1
|
Hou W, Fang P, Liang J, Wei X, Ma C, Gao Y, Zhang Q, Li J. The Jieduan-Niwan Formula Reduces Inflammatory Responses in Acute-on-Chronic Liver Failure Rats by Inhibiting HMGB1-Induced Hepatocyte Pyroptosis. Drug Des Devel Ther 2025; 19:2503-2517. [PMID: 40190810 PMCID: PMC11972575 DOI: 10.2147/dddt.s488659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/29/2025] [Indexed: 04/09/2025] Open
Abstract
Background Acute-on-chronic liver failure (ACLF) is a global intractable disease. HMGB1-induced hepatocyte pyroptosis expanding inflammatory responses contributes to the pathogenesis of ACLF. The JDNW formula (JDNWF) has a significant clinical effect on ACLF, but its hepatoprotective mechanisms remain elusive. Purpose To explore the potential molecular mechanisms of the JDNWF in ACLF by HMGB1-induced hepatocyte pyroptosis. Methods Rats were divided into normal, ACLF, Caspase-1 inhibitor, HMGB1 inhibitor, JDNW, JDNW+Caspase-1 inhibitor and JDNW+HMGB1 inhibitor groups. The ACLF rat model was established by 40% carbon tetrachloride-induced liver fibrosis, followed by intraperitoneal injection of D-galactosamine and lipopolysaccharide. The liver function, coagulation function, liver pathological damage and ultrastructural changes of hepatocytes were evaluated. Triple-immunostaining of active Caspase-1, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and albumin were performed to evaluate the percentage of pyroptotic hepatocytes. Western blot, immunofluorescence, enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR (RT-qPCR) were used to analyze the expressions of key genes and proteins in HMGB1-induced pyroptosis pathways and the level of inflammatory factors. Results The JDNWF improved liver function, coagulation function and liver pathological damage, reduced the percentage of pyroptotic hepatocytes and inflammatory responses, and down-regulated the expressions of key genes and proteins in the HMGB1-induced pyroptosis pathways in ACLF rats. The effect of the JDNWF was better than those of HMGB1 inhibitor (glycyrrhizin) and Caspase-1 inhibitor (VX-765). Compared with glycyrrhizin or VX-765, there were no significant differences in the above indicators after the JDNWF in combination with glycyrrhizin or VX-765. These results indicated that the JDNWF inhibited hepatocyte pyroptosis and liver inflammation in ACLF rats through the HMGB1-induced pyroptosis pathways. Conclusion The JDNWF protects the livers of ACLF rats by inhibiting HMGB1-induced hepatocyte pyroptosis reducing inflammatory responses, suggesting that HMGB1-induced hepatocyte pyroptosis may be a potential therapeutic target of ACLF.
Collapse
Affiliation(s)
- Weixin Hou
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Key Laboratory of Gut Microbiota Translational Medicine Research, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Peng Fang
- Department of Infectious Diseases, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jiajun Liang
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou, Guangdong province, People’s Republic of China
| | - Xiaoyi Wei
- Office of Science and Technology Administration, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Chongyang Ma
- Department of Hepatology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Department of Hepatology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People’s Republic of China
| | - Yanbin Gao
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People’s Republic of China
| | - Qiuyun Zhang
- Department of Hepatology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Department of Hepatology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People’s Republic of China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Key Laboratory of Gut Microbiota Translational Medicine Research, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Wang S, Sun Y, Zhang C, Chen B, Zhong M, Du R, Zhou Y, Tong G, Luo L. Network pharmacology, molecular docking and experimental verification reveal the mechanism of Yiguanjian decoction in treating acute liver failure. Eur J Integr Med 2024; 65:102326. [DOI: 10.1016/j.eujim.2023.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
3
|
Liang J, Wei X, Hou W, Wang H, Ma R, Gao Y, Du Y, Zhang Q. Liver metabolomics reveals potential mechanism of Jieduan-Niwan formula against acute-on-chronic liver failure (ACLF) by improving mitochondrial damage and TCA cycle. Chin Med 2023; 18:157. [PMID: 38037150 PMCID: PMC10691013 DOI: 10.1186/s13020-023-00858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is a refractory disease with high mortality, which is characterized by a pathophysiological process of inflammation-related dysfunction of energy metabolism. Jieduan-Niwan formula (JDNWF) is a eutherapeutic Chinese medicine formula for ACLF. However, the intrinsic mechanism of its anti-ACLF effect still need to be studied systematically. PURPOSE This study aimed to investigate the mechanism of JDNWF against ACLF based on altered substance metabolic profile in ACLF the expression levels of related molecules. MATERIALS AND METHODS The chemical characteristics of JDNWF were characterized using ultra performance liquid chromatography (UPLC) coupled with triple quadrupole mass spectrometry. Wistar rats subjected to a long-term CCL4 stimulation followed by a combination of an acute attack with LPS/D-GalN were used to establish the ACLF model. Liver metabolites were analyzed by LC-MS/MS and multivariate analysis. Liver function, coagulation function, histopathology, mitochondrial metabolic enzyme activity and mitochondrial damage markers were evaluated. The protein expression of mitochondrial quality control (MQC) was investigated by western blot. RESULTS Liver function, coagulation function, inflammation, oxidative stress and mitochondrial enzyme activity were significantly improved by JDNWF. 108 metabolites are considered as biomarkers of JDNWF in treating ACLF, which were closely related to TCA cycle. It was further suggested that JDNWF alleviated mitochondrial damage and MQC may be potential mechanism of JDNWF improving mitochondrial function. CONCLUSIONS Metabolomics revealed that TCA cycle was impaired in ACLF rats, and JDNWF had a regulatory effect on it. The potential mechanism may be improving the mitochondrial function through MQC pathway, thus restoring energy metabolism.
Collapse
Affiliation(s)
- Jiajun Liang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Xiaoyi Wei
- Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Weixin Hou
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hanjing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Ruimin Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yanbin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Yuqiong Du
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Qiuyun Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
4
|
Hassan HM, Li J. Prospect of Animal Models for Acute-on-chronic Liver Failure: A Mini-review. J Clin Transl Hepatol 2022; 10:995-1003. [PMID: 36304511 PMCID: PMC9547251 DOI: 10.14218/jcth.2022.00086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 12/04/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a clinical syndrome that develops in patients with chronic liver diseases following a precipitating event and associated with a high mortality rate due to systemic multiorgan failure. Establishing a suitable and stable animal model to precisely elucidate the molecular basis of ACLF pathogenesis is essential for the development of effective early diagnostic and treatment strategies. In this context, this article provides a concise and inclusive review of breakthroughs in ACLF animal model development.
Collapse
Affiliation(s)
- Hozeifa Mohamed Hassan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Li
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Correspondence to: Jun Li, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, Zhejiang 310003. China. ORCID: https://orcid.org/0000-0002-7236-8088. Tel/Fax: +86-571-87236425, E-mail:
| |
Collapse
|
5
|
Jieduan–Niwan Formula Ameliorates Oxidative Stress and Apoptosis in Acute-on-Chronic Liver Failure by Suppressing HMGB1/TLR-4/NF-κB Signaling Pathway: A Study In Vivo and In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1833921. [PMID: 35873636 PMCID: PMC9307324 DOI: 10.1155/2022/1833921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
Jieduan-Niwan (JDNW) formula is a traditional Chinese medicine compound created by the famous Chinese medicine expert Professor Qian Ying, and has been used clinically for decades to treat acute-on-chronic liver failure (ACLF) and exhibits remarkable efficacy. However, the exact mechanism remains to be discovered. As an important hepatocyte damage-associated molecular patterns (DAMP) factor, high mobility group box 1 (HMGB1) is a potential therapeutic target as an accelerator of ACLF in the pathogenesis. Therefore, the present study investigated whether JDNW inhibits the overexpression and cytoplasmic translocation of HMGB1 in ACLF liver tissue and alleviates its mediated oxidative stress and apoptosis. In vivo, an immune-induced ACLF rat model was established, and then treated with JDNW for 5, 10, and 15 d. The results showed that a large number of cytoplasmic translocations of HMGB1 occurred in the ACLF group. And there was an increase in the expression of HMGB1 in the M-5 d group. After the intervention of JDNW, the overexpression and translocation of HMGB1 were inhibited. In vitro, D-GaLN caused an increase in the expression and translocation of HMGB1 in L02 cells. Similar to the inhibitor of HMGB1, JDNW serum alleviated this kind of increase. Further tests showed that JDNW attenuated ACLF-related oxidative stress and apoptosis, and the inhibition was associated with the regulation of TLR-4/NF-κB signaling pathway. In conclusion, our present findings suggest that the therapeutic effect of JDNW on ACLF was associated with the inhibition of high expression and cytoplasmic translocation of HMGB1 during the acute injury phase, thus, attenuating oxidative stress injury and apoptosis induced by HMGB1/TLR-4/NF-κB pathway.
Collapse
|
6
|
Zhou Q, Peng Z, Huang X. Establishment of a Stable Acute Drug-Induced Liver Injury Mouse Model by Sodium Cyclamate. J Inflamm Res 2022; 15:1599-1615. [PMID: 35264869 PMCID: PMC8901264 DOI: 10.2147/jir.s354273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/17/2022] [Indexed: 12/28/2022] Open
Abstract
Objective To establish a stable acute DILI mouse model and explore its possible pathogenesis. Methods Mice were randomly divided into control, low-dose, middle-dose and high-dose sodium cyclamate groups. Mice in the model group were intraperitoneally injected with corresponding doses of sodium cyclamate, and in the control group intraperitoneally injected with 0.9% normal saline. The toxic effects of sodium cyclamate on liver, heart, kidney were evaluated by biochemical index level and histomorphologically observed. The expression of TNF-α and IL-1β were measured by immunohistochemistry. Results 1. The level of ALT in the low-dose and middle-dose groups at 24h, 72h, 120h and 168h were increased, also in the high-dose group at 24h, 72h and 120h. The level of AST in the low-dose group at 72h, 120h, 168h and in the middle-dose group at 168h were increased, also in the middle-dose and high-dose groups at 24h, 72h and 120h. The levels of CK, CK-MB and cTnT in the low-dose and middle-dose groups at 168h were increased, also in the high-dose group at 24h, 72h and 120h. 2. The damage of hepatocytes increased with the increase of sodium cyclamate dosage and treated time. 3. At 120h, the IOD/Area of TNF-α and IL-1β positive expression increased in the liver tissues with the increase of the dosage. In the heart and kidney tissues, the IOD/Area of TNF-α and IL-1β positive expression in the high-dose group increased significantly. In the kidney tissues, the IOD/Area of IL-1β positive expression in the middle-dose group increased significantly. Conclusion Sodium cyclamate-induced acute DILI mouse model can be established by intraperitoneal injection of 6000 mg/kg/day sodium cyclamate for 5 days successfully. The toxicity of sodium cyclamate to liver showed a dose-response and time-response relationship. Sodium cyclamate induced liver, heart and kidney injury closely related to the inflammatory response mediated by TNF-α and IL-1β.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Infectious Diseases, The First Hospital of Changsha, Changsha, Hunan, 410000, People’s Republic of China
- Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| | - Zhongtian Peng
- Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
- Correspondence: Zhongtian Peng, Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China, Tel +86 13873488377, Email
| | - Xialing Huang
- Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
- Department of Infectious Diseases, Leiyang People’s Hospital, Leiyang, Hunan, 421800, People’s Republic of China
- Xialing Huang, Department of Infectious Diseases, Leiyang People’s Hospital, Leiyang, Hunan, 421800, People’s Republic of China, Tel +86 15200522185, Email
| |
Collapse
|
7
|
Huang L, Liu J, Bie C, Liu H, Ji Y, Chen D, Zhu M, Kuang W. Advances in cell death - related signaling pathways in acute-on-chronic liver failure. Clin Res Hepatol Gastroenterol 2022; 46:101783. [PMID: 34339873 DOI: 10.1016/j.clinre.2021.101783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/14/2021] [Indexed: 02/04/2023]
Abstract
Acute-on-chronic liver failure (ACLF) has been a hot spot in the field of liver disease research in recent years, with high morbidity, rapid course change and high mortality. Currently, there is the absence of specific treatment in clinical practice. Liver transplantation has the best therapeutic effect, but it is prone to have internal environment disorder and liver cell death after transplantation, which leads to the failure of transplantation.In recent years, with the development of molecular biology, scholars have explored the treatment of ACLF at the molecular level, and more and more molecular signaling pathways related to the treatment of ACLF have been discovered. Modulating the relevant signaling pathways to reduce the mortality of liver cells after transplantation may effectively improve the success rate of transplantation. In this review, we introduce some signaling pathways related to cell death and their research progress in acute-on-chronic liver failure.
Collapse
Affiliation(s)
- Liqiao Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jie Liu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen 518104, China; The First Affiliated Hospital, Guangzhou TCM University, Guangzhou 510006, China
| | - Caiqun Bie
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen 518104, China
| | - Helu Liu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen 518104, China
| | - Yichun Ji
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Meiling Zhu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen 518104, China.
| | - Weihong Kuang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
8
|
The Protective Effects of a Modified Xiaohua Funing Decoction against Acute Liver Failure in Mice Induced by D-Gal and LPS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6611563. [PMID: 35069764 PMCID: PMC8776459 DOI: 10.1155/2022/6611563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023]
Abstract
Objective The aim of this study was to evaluate the effects of a modified Xiaohua Funing decoction (Xfd) on acute liver failure (ALF) and determine whether the protective mechanisms are related to alterations in the gut microbiota. Methods An animal model of ALF was induced by intraperitoneal injection of D-galactosamine (D-Gal, 0.5 g/kg) and lipopolysaccharide (LPS, 100 μg/kg). Male BALB/c mice were randomly divided into the following 4 groups: the control group (saline, Con), model group (D-Gal/LPS, Mod), silymarin pretreatment group (200 mg/kg, Sil), and modified Xfd pretreatment group (650 mg/kg, Xfd). The Sil and Xfd groups received the respective intervention orally for 14 days and 2 h before D-Gal/LPS treatment. The liver injury markers included alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and liver histology. 16S rRNA gene sequencing was performed to assess the effects on the caecum content. Results D-Gal/LPS treatment caused severe ALF, illustrating that the ALF model was successfully established. The administration of Sil and Xfd greatly reduced the serum ALT and AST levels and improved the pathological signs of liver injury. However, no significant difference was found between the two groups. In contrast to the Mod group, the Sil and Xfd groups showed a shift toward the Con group in terms of the gut microbiota structure. The abundances of Firmicutes and Bacteroidetes and the Bacteroidetes/Firmicutes ratio in the Mod group significantly differed from those in the Con group. The Sil and Xfd groups showed restoration of the disordered microbiota. Significantly increased relative abundances of Lachnospiraceae_NK4A136_group and Candidatus_Saccharimonas and a markedly decreased Muribaculaceae abundance were found in the Sil and Xfd mice compared with those in the Mod mice (P < 0.01, P < 0.05). Interestingly, a negative correlation was observed between the abundances of the gut microbiota constituents, specifically Clostridia_UCG-014, and ALT and AST levels. Conclusion In summary, our results indicate that Xfd may protect the liver and modify the gut microbiota in ALF mice.
Collapse
|
9
|
Quercetin Reduces Oxidative Stress and Apoptosis by Inhibiting HMGB1 and Its Translocation, Thereby Alleviating Liver Injury in ACLF Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2898995. [PMID: 34904016 PMCID: PMC8665894 DOI: 10.1155/2021/2898995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
Background Acute on chronic liver failure (ACLF) is a syndrome of acute liver failure that occurs on the basis of chronic liver disease, which is characterized by a rapid deterioration in a short period and high mortality. High mobility group box 1 (HMGB1) may be involved in the pathological process of ACLF; its specific role remains to be further elucidated. Our previous studies have shown that quercetin (Que) exerts anti-oxidant and anti-apoptotic effects by inhibiting HMGB1 in vitro. The present study aimed to investigate the effect of Que on liver injury in ACLF rats. Methods The contents of ALT, AST, TBiL, and PT time of rats in each group were observed. HE staining was used to detect liver pathology. The levels of oxidative stress indicators such as MDA, GSH, and 4-HNE in the rat liver were detected. TUNEL assay was used to detect apoptosis in rat hepatocytes. Immunofluorescence and western blot analysis were performed to explore the protective effect of Que on ACLF rats and the underlying mechanism. Results The results showed that Que could reduce the increase of serum biochemical indices, improve liver pathology, and reduce liver damage in ACLF rats. Further results confirmed that Que reduced the occurrence of oxidative stress and apoptosis of hepatocytes, and these reactions may aggravate the progress of ACLF. Meanwhile, the results of immunofluorescence and western blotting also confirmed that the expression of HMGB1 and extranuclear translocation in ACLF rat hepatocytes were significantly increased, which was alleviated by the treatment of Que. In addition, when cotreated with glycyrrhizin (Gly), an inhibitor of HMGB1, the inhibition of Que on HMGB1 and its translocation, apoptosis and oxidative stress, and the related proteins of HMGB1-mediated cellular pathway have been significantly enhanced. Conclusion Thus, Que alleviates liver injury in ACLF rats, and its mechanism may be related to oxidative stress and apoptosis caused by HMGB1 and its translocation.
Collapse
|
10
|
Hou W, Hao Y, Yang W, Tian T, Fang P, Du Y, Gao L, Gao Y, Zhang Q. The Jieduan-Niwan (JDNW) Formula Ameliorates Hepatocyte Apoptosis: A Study of the Inhibition of E2F1-Mediated Apoptosis Signaling Pathways in Acute-on-Chronic Liver Failure (ACLF) Using Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3845-3862. [PMID: 34526765 PMCID: PMC8436178 DOI: 10.2147/dddt.s308713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022]
Abstract
Background Acute-on-chronic liver failure (ACLF) is a severe, complicated human disease. E2F1-mediated apoptosis plays an important role in ACLF development. Jieduan-Niwan (JDNW) formula, a traditional Chinese medicine (TCM), has shown remarkable clinical efficacy in ACLF treatment. However, the hepatoprotective mechanisms of the formula are barely understood. Purpose This study aimed to investigate the mechanisms of JDNW formula in ACLF treatment by specifically regulating E2F1-mediated apoptotic signaling pathways in rats. Methods The JDNW components were determined by high-performance liquid chromatography (HPLC) analysis. The ACLF rat model was established using human serum albumin immune-induced liver cirrhosis, followed by D-galactosamine and lipopolysaccharide joint acute attacks. The ACLF rat was treated with JDNW formula. Prothrombin time activity was measured to investigate the coagulation function. Liver pathological injury was observed by hematoxylin-eosin (HE) and reticular fiber staining. The hepatocyte apoptosis index and apoptosis rate were determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and flow cytometry, respectively. Additionally, the expression of key genes and proteins that regulate E2F1-mediated apoptosis was analyzed by quantitative real-time PCR and Western blot. Results Seven major components of JDNW formula were detected. The formula ameliorated the coagulation function, decreased the hepatocyte apoptosis index and apoptosis rate, and alleviated liver pathological damage in ACLF rats. The down-regulation of the expression of genes and proteins from p53-dependent and non-p53-dependent apoptosis pathways and the up-regulation of the expression of genes from blocking anti-apoptotic signaling pathways indicated that JDNW formula inhibited excessive hepatocyte apoptosis in ACLF rats via E2F1-mediated apoptosis signaling pathways. Conclusion The findings indicate that JDNW formula protects livers of ACLF rats by inhibiting E2F1-mediated apoptotic signaling pathways, implying that these pathways might be a potential therapeutic target for ACLF treatment.
Collapse
Affiliation(s)
- Weixin Hou
- Department of Hepatology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Hepatology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China.,Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China
| | - Yulin Hao
- Department of Hepatology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Hepatology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China
| | - Wenlong Yang
- Department of Hepatology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Hepatology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China
| | - Tian Tian
- Department of Hepatology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Hepatology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China
| | - Peng Fang
- Department of Hepatology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Hepatology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China
| | - Yuqiong Du
- Department of Hepatology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Hepatology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China
| | - Lianyin Gao
- Department of Hepatology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Hepatology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China
| | - Yanbin Gao
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China
| | - Qiuyun Zhang
- Department of Hepatology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Hepatology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Network Pharmacology Approach to Explore the Potential Mechanisms of Jieduan-Niwan Formula Treating Acute-on-Chronic Liver Failure. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1041307. [PMID: 33456481 PMCID: PMC7787753 DOI: 10.1155/2020/1041307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022]
Abstract
Background Acute-on-chronic liver failure (ACLF) is a clinical syndrome with acute jaundice and coagulation dysfunction caused by various inducements on the basis of chronic liver disease. Western medical treatment is limited. Previous studies have confirmed that Jieduan-Niwan Formula (JDNW Formula), an empirical prescription for the treatment of ACLF, can inhibit inflammation and resist hepatocyte apoptosis. However, potential targets and mechanisms still need to be explored. Methods In this study, network pharmacological analysis was performed to investigate the key components and potential mechanisms of JDNW Formula treating ACLF. Firstly, we predicted the potential active ingredients of JDNW Formula and the corresponding potential targets through TCMSP, BATMAN-TCM platform, and literature supplement. Then, the ACLF targets database was built using OMIM, DisGeNET, and GeneCard database. Based on the matching targets between JDNW Formula and ACLF, the PPI network was constructed for MCODE analysis and common targets were enriched by Metascape. Furthermore, the ACLF rat model was used to verify the potential mechanism of JDNW Formula in treating ACLF. Results 132 potential bioactive components of JDNW Formula and 168 common targets were obtained in this study. The enrichment analysis shows that the AMPK signaling pathway was associated with the treating effects of JDNW Formula. Quercetin was hypothesized to be the key bioactive ingredient in JDNW Formula and has a good binding affinity to AMPK based on molecular docking verification. JDNW Formula and quercetin were verified to treat ACLF by regulating the AMPK/PGC-1α signaling pathway as a prediction. Conclusion The study predicted potential mechanisms of JDNW Formula in the treatment of ACLF, involving downregulation of inflammatory factor expression, antioxidant stress, and inhibition of hepatocyte apoptosis. JDNW Formula may improve mitochondrial quality in ACLF via the AMPK signaling pathway, which serves as a guide for further study.
Collapse
|