processed and coated, or not, with cinnamon-laden polymeric nanofibers (20 or 40 wt.% of cinnamon relative to the total polymer weight). Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) analyses of the nanofibers were performed. Antifungal activity was assessed through agar diffusion and colony-forming unit (CFU/mL) assays. Representative SEM morphological analysis was carried out to observe the presence/absence of C. albicans on the fibers. Alamar blue assay was used to determine cell toxicity. Analysis of variance and the Tukey's test were used to analyze the data (α = 0.05). RESULTS SEM imaging revealed nanofibers with adequate (i.e., bead-free) morphological characteristics and uniform microstructure. FTIR confirmed cinnamon incorporation. The cinnamon-laden nanofibers led to growth inhibition of C. albicans. Viable fungal counts support a significant reduction on CFU/mL also directly related to cinnamon concentration (40 wt.%: mean log 6.17 CFU/mL < 20 wt.%: mean log 7.12 CFU/mL), which agrees with the SEM images. Cinnamon-laden nanofibers at 40 wt.% led to increased cell death. CONCLUSIONS The deposition of 20 wt.% cinnamon-laden nanofibers onto PMMA surfaces led to a significant reduction of the adhesive and/or proliferative ability of C. albicans, while maintaining epithelial cells' viability. CLINICAL RELEVANCE The high recurrence rates of denture stomatitis are associated with patient non-adherence to treatments and contaminated prostheses use. Here, we provide the non-patients' cooperation sensible method, which possesses antifungal action, hence improving treatment effectiveness.
Collapse
Affiliation(s)
- Juliana Silva Ribeiro
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 N. University (Room 5223), Ann Arbor, MI, 48109, USA.,Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Ester Alves Ferreira Bordini
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 N. University (Room 5223), Ann Arbor, MI, 48109, USA.,Department of Physiology and Pathology, University Estadual Paulista - UNESP, Araraquara, SP, Brazil
| | - Gabriel Kalil Rocha Pereira
- Post-Graduate Program in Oral Science, Faculty of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande Do Sul State, Brazil
| | - Rohitha Rao Polasani
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 N. University (Room 5223), Ann Arbor, MI, 48109, USA
| | - Cristiane Helena Squarize
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Karla Zanini Kantorski
- Post-Graduate Program in Oral Science, Faculty of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande Do Sul State, Brazil
| | - Luiz Felipe Valandro
- Post-Graduate Program in Oral Science, Faculty of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande Do Sul State, Brazil
| | - Marco Cícero Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 N. University (Room 5223), Ann Arbor, MI, 48109, USA.
| |
Collapse
|
22
|
Accelerative Effect of Cinnamon Nanoparticles as well as HAMLET on Healing of Wounds Infected with MRSA in Diabetic Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2021:9984540. [PMID: 34993250 PMCID: PMC8727163 DOI: 10.1155/2021/9984540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/12/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
Objective The aim of the present study was to investigate the effect of cinnamon nanoparticles (CNPs) on healing of wounds infected with methicillin-resistant Staphylococcus aurous with human alpha-lactalbumin made lethal to tumor cells sensitization in diabetic rats. Methods We included fifty diabetic male rats and divided them into 5 groups. There were 10 rats in each group as follows: CONTROL group: we did not infect the CONTROL group. The wound was only covered with sterile saline 0.9% solution (0.1 mL). INFCTD group: in this group, the wounds were infected with MRSA and covered with sterile saline 0.9% solution (0.1 mL). INFCTD-HMLT group: in this group, the wounds were infected with MRSA and HAMLET (100 μg). INFCTD-CNM group: in this group, the wounds were infected with MRSA and 0.1 mL CNPs (1 mg/mL) were applied topically to wounds. INFCTD-HMLT-CNM group: in this group, the wounds were infected with MRSA, HAMLET (100 μg), and 0.1 mL CNPs (1 mg/mL). Results Bacteriology, wound area reduction measurements, biochemistry, histomorphometrical studies, hydroxyproline levels, and reverse transcription polymerase chain reaction for caspase-3, Bcl-2, and p53 showed significant difference between rats in the INFCTD-HMT-CNM group in comparison with other groups (P < 0.05). Conclusions Accelerated healing of diabetic wounds infected with MRSA showed that local application of cinnamon nanoparticles along with HAMLET sensitization on S. aureus-infected wound could be taken into consideration.
Collapse
|
23
|
Antasionasti I, Datu OS, Lestari US, Abdullah SS, Jayanto I. Correlation Analysis of Antioxidant Activities with Tannin, Total Flavonoid, and Total Phenolic Contents of Nutmeg (Myristica fragrans Houtt) Fruit Precipitated by Egg white. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i4.2497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The nutmeg (Myristica fragrans) flesh extract has a strong antioxidant activity. Therefore, M. fragrans flesh can be developed for functional drinks which are sources rich in antioxidants good for the prevention and treatment of diseases such as cancer and cardiovascular diseases. However, the tannins' content can cause a bitter and sour taste. Therefore, the tannins content should be reduced by the addition of egg white. The purpose of this study is to find out the comparison of antioxidant activity between a combination of M. fragrans flesh extract with various concentrations of egg white and to correlate its antioxidant activities with tannin, total flavonoid, and total phenolic contents. The antioxidant activities were conducted on M. fragrans flesh extract by using DPPH and ABTS radicals. Tannin, total flavonoid, and total phenolic contents from M. fragrans flesh extract were also tested. The M. fragrans flesh extracts without addition egg white have a strong antioxidant in scavenging the stable free radical ABTS (89.980±0.480 µg/mL) and intermediate antioxidant in scavenging the stable free radical DPPH (105.669±0.102 µg/mL). It is followed accordingly by tannin, total flavonoid, and total phenolic contents, namely 14.034±0.100 %w/w TAE, 26.929±0.129 %w/w QE, and 53.164±0.129 %w/w GAE, respectively. Correlation of tannin, total flavonoid, and total phenolic contents, which inhibited DPPH and ABTS radicals had R2 values of about 89.23-97.63%. It showed that antioxidant activity is strongly influenced by the tannin, total flavonoid, and total phenolic contents. Therefore, precipitation from the tannin-protein bond caused antioxidant activities were decreased.
Collapse
|
24
|
Shang C, Lin H, Fang X, Wang Y, Jiang Z, Qu Y, Xiang M, Shen Z, Xin L, Lu Y, Gao J, Cui X. Beneficial effects of cinnamon and its extracts in the management of cardiovascular diseases and diabetes. Food Funct 2021; 12:12194-12220. [PMID: 34752593 DOI: 10.1039/d1fo01935j] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases (CVDs) and diabetes are the leading causes of death worldwide, which underlines the urgent necessity to develop new pharmacotherapies. Cinnamon has been an eminent component of spice and traditional Chinese medicine for thousands of years. Numerous lines of findings have elucidated that cinnamon has beneficial effects against CVDs in various ways, including endothelium protection, regulation of immune response, lowering blood lipids, antioxidative properties, anti-inflammatory properties, suppression of vascular smooth muscle cell (VSMC) growth and mobilization, repression of platelet activity and thrombosis and inhibition of angiogenesis. Furthermore, emerging evidence has established that cinnamon improves diabetes, a crucial risk factor for CVDs, by enhancing insulin sensitivity and insulin secretion; regulating the enzyme activity involved in glucose; regulating glucose metabolism in the liver, adipose tissue and muscle; ameliorating oxidative stress and inflammation to protect islet cells; and improving diabetes complications. In this review, we summarized the mechanisms by which cinnamon regulates CVDs and diabetes in order to provide a theoretical basis for the further clinical application of cinnamon.
Collapse
Affiliation(s)
- Chang Shang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hongchen Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuqin Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuling Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhilin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Yi Qu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mi Xiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Zihuan Shen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Laiyun Xin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,First Clinical Medical School, Shandong University of Chinese Medicine, Shandong, 250355, China
| | - Yingdong Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Jialiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xiangning Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
25
|
Cinnamon and its possible impact on COVID-19: The viewpoint of traditional and conventional medicine. Biomed Pharmacother 2021; 143:112221. [PMID: 34563952 PMCID: PMC8452493 DOI: 10.1016/j.biopha.2021.112221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
The COVID-19 global epidemic caused by coronavirus has affected the health and other aspects of life for more than one year. Despite the current pharmacotherapies, there is still no specific treatment, and studies are in progress to find a proper therapy with high efficacy and low side effects. In this way, Traditional Persian Medicine (TPM), due to its holistic view, can provide recommendations for the prevention and treatment of new diseases such as COVID-19. The muco-obstruction of the airway, which occurs in SARS-CoV-2, has similar features in TPM textbooks that can lead us to new treatment approaches. Based on TPM and pharmacological studies, Cinnamomum verum (Darchini)'s potential effective functions can contribute to SARS-CoV-2 infection treatment and has been known to be effective in corona disease in Public beliefs. From the viewpoint of TPM theories, Cinnamon can be effective in SARS-CoV-2 improvement and treatment through its anti-obstructive, diuretic, tonic and antidote effects. In addition, there is pharmacological evidence on anti-viral, anti-inflammatory, antioxidant, organ-o-protective and anti-depression effects of Cinnamon that are in line with the therapeutic functions mentioned in TPM.Overall, Cinnamon and its ingredients can be recommended for SARS-CoV2 management due to multi-targeting therapies. This review provides basic information for future studies on this drug's effectiveness in preventing and treating COVID-19 and similar diseases.
Collapse
|
26
|
Encapsulation of Baicalein in Cinnamon Essential Oil Nanoemulsion for Enhanced Anticancer Efficacy Against MDA-MB-231 Cells. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00900-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Guo Y, Pizzol R, Gabbanini S, Baschieri A, Amorati R, Valgimigli L. Absolute Antioxidant Activity of Five Phenol-Rich Essential Oils. Molecules 2021; 26:5237. [PMID: 34500670 PMCID: PMC8434318 DOI: 10.3390/molecules26175237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Essential oils (EOs) have promising antioxidant activities which are gaining interest as natural alternatives to synthetic antioxidants in the food and cosmetic industries. However, quantitative data on chain-breaking activity and on the kinetics of peroxyl radical trapping are missing. Five phenol-rich EOs were analyzed by GC-MS and studied by oxygen-uptake kinetics in inhibited controlled autoxidations of reference substrates (cumene and squalene). Terpene-rich Thymus vulgaris (thymol 4%; carvacrol 33.9%), Origanum vulgare, (thymol 0.4%; carvacrol 66.2%) and Satureja hortensis, (thymol 1.7%; carvacrol 46.6%), had apparent kinh (30 °C, PhCl) of (1.5 ± 0.3) × 104, (1.3 ± 0.1) × 104 and (1.1 ± 0.3) × 104 M-1s-1, respectively, while phenylpropanoid-rich Eugenia caryophyllus (eugenol 80.8%) and Cinnamomum zeylanicum, (eugenol 81.4%) showed apparent kinh (30 °C, PhCl) of (5.0 ± 0.1) × 103 and (4.9 ± 0.3) × 103 M-1s-1, respectively. All EOs already granted good antioxidant protection of cumene at a concentration of 1 ppm (1 mg/L), the duration being proportional to their phenolic content, which dictated their antioxidant behavior. They also afforded excellent protection of squalene after adjusting their concentration (100 mg/L) to account for the much higher oxidizability of this substrate. All investigated EOs had kinh comparable to synthetic butylated hydroxytoluene (BHT) were are eligible to replace it in the protection of food or cosmetic products.
Collapse
Affiliation(s)
- Yafang Guo
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (Y.G.); (R.P.); (R.A.)
| | - Romeo Pizzol
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (Y.G.); (R.P.); (R.A.)
| | - Simone Gabbanini
- Research & Development—BeC s.r.l., Via C. Monteverdi 49, 47122 Forlì, Italy;
| | - Andrea Baschieri
- The Institute of Organic Synthesis and Photoreactivity, Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy;
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (Y.G.); (R.P.); (R.A.)
| | - Luca Valgimigli
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (Y.G.); (R.P.); (R.A.)
| |
Collapse
|
28
|
Abstract
Cinnamon is an unusual tropical plant belonging to the Lauraceae family. It has been used for hundreds of years as a flavor additive, but it has also been used in natural Eastern medicine. Cinnamon extracts are vital oils that contain biologically active compounds, such as cinnamon aldehyde, cinnamic alcohol, cinnamic acid, and cinnamate. It has antioxidant, anti-inflammatory, and antibacterial properties and is used to treat diseases such as diabetes and cardiovascular disease. In folk medicine, cinnamon species have been used as medicine for respiratory and digestive disorders. Their potential for prophylactic and therapeutic use in Parkinson’s and Alzheimer’s disease has also been discovered. This review summarizes the available isolation methods and analytical techniques used to identify biologically active compounds present in cinnamon bark and leaves and the influence of these compounds in the treatment of disorders.
Collapse
|
29
|
Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020; 25:molecules25204711. [PMID: 33066611 PMCID: PMC7587387 DOI: 10.3390/molecules25204711] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
The interest in using natural antimicrobials instead of chemical preservatives in food products has been increasing in recent years. In regard to this, essential oils-natural and liquid secondary plant metabolites-are gaining importance for their use in the protection of foods, since they are accepted as safe and healthy. Although research studies indicate that the antibacterial and antioxidant activities of essential oils (EOs) are more common compared to other biological activities, specific concerns have led scientists to investigate the areas that are still in need of research. To the best of our knowledge, there is no review paper in which antifungal and especially antimycotoxigenic effects are compiled. Further, the low stability of essential oils under environmental conditions such as temperature and light has forced scientists to develop and use recent approaches such as encapsulation, coating, use in edible films, etc. This review provides an overview of the current literature on essential oils mainly on antifungal and antimycotoxigenic but also their antibacterial and antioxidant activities. Additionally, the recent applications of EOs including encapsulation, edible coatings, and active packaging are outlined.
Collapse
|
30
|
Preparation and Characterization of Cinnamomum Essential Oil–Chitosan Nanocomposites: Physical, Structural, and Antioxidant Activities. Processes (Basel) 2020. [DOI: 10.3390/pr8070834] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, different amounts of cinnamomum essential oil (CEO) were encapsulated in chitosan nanoparticles (NPs) (CS-NPs) through oil-in-water emulsification and ionic gelation. An ultraviolet-visible spectrophotometer, Fourier-transform infrared spectroscopy, synchronous thermal analysis, and X-ray diffraction were employed to analyze the CEO encapsulation. As observed by field-emission scanning electron microscopy, NP size analysis and zeta potential, the prepared CS-NPs, containing CEO (CS-CEO), were spherical with uniformly distributed sizes (diameters: 190–340 nm). The ranges of encapsulation efficiency (EE) and loading capacity (LC) were 4.6–32.9% and 0.9–10.4%, with variations in the starting weight ratio of CEO to CS from 0.11 to 0.53 (w/w). It was also found that the antioxidant activity of the CS-NPs loaded with CEO increased as the EE increased. The active ingredients of the CEO were prevented from being volatilized, significantly improving the chemical stability. The antioxidant activity of CS-CEO was higher than that of the free CEO. These results indicate the promising potential of CS-CEO as an antioxidant for food processing, and packaging applications.
Collapse
|
31
|
Diniz do Nascimento L, Barbosa de Moraes AA, Santana da Costa K, Pereira Galúcio JM, Taube PS, Leal Costa CM, Neves Cruz J, de Aguiar Andrade EH, Guerreiro de Faria LJ. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020; 10:biom10070988. [PMID: 32630297 PMCID: PMC7407208 DOI: 10.3390/biom10070988] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Spice plants have a great influence on world history. For centuries, different civilizations have used them to condiment the foods of kings and nobles and applied them as embalming preservatives, perfumes, cosmetics, and medicines in different regions of the world. In general, these plants have formed the basis of traditional medicine and some of their derived substances have been utilized to treat different human diseases. Essential oils (EOs) obtained from these plants have been also used as therapeutic agents and have shown supportive uses in remedial practices. The discovery and development of bioactive compounds from these natural products, based on their traditional uses, play an important role in developing the scientific evidence of their potential pharmaceutical, cosmetic, and food applications. In the present review, using recent studies, we exhibit a general overview of the main aspects related to the importance of spice plants widely used in traditional medicine: Cinnamomum zeylanicum (true cinnamon), Mentha piperita (peppermint), Ocimum basilicum (basil), Origanum vulgare (oregano), Piper nigrum (black pepper), Rosmarinus officinalis (rosemary), and Thymus vulgaris (thyme); and we discuss new findings of the bioactive compounds obtained from their EOs, their potential applications, as well as their molecular mechanisms of action, focusing on their antioxidant activity. We also exhibit the main in vitro methods applied to determine the antioxidant activities of these natural products.
Collapse
Affiliation(s)
- Lidiane Diniz do Nascimento
- Programa de Pós-graduação em Engenharia de Recursos Naturais da Amazônia, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075110, Brazil;
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Brazil; (A.A.B.d.M.); (J.N.C.); (E.H.d.A.A.)
- Correspondence: or (L.D.d.N.); (K.S.d.C.); Tel.: +55-91-3217-6086 (L.D.d.N.); +55-93-2101-6771 (K.S.d.C.)
| | - Angelo Antônio Barbosa de Moraes
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Brazil; (A.A.B.d.M.); (J.N.C.); (E.H.d.A.A.)
| | - Kauê Santana da Costa
- Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, Brazil; (J.M.P.G.); (P.S.T.)
- Correspondence: or (L.D.d.N.); (K.S.d.C.); Tel.: +55-91-3217-6086 (L.D.d.N.); +55-93-2101-6771 (K.S.d.C.)
| | - João Marcos Pereira Galúcio
- Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, Brazil; (J.M.P.G.); (P.S.T.)
| | - Paulo Sérgio Taube
- Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, Brazil; (J.M.P.G.); (P.S.T.)
| | - Cristiane Maria Leal Costa
- Programa de Pós-graduação em Engenharia Química, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075110, Brazil;
| | - Jorddy Neves Cruz
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Brazil; (A.A.B.d.M.); (J.N.C.); (E.H.d.A.A.)
| | - Eloisa Helena de Aguiar Andrade
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Brazil; (A.A.B.d.M.); (J.N.C.); (E.H.d.A.A.)
| | - Lênio José Guerreiro de Faria
- Programa de Pós-graduação em Engenharia de Recursos Naturais da Amazônia, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075110, Brazil;
- Programa de Pós-graduação em Engenharia Química, Instituto de Tecnologia, Universidade Federal do Pará, Belém 66075110, Brazil;
| |
Collapse
|
32
|
Wang J, Su B, Jiang H, Cui N, Yu Z, Yang Y, Sun Y. Traditional uses, phytochemistry and pharmacological activities of the genus Cinnamomum (Lauraceae): A review. Fitoterapia 2020; 146:104675. [PMID: 32561421 DOI: 10.1016/j.fitote.2020.104675] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/13/2020] [Accepted: 06/10/2020] [Indexed: 01/20/2023]
Abstract
Species of Cinnamomum exhibit excellent economic and medicinal value, and have found use in traditional medicine, are consumed as a spice, as well as being cultivated as landscape plants. Investigations into the pharmacological activities of the genus Cinnamomum revealed that it manifested a wide range of pharmacological properties including antimicrobial, antioxidant, anti-inflammatory and analgesic, antitumor, anti-diabetic and anti-obesity, immunoregulation, insecticidal and acaricidal, cardiovascular protective, cytoprotective, as well as neuroprotective properties both in vivo and in vitro. In the past five years, approximately 306 chemical constituents have been separated and identified from the genus Cinnamomum, covering 111 terpenes, 44 phenylpropanoids, 51 lignans, 17 flavonoids, 53 aromatic compounds, 17 aliphatic compounds, four coumarins, two steroids. This article highlights the traditional uses, phytochemistry and pharmacological properties of the few studied taxa of Cinnamomum through searching for the pieces of literature both at home and abroad, which would provide a reference for the pharmaceutical research and clinical application of this genus.
Collapse
Affiliation(s)
- Jun Wang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Benzheng Su
- Shandong Academy of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Haiqiang Jiang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China.
| | - Ning Cui
- Shandong Academy of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Zongyuan Yu
- Shandong Academy of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yuhan Yang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Yu Sun
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| |
Collapse
|