1
|
Tian Y, Fang J, Zeng F, Chen Y, Pei Y, Gu F, Ding C, Niu G, Gu B. The role of hypoxic mesenchymal stem cells in tumor immunity. Int Immunopharmacol 2022; 112:109172. [PMID: 36087506 DOI: 10.1016/j.intimp.2022.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/06/2022] [Accepted: 08/14/2022] [Indexed: 11/09/2022]
Abstract
The emerging evidence has shown that mesenchymal stem cells (MSCs) not only exert a significant role in the occurrence and development of tumors, but also have immunosuppressive potential in tumor immunity. Hypoxia is a sign of solid tumors, but how functions of hypoxic MSCs alter in the tumor microenvironment (TME) remains less well and comprehensively described. Herein, we mostly describe and investigate recent advances in our comprehension of the emerging effects of different tissue derived MSCs in hypoxia condition on tumor progression and development, as well as bidirectional influence between hypoxic MSCs and immune cells of the TME. Furthermore, we also discuss the potential drug-resistant and therapeutic role of hypoxic MSCs. It can be envisaged that novel and profound insights into the functionality of hypoxic MSCs and the underlying mechanisms in tumor and tumor immunity will promote the meaningful and promising treatment strategies against tumor.
Collapse
Affiliation(s)
- Yiqing Tian
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Jian Fang
- The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, Anhui, PR China
| | - Fanpeng Zeng
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yongqiang Chen
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yunfeng Pei
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Feng Gu
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Chen Ding
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Guoping Niu
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510000, PR China.
| |
Collapse
|
2
|
Seeneevassen L, Dubus P, Gronnier C, Varon C. Hippo in Gastric Cancer: From Signalling to Therapy. Cancers (Basel) 2022; 14:cancers14092282. [PMID: 35565411 PMCID: PMC9105983 DOI: 10.3390/cancers14092282] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway is one of the most important ones in mammals. Its key functions in cell proliferation, tissue growth, repair, and homeostasis make it the most crucial one to be controlled. Many means have been deployed for its regulation, since this pathway is not only composed of core regulatory components, but it also communicates with and regulates various other pathways, making this signalisation even more complex. Its role in cancer has been studied more and more over the past few years, and it presents YAP/TAZ as the major oncogenic actors. In this review, we relate how vital this pathway is for different organs, and how regulatory mechanisms have been bypassed to lead to cancerous states. Most studies present an upregulation status of YAP/TAZ, and urge the need to target them. A focus is made here on gastric carcinogenesis, its main dysregulations, and the major strategies adopted and tested to counteract Hippo pathway disbalance in this disease. Hippo pathway targeting can be achieved by various means, which are described in this review. Many studies have tested different potential molecules, which are detailed hereby. Though not all tested in gastric cancer, they could represent a real interest.
Collapse
Affiliation(s)
- Lornella Seeneevassen
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
| | - Pierre Dubus
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Department of Histology and Pathology, CHU Bordeaux, F-33000 Bordeaux, France
| | - Caroline Gronnier
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Department of Digestive Surgery, Haut-Lévêque Hospital, CHU Bordeaux, F-33000 Bordeaux, France
| | - Christine Varon
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Correspondence:
| |
Collapse
|
3
|
Hong W, Tang L, Ge R, Li W, Shen X, Hong L, Xu X. Persistent Abnormal Immunocytes Induced Systemic Bone Loss in Locally Irradiated Rats. Calcif Tissue Int 2021; 109:706-718. [PMID: 34191050 DOI: 10.1007/s00223-021-00883-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/19/2021] [Indexed: 11/30/2022]
Abstract
Chronic and systemic bone complications frequently occur in patients who undergo radiotherapy; however, the pathological mechanisms underlying these complications remain unclear. This study aimed to observe persistent and systemic changes in locally irradiated rats and to determine the systemic pathological changes that persistently affect bone metabolism. We examined the inflammatory and oxidative stress responses that occurred after local irradiation using enzyme immunoassays and biochemical analyses. Lymphocytes obtained from the blood, spleen, thymus, and bone marrow were evaluated using flow cytometry. The proliferation and apoptosis characteristics of co-cultured bone marrow-derived mesenchymal stem cells (BMSCs) were detected by MTT assay and PI/Annexin V-FITC staining, respectively, and the differentiation of BMSCs was measured according to alkaline phosphatase (ALP) staining, alizarin red staining, and Oil Red O staining and by evaluating the mRNA expression of ALP, osteocalcin (OCN), osteopontin (OPN), collagen I, Runx2, and PPARγ. Our results revealed that no significant or continuous differences were present in the inflammatory response or the oxidative stress response throughout the body after local irradiation. B lymphocyte levels increased continuously in the blood, spleen, and bone marrow after local irradiation. T lymphocyte levels were decreased at 2 weeks after local irradiation, and CD8+T lymphocyte levels were increased in the blood, thymus, and bone marrow at 12 weeks after local irradiation. The ratio of CD4+/CD8+T lymphocytes began to decrease during the early phase after local irradiation and became significantly decreased at 12 weeks after local irradiation. Normal BMSCs co-cultured with lymphocytes derived from irradiated rats exhibited decreased proliferation and increased apoptosis, and the ALP staining intensity, alizarin red staining intensity, and mRNA expression of related genes were all also decreased. Oil Red O staining intensity and mRNA expression of PPARγ were both increased. Lymphocyte levels contribute to chronic and systemic bone complications after radiotherapy by inhibiting the proliferation and osteoblastogenesis of BMSCs.
Collapse
Affiliation(s)
- Wei Hong
- Department of Geriatrics and Gerontology, Huadong Hospital, Fudan University, 221 West Yan'an Road, Shanghai, 200040, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, 221 West Yan'an Road, Shanghai, 200040, China.
| | - Lichen Tang
- Department of Breast Surgery, Shanghai Cancer Hospital, Fudan University, 270 Dongan Road, Shanghai, 200032, China
| | - Rui Ge
- Department of General Surgery, Huadong Hospital, Fudan University, 221 West Yan'an Road, Shanghai, 200040, China
| | - Weiping Li
- Department of General Surgery, Huadong Hospital, Fudan University, 221 West Yan'an Road, Shanghai, 200040, China
| | - Xiaoyong Shen
- Department of Thoracic Surgery, Huadong Hospital, Fudan University, 221 West Yan'an Road, Shanghai, 200040, China
| | - Lixia Hong
- Department of General Surgery, Huadong Hospital, Fudan University, 221 West Yan'an Road, Shanghai, 200040, China
| | - Xiaoya Xu
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai, 200032, China.
| |
Collapse
|
4
|
Zheng P, Li W. Crosstalk Between Mesenchymal Stromal Cells and Tumor-Associated Macrophages in Gastric Cancer. Front Oncol 2020; 10:571516. [PMID: 33163402 PMCID: PMC7581781 DOI: 10.3389/fonc.2020.571516] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment (TME) consisting of distinct cell types including stromal cells and immune cells has recently emerged as a pivotal player in tumor development and progression. Mesenchymal stromal cells (MSCs) and tumor-associated macrophages (TAMs) are two representative cells in the TME with plastic properties. This review will focus on the evolution of phenotypes and functions of either MSCs or TAMs, which is “educated” by the TME, as well as interactions between MSCs and TAMs contributing to the distinct stages of tumor biology in gastric cancer. MSCs exert immunoregulatory effects on macrophages and polarize them toward M2-like TAMs, via cell–cell contact and paracrine or extracellular vesicle (EV) transfer mechanism. In turn, M2-TAMs modulate the transition of “naive” MSCs into tumor-derived MSCs, which possess a more potent pro-tumor role than the parent. Moreover, the cross talk between MSCs and TAMs could contribute to cancer biology by inducing the EMT process, metastasis, immune invasion, and immunotherapy resistance in cancer cells. However, molecular mechanisms underlying interactions between MSCs and TAMs in gastric cancer progression need to be thoroughly elucidated, which may provide attractive targets for making promising novel strategies for gastric cancer therapy.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Wei Li
- Center of Research Laboratory, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|