1
|
Oliveira LA, Sanches MA, Segundo WOPF, Santiago PAL, Lima RQ, Cortez ACA, Souza ÉS, Lima MP, Lima ES, Koolen HHF, Dufossé L, Souza JVB. Exploring colorant production by amazonian filamentous fungi: Stability and applications. J Basic Microbiol 2024; 64:e2300444. [PMID: 38051942 DOI: 10.1002/jobm.202300444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 12/07/2023]
Abstract
The aim of this study was to investigate the production, stability and applicability of colorants produced by filamentous fungi isolated from soil samples from the Amazon. Initially, the isolates were evaluated in a screening for the production of colorants. The influences of cultivation and nutritional conditions on the production of colorants by fungal isolates were investigated. The colorants produced by selected fungal isolates were chemically characterized using the Liquid Chromatography-Mass Spectrometry technique. The antimicrobial and cytotoxic activities, stability evaluation and applicability of the colorants were investigated. As results, we observed that the isolates Penicillium sclerotiorum P3SO224, Clonostachys rosea P2SO329 and Penicillium gravinicasei P3SO332 stood out since they produced the most intense colorants. Compounds produced by Penicillium sclerotiorum P3SO224 and Clonostachys rosea P2SO329 were identified as sclerotiorin and penicillic acid. The colorant fraction (EtOAc) produced by these species has antimicrobial activity, stability at temperature and at different pHs, stability when exposure to light and UV, and when exposed to different concentrations of salts, as well as being nontoxic and having the ability to dye fabrics and be used as a pigment in creams and soap. Considering the results found in this study, it was concluded that fungi from the soil in the Amazon have the potential to produce colorants with applications in the textile and pharmaceutical industries.
Collapse
Affiliation(s)
- Luciana A Oliveira
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Michele A Sanches
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Walter O P F Segundo
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Paulo A L Santiago
- Programa de Pós-graduação em Química, Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil
| | - Rodrigo Q Lima
- Centro Universitário do Norte-UNINORTE, Manaus, Amazonas, Brazil
| | - Ana C A Cortez
- Laboratório de Micologia, Instituto Nacional de Pesquisas da Amazônia-INPA, Manaus, Amazonas, Brazil
| | - Érica S Souza
- Escola Superior de Tecnologia, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Maria P Lima
- Departamento de Produtos Naturais, Instituto Nacional de Pesquisas da Amazônia-INPA, Manaus, Amazonas, Brazil
| | - Emerson S Lima
- Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil
| | - Hector H F Koolen
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products (CHEMBIOPRO), ESIROI Agroalimentaire, Université de La Réunion, Saint-Denis, France
| | - João V B Souza
- Laboratório de Micologia, Instituto Nacional de Pesquisas da Amazônia-INPA, Manaus, Amazonas, Brazil
| |
Collapse
|
2
|
Ding YY, Zhou H, Peng-Deng, Zhang BQ, Zhang ZJ, Wang GH, Zhang SY, Wu ZR, Wang YR, Liu YQ. Antimicrobial activity of natural and semi-synthetic carbazole alkaloids. Eur J Med Chem 2023; 259:115627. [PMID: 37467619 DOI: 10.1016/j.ejmech.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Since the first natural carbazole alkaloid, murrayanine, was isolated from Mwraya Spreng, carbazole alkaloid derivatives have been widely concerned for their anti-tumor, anti-viral and anti-bacterial activities. In recent decades, a growing body of data suggest that carbazole alkaloids and their derivatives have different biological activities. This is the first comprehensive description of the antifungal and antibacterial activities of carbazole alkaloids in the past decade (2012-2022), including natural and partially synthesized carbazole alkaloids in the past decade. Finally, the challenges and problems faced by this kind of alkaloids are summarized. This paper will be helpful for further exploration of this kind of alkaloids.
Collapse
Affiliation(s)
- Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Peng-Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Levorato-Vinche AD, Melhem MDSC, Bonfietti LX, de-la-Cruz-Chacón I, Boaro CSF, Fabro AT, Ferreira G, da Silva JDF, Dos Santos DC, Pereira BAS, Marçon C, Maza L, de Carvalho LR, Mendes RP. Antifungal activity of liriodenine on clinical strains of Cryptococcus neoformans and Cryptococcus gattii species complexes. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20220006. [PMID: 36118844 PMCID: PMC9469771 DOI: 10.1590/1678-9199-jvatitd-2022-0006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Cryptoccocal meningitis continues to present high incidence among AIDS patients. The treatment of choice is the synergistic combination of flucytosine (5-FC) with amphotericin B deoxycholate (AmBd) or its lipid formulations. However, 5-FC is unavailable in many countries and AmB demands hospitalization. The combination of AmB with the fungistatic fluconazole (FLC) or the use of high FLC daily doses alone became the choice. Nonetheless, sterilization of cerebrospinal fluid is delayed with FLC monotherapy, mainly with high fungal burden. These findings suggest the search for new antifungal compounds, such as liriodenine. Methods: Liriodenine antifungal activity was evaluated by three procedures: determining the minimum inhibitory concentration (MIC) on 30 strains of the Cryptococcus neoformans (C. neoformans) complex and 30 of the Cryptococcus gattii (C. gattii) complex, using EUCAST methodology and amphotericin B deoxycholate as control; performing the time-kill methodology in two strains of the C. neoformans complex and one of the C. gattii complex; and injury to cryptococcal cells, evaluated by transmission electron microscopy (TEM). Liriodenine absorption and safety at 0.75 and 1.50 mg.kg-1 doses were evaluated in BALB/c mice. Results: Liriodenine MICs ranged from 3.9 to 62.5 μg.mL-1 for both species complexes, with no differences between them. Time-kill methodology confirmed its concentration-dependent fungicidal effect, killing all the strains below the limit of detection (33 CFU.mL-1) at the highest liriodenine concentration (32-fold MIC), with predominant activity during the first 48 hours. Liriodenine induced severe Cryptococcus alterations - cytoplasm with intense rarefaction and/or degradation, injury of organelles, and presence of vacuoles. Liriodenine was better absorbed at lower doses, with no histopathological alterations on the digestive tract. Conclusion: The fungicidal activity confirmed by time-kill methodology, the intense Cryptococcus injury observed by TEM, the absorption after gavage administration, and the safety at the tested doses indicate that the liriodenine molecule is a promising drug lead for development of anticryptococcal agents.
Collapse
Affiliation(s)
- Adriele Dandara Levorato-Vinche
- Department of Infectology, Dermatology, Diagnostic Imaging and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcia de Souza Carvalho Melhem
- Mycology Unit, Adolfo Lutz Institute, Public Health Reference Laboratory, Secretariat of Health of the State of São Paulo, São Paulo, SP, Brazil.,Medical School, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Lucas Xavier Bonfietti
- Mycology Unit, Adolfo Lutz Institute, Public Health Reference Laboratory, Secretariat of Health of the State of São Paulo, São Paulo, SP, Brazil
| | - Iván de-la-Cruz-Chacón
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutierrez, Chiapas, Mexico
| | - Carmen Sílvia Fernandes Boaro
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Botucatu Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Alexandre Todorovic Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Gisela Ferreira
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Botucatu Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Julhiany de Fátima da Silva
- Department of Infectology, Dermatology, Diagnostic Imaging and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Daniela Carvalho Dos Santos
- Department of Structural and Functional Biology, Botucatu Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Beatriz Aparecida Soares Pereira
- Department of Infectology, Dermatology, Diagnostic Imaging and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Camila Marçon
- Department of Infectology, Dermatology, Diagnostic Imaging and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Lariza Maza
- Department of Infectology, Dermatology, Diagnostic Imaging and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Lídia Raquel de Carvalho
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Botucatu Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rinaldo Poncio Mendes
- Department of Infectology, Dermatology, Diagnostic Imaging and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
4
|
Sulaiman M, Jannat K, Nissapatorn V, Rahmatullah M, Paul AK, de Lourdes Pereira M, Rajagopal M, Suleiman M, Butler MS, Break MKB, Weber JF, Wilairatana P, Wiart C. Antibacterial and Antifungal Alkaloids from Asian Angiosperms: Distribution, Mechanisms of Action, Structure-Activity, and Clinical Potentials. Antibiotics (Basel) 2022; 11:1146. [PMID: 36139926 PMCID: PMC9495154 DOI: 10.3390/antibiotics11091146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of multidrug-resistant bacteria and fungi requires the development of antibiotics and antifungal agents. This review identified natural products isolated from Asian angiosperms with antibacterial and/or antifungal activities and analyzed their distribution, molecular weights, solubility, and modes of action. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and a library search from 1979 to 2022. One hundred and forty-one antibacterial and/or antifungal alkaloids were identified during this period, mainly from basal angiosperms. The most active alkaloids are mainly planar, amphiphilic, with a molecular mass between 200 and 400 g/mol, and a polar surface area of about 50 Å2, and target DNA and/or topoisomerase as well as the cytoplasmic membrane. 8-Acetylnorchelerythrine, cryptolepine, 8-hydroxydihydrochelerythrine, 6-methoxydihydrosanguinarine, 2'-nortiliacorinine, pendulamine A and B, rhetsisine, sampangine, tiliacorine, tryptanthrin, tylophorinine, vallesamine, and viroallosecurinine yielded MIC ≤ 1 µg/mL and are candidates for the development of lead molecules.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Monica Suleiman
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | | | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81411, Saudi Arabia
| | - Jean-Frédéric Weber
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR ŒNOLOGIE, EA 4577, USC 1366, ISVV, Université de Bordeaux, 210 Chemin de Leysotte, 33882 Villenave d’Ornon, France
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
5
|
Vidkjær NH, Schmidt S, Hu H, Bodawatta KH, Beemelmanns C, Poulsen M. Species- and Caste-Specific Gut Metabolomes in Fungus-Farming Termites. Metabolites 2021; 11:metabo11120839. [PMID: 34940597 PMCID: PMC8707012 DOI: 10.3390/metabo11120839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Fungus-farming termites host gut microbial communities that contribute to the pre-digestion of plant biomass for manuring the fungal mutualist, and potentially to the production of defensive compounds that suppress antagonists. Termite colonies are characterized by complex division of labor and differences in diet between termite size (minor and major) and morphological (worker and soldier) castes, and this extends to the composition of their gut microbial communities. We hypothesized that gut metabolomes should mirror these differences and tested this through untargeted LC-MS/MS analyses of three South African species of fungus-farming termites. We found distinct metabolomes between species and across castes, especially between soldiers and workers. Primary metabolites dominate the metabolomes and the high number of overlapping features with the mutualistic fungus and plant material show distinct impacts of diet and the environment. The identification of a few bioactive compounds of likely microbial origin underlines the potential for compound discovery among the many unannotated features. Our untargeted approach provides a first glimpse into the complex gut metabolomes and our dereplication suggests the presence of bioactive compounds with potential defensive roles to be targeted in future studies.
Collapse
Affiliation(s)
- Nanna Hjort Vidkjær
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; (S.S.); (H.H.)
- Correspondence: (N.H.V.); (M.P.); Tel.: +45-353-324-41 (N.H.V.); +45-353-303-77 (M.P.)
| | - Suzanne Schmidt
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; (S.S.); (H.H.)
| | - Haofu Hu
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; (S.S.); (H.H.)
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark;
| | - Kasun H. Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark;
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany;
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; (S.S.); (H.H.)
- Correspondence: (N.H.V.); (M.P.); Tel.: +45-353-324-41 (N.H.V.); +45-353-303-77 (M.P.)
| |
Collapse
|
6
|
New insight of red seaweed derived Callophycin A as an alternative strategy to treat drug resistance vaginal candidiasis. Bioorg Chem 2020; 104:104256. [PMID: 32942217 DOI: 10.1016/j.bioorg.2020.104256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/07/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022]
Abstract
Marine natural products are recognised as one among the major contributors of several important biological functions. The arguments has made to utilization of natural products against different kinds of infectious diseases. In the present study, Callophycin A was successfully prepared and its anti-candidal activity was evaluated through in-vitro and in-vivo methods. The in-vitro results revealed that, Callophycin A significantly inhibits the azole resistant and sensitive C. albicans. Further, in-vivo animal experiments have shown the effective reduction in CFU of C. albicans from its beginning day of the treatment as compared to the disease control group. At the end of Callophycin A administration, there was a decrease in inflammatory response and immune molecules such as IL-6, IL-12, IL-17, IL-22, TNF-α, macrophages, CD4 and CD8 cells were observed. Whereas the animals in the disease control group expressed all the parameters with the elevated level as compared to the control group. There are no hematological abnormalities such as neutropenia, lymphocytosis and eosinophilia was observed in any animal groups except the disease control group. Finally, the evidence based prediction of anti-candidal efficacious of Callophycin A was demonstrated.
Collapse
|