1
|
Yang Y, Shao Y, Dai Q, Zhang Y, Sun Y, Wang K, Xu A. Transcription factor AP-2 Beta, a potential target of repetitive Transspinal magnetic stimulation in spinal cord injury treatment, reduced inflammation and alleviated spinal cord injury. Exp Neurol 2025; 386:115144. [PMID: 39798694 DOI: 10.1016/j.expneurol.2025.115144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Spinal cord injury (SCI) is a neurodegenerative disease, with a high disability rate. According to the results of mRNA-seq, transcription factor AP-2 Beta (TFAP2B) is a potential target of repetitive Transspinal Magnetic Stimulation (rTSMS) in SCI treatment. Our results demonstrated that rTSMS significantly improved motor function and promoted neuronal survival post-SCI. The result showed that TFAP2B was downregulated following SCI, while significant upregulation after rTSMS treatment, suggesting its pivotal role in neuronal repair. Overexpression of TFAP2B improved Basso Beattie and Bresnahan (BBB) score and athletic ability, and decreased cell apoptosis in SCI rats. Additionally, overexpression of TFAP2B reduced the expression of Iba1 and GFAP in spinal cord, and the expression of PDGFrβ was also reduced in SCI rats after TFAP2B overexpression. Knockdown of TFAP2B reverses the effect of rTSMS treatment in SCI. We found that rTSMS alleviate osteoporosis caused by SCI, resulting in increased BMD, BV/TV, and Tb.Th. rTSMS treatment lowered the RANKL/OPG ratio. In all, our study illustrated TFAP2B is a downstream target of rTSMS for the treatment of SCI, and overexpression of TFAP2B enhanced the therapeutic effect of rTSMS.
Collapse
Affiliation(s)
- Yang Yang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yang Shao
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Qi Dai
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yuxi Zhang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yongxin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Kunpeng Wang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China.
| | - Aihua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Shen YJ, Huang YC, Cheng YC. Advancements in Antioxidant-Based Therapeutics for Spinal Cord Injury: A Critical Review of Strategies and Combination Approaches. Antioxidants (Basel) 2024; 14:17. [PMID: 39857350 PMCID: PMC11763222 DOI: 10.3390/antiox14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Spinal cord injury (SCI) initiates a cascade of secondary damage driven by oxidative stress, characterized by the excessive production of reactive oxygen species and other reactive molecules, which exacerbate cellular and tissue damage through the activation of deleterious signaling pathways. This review provides a comprehensive and critical evaluation of recent advancements in antioxidant-based therapeutic strategies for SCI, including natural compounds, RNA-based therapies, stem cell interventions, and biomaterial applications. It emphasizes the limitations of single-regimen approaches, particularly their limited efficacy and suboptimal delivery to injured spinal cord tissue, while highlighting the synergistic potential of combination therapies that integrate multiple modalities to address the multifaceted pathophysiology of SCI. By analyzing emerging trends and current limitations, this review identifies key challenges and proposes future directions, including the refinement of antioxidant delivery systems, the development of multi-targeted approaches, and strategies to overcome the structural complexities of the spinal cord. This work underscores the pressing need for innovative and integrative therapeutic approaches to advance the clinical translation of antioxidant-based interventions and improve outcomes for SCI patients.
Collapse
Affiliation(s)
- Yang-Jin Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yin-Cheng Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
| |
Collapse
|
3
|
Xuan Y, Peng K, Zhu R, Kang Y, Yin Z. Hmox1 is Identified as a Ferroptosis Hub Gene and Associated with the M1 Type Microglia/Macrophage Polarization in Spinal Cord Injury: Bioinformatics and Experimental Validation. Mol Neurobiol 2023; 60:7151-7165. [PMID: 37532969 DOI: 10.1007/s12035-023-03543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Ferroptosis and immune cell infiltration are important pathological events in spinal cord injury (SCI), but links between ferroptosis and immune microenvironment after SCI were rare reported. In our study, 77 FRDEGs were screened at 7 days after SCI. GO analysis of FRDEGs showed that aging (GO:0007568; P-value = 1.11E-05) was the most remarkable enriched for biological process, protein binding (GO:0005515; adjusted P-value = 4.44E-06) was the most significantly enriched for molecular function, cytosol (GO:0005829; adjusted P-value = 1.51E-04) was the most prominent enriched for cellular component. Meanwhile, Ferroptosis was significantly enriched both in KEGG (rno04216; adjusted P-value = 0.001) and GSEA (NES = 1.35; adjusted P-value = 0.004) analysis. Next, Hmox1 (Log2Fold change = 6.52; adjusted P-value = 0.004) was identified as one of hub genes in SCI-induced ferroptosis. In the results of immune cell infiltration analysis, proportion of microglia/macrophage was significantly increased after SCI, and Hmox1 was found to positively correlate to the M1 type microglia/macrophage abundance. Finally, effects of Hmox1 on ferroptosis and M1 type polarization were validated in vivo and in vitro. Summarily, we found that Hmox1 was the hub gene in SCI-induced ferroptosis and associated with the M1 type polarization.
Collapse
Affiliation(s)
- Yong Xuan
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
- Department of Orthopedics, The second people's hospital of Hefei, 246 Heping Road, Hefei, 230011, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kai Peng
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Rui Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
- Department of Orthopedics, The Affiliated Chaohu Hospital of Anhui Medical University, Anhui Medical University, 64 Chaohu Northern Road, Hefei, 238001, China
| | - Yu Kang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei, 230022, China.
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei, 230022, China.
| |
Collapse
|
4
|
Gao Q, Gao Z, Su M, Huang Y, Zhang C, Li C, Zhan H, Liu B, Zhou X. Umbilical Cord Mesenchymal Stem Cells Overexpressing Heme Oxygenase-1 Promotes Symptoms Recovery in Cystitis Rats by Alleviating Neuroinflammation. Stem Cells Int 2023; 2023:8887091. [PMID: 38020203 PMCID: PMC10663085 DOI: 10.1155/2023/8887091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) seriously reduces the patient's quality of life, yet current therapies only provide partial relief. In the spinal dorsal horn (SDH), neuroinflammation plays a pivotal role in the development of IC. Injection of human umbilical cord mesenchymal stem cells (hUMSCs) to reduce inflammation is an effective strategy, and heme oxygenase-1 (HO-1) exhibits anti-nociceptive effect in neuroinflammatory pain. This study aimed to test the therapeutic effects of hUMSCs overexpressing HO-1 on cyclophosphamide-induced cystitis rat model. Cystitis rats were transplanted with altered cells and then assessed for 3 weeks. A series of behavioral measurements would be trial including suprapubic mechanical allodynia, depressive-like behaviors, micturition frequency, and short-term memory function. Additionally, western blot, immunofluorescence staining, and ELISA kit test for anti-inflammation effect. HUMSCs were capable of being transduced to overexpress HO-1. Injection of hUMSCs overexpressing HO-1 was more effective than hUMSCs alone in alleviating behavioral symptoms in rats. Furthermore, hUMSCs overexpressing HO-1 inhibited the activation of glial and TLR4/p65/NLRP3 pathway, decreased the levels of pro-inflammatory cytokines in the SDH region. Surprisingly, it markedly increased anti-inflammatory cytokine IL-10, reduced MDA content, and protected GSH concentrations in local environment. Our results suggest that injecting hUMSCs overexpressing HO-1 intrathecally can significantly promote functional outcomes in cystitis rats by reducing neuroinflammation, at least, partly through downregulating TLR4/p65/NLRP3 signaling pathway in the SDH region. This cell therapy affords a new strategy for IC/BPS treatment.
Collapse
Affiliation(s)
- Qiongqiong Gao
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Zhentao Gao
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Minzhi Su
- Department of Rehabilitation, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Yong Huang
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Chi Zhang
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Cuiping Li
- Department of Biotherapy Center, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Hailun Zhan
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Bolong Liu
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Xiangfu Zhou
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| |
Collapse
|
5
|
Svoradová A, Vašíček J, Zmrhal V, Venusová E, Pavlík A, Bauer M, Olexiková L, Langraf V, Sláma P, Chrenek P. Mesenchymal stem cells of Oravka chicken breed: promising path to biodiversity conservation. Poult Sci 2023; 102:102807. [PMID: 37302325 PMCID: PMC10276279 DOI: 10.1016/j.psj.2023.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multilineage cells able to differentiate into other cell types. MSCs derived from bone marrow or compact bones are the most accessible stem cells used in tissue engineering. Therefore, the aim of this study was to isolate, characterize and cryopreserve MSCs of endangered Oravka chicken breed. MSCs were obtained from compact bones of the femur and tibiotarsus. MSCs were spindle-shaped and were able to differentiate into osteo-, adipo-, and chondrocytes under the specific differentiation conditions. Furthermore, MSCs were positive for surface markers such as CD29, CD44, CD73, CD90, CD105, CD146 and negative for CD34CD45 by flow cytometry. Moreover, MSCs demonstrated high positivity of "stemness" markers aldehyde dehydrogenase, alkaline phosphatase as well as for intracellular markers vimentin, desmin, α-SMA. Subsequently, MSCs were cryopreserved using 10% dimethyl sulfoxide in liquid nitrogen. Based on the results from the viability, phenotype, and ultrastructure assessment we can concluded that the MSCs were not negatively affected by the cryopreservation. Finally, MSCs of endangered Oravka chicken breed were successfully stored in animal gene bank, thus making them a valuable genetic resource.
Collapse
Affiliation(s)
- Andrea Svoradová
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Nitra, Slovakia; Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Jaromír Vašíček
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Nitra, Slovakia; Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Vladimír Zmrhal
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Eva Venusová
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Aleš Pavlík
- Laboratory of Animal Physiology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Miroslav Bauer
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Nitra, Slovakia; Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Lucia Olexiková
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Nitra, Slovakia
| | - Vladimír Langraf
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Petr Sláma
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Peter Chrenek
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Nitra, Slovakia; Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Nitra, Slovakia.
| |
Collapse
|
6
|
Li M, Chen H, Zhu M. Mesenchymal stem cells for regenerative medicine in central nervous system. Front Neurosci 2022; 16:1068114. [PMID: 36583105 PMCID: PMC9793714 DOI: 10.3389/fnins.2022.1068114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells, whose paracrine and immunomodulatory potential has made them a promising candidate for central nervous system (CNS) regeneration. Numerous studies have demonstrated that MSCs can promote immunomodulation, anti-apoptosis, and axon re-extension, which restore functional neural circuits. The therapeutic effects of MSCs have consequently been evaluated for application in various CNS diseases including spinal cord injury, cerebral ischemia, and neurodegenerative disease. In this review, we will focus on the research works published in the field of mechanisms and therapeutic effects of MSCs in CNS regeneration.
Collapse
Affiliation(s)
- Man Li
- Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingxin Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Mingxin Zhu,
| |
Collapse
|
7
|
Dave C, Mei SHJ, McRae A, Hum C, Sullivan KJ, Champagne J, Ramsay T, McIntyre L. Comparison of freshly cultured versus cryopreserved mesenchymal stem cells in animal models of inflammation: A pre-clinical systematic review. eLife 2022; 11:75053. [PMID: 35838024 PMCID: PMC9286731 DOI: 10.7554/elife.75053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/05/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) are multipotent cells that demonstrate therapeutic potential for the treatment of acute and chronic inflammatory-mediated conditions. Although controversial, some studies suggest that MSCs may lose their functionality with cryopreservation which could render them non-efficacious. Hence, we conducted a systematic review of comparative pre-clinical models of inflammation to determine if there are differences in in vivo measures of pre-clinical efficacy (primary outcomes) and in vitro potency (secondary outcomes) between freshly cultured and cryopreserved MSCs. Methods: A systematic search on OvidMEDLINE, EMBASE, BIOSIS, and Web of Science (until January 13, 2022) was conducted. The primary outcome included measures of in vivo pre-clinical efficacy; secondary outcomes included measures of in vitro MSC potency. Risk of bias was assessed by the SYRCLE ‘Risk of Bias’ assessment tool for pre-clinical studies. Results: Eighteen studies were included. A total of 257 in vivo pre-clinical efficacy experiments represented 101 distinct outcome measures. Of these outcomes, 2.3% (6/257) were significantly different at the 0.05 level or less; 2 favoured freshly cultured and 4 favoured cryopreserved MSCs. A total of 68 in vitro experiments represented 32 different potency measures; 13% (9/68) of the experiments were significantly different at the 0.05 level or less, with seven experiments favouring freshly cultured MSC and two favouring cryopreserved MSCs. Conclusions: The majority of preclinical primary in vivo efficacy and secondary in vitro potency outcomes were not significantly different (p<0.05) between freshly cultured and cryopreserved MSCs. Our systematic summary of the current evidence base may provide MSC basic and clinical research scientists additional rationale for considering a cryopreserved MSC product in their pre-clinical studies and clinical trials as well as help identify research gaps and guide future related research. Funding: Ontario Institute for Regenerative Medicine
Collapse
Affiliation(s)
- Chintan Dave
- Division of Critical Care Medicine, Department of Medicine, Western University, London, Canada
| | - Shirley H J Mei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Andrea McRae
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Christine Hum
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, Canada.,University of Ottawa, Ottawa, Canada
| | - Katrina J Sullivan
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Josee Champagne
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, Canada.,Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Tim Ramsay
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Lauralyn McIntyre
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, Canada.,Division of Critical Care, Department of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
8
|
Farid MF, S Abouelela Y, Rizk H. Stem cell treatment trials of spinal cord injuries in animals. Auton Neurosci 2022; 238:102932. [PMID: 35016045 DOI: 10.1016/j.autneu.2021.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious neurological spinal cord damage that resulted in the loss of temporary or permanent function. However, there are even now no effective therapies for it. So, a new medical promising therapeutic hotspot over the previous decades appeared which was (Stem cell (SC) cure of SCI). Otherwise, animal models are considered in preclinical research as a model for humans to trial a potential new treatment. METHODOLOGY Following articles were saved from different databases (PubMed, Google scholar, Egyptian knowledge bank, Elsevier, Medline, Embase, ProQuest, BMC) on the last two decades, and data were obtained then analyzed. RESULTS This review discusses the type and grading of SCI. As well as different types of stem cells therapy for SCI, including mesenchymal stem cells (MSCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs). The review focuses on the transplantation pathways, clinical evaluation, and clinical signs of different types of SC on different animal models which are summarized in tables to give an easy to reach. CONCLUSION Pharmacological and physiotherapy have limited regenerative power in comparison with stem cells medication in the treatment of SCI. Among several sources of cell therapies, mesenchymal stromal/stem cell (MSC) one is being progressively developed as a trusted important energetic way to repair and regenerate. Finally, a wide-ranged animal models have been condensed that helped in human clinical trial therapies.
Collapse
Affiliation(s)
- Mariam F Farid
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Yara S Abouelela
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Hamdy Rizk
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
9
|
袁 欣, 丁 璐, 邓 宇. [Research progress of hydrogel combined with mesenchymal stem cells in the treatment of spinal cord injury]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2021; 38:805-811. [PMID: 34459182 PMCID: PMC9927541 DOI: 10.7507/1001-5515.202005055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 04/27/2021] [Indexed: 11/03/2022]
Abstract
Spinal cord injury (SCI) is a complex pathological process. Based on the encouraging results of preclinical experiments, some stem cell therapies have been translated into clinical practice. Mesenchymal stem cells (MSCs) have become one of the most important seed cells in the treatment of SCI due to their abundant sources, strong proliferation ability and low immunogenicity. However, the survival rate of MSCs transplanted to spinal cord injury is rather low, which hinders its further clinical application. In recent years, hydrogel materials have been widely used in tissue engineering because of their good biocompatibility and biodegradability. The treatment strategy of hydrogel combined with MSCs has made some progress in SCI repair. This review discusses the significance and the existing problems of MSCs in the repair of SCI. It also describes the research progress of hydrogel combined with MSCs in repairing SCI, and prospects its application in clinical research, aiming at providing reference and new ideas for future SCI treatment.
Collapse
Affiliation(s)
- 欣 袁
- 中山大学附属第七医院 科研中心(广东深圳 518107)Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R.China
| | - 璐 丁
- 中山大学附属第七医院 科研中心(广东深圳 518107)Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R.China
| | - 宇斌 邓
- 中山大学附属第七医院 科研中心(广东深圳 518107)Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R.China
| |
Collapse
|
10
|
Johnson LDV, Pickard MR, Johnson WEB. The Comparative Effects of Mesenchymal Stem Cell Transplantation Therapy for Spinal Cord Injury in Humans and Animal Models: A Systematic Review and Meta-Analysis. BIOLOGY 2021; 10:biology10030230. [PMID: 33809684 PMCID: PMC8001771 DOI: 10.3390/biology10030230] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
Animal models have been used in preclinical research to examine potential new treatments for spinal cord injury (SCI), including mesenchymal stem cell (MSC) transplantation. MSC transplants have been studied in early human trials. Whether the animal models represent the human studies is unclear. This systematic review and meta-analysis has examined the effects of MSC transplants in human and animal studies. Following searches of PubMed, Clinical Trials and the Cochrane Library, published papers were screened, and data were extracted and analysed. MSC transplantation was associated with significantly improved motor and sensory function in humans, and significantly increased locomotor function in animals. However, there are discrepancies between the studies of human participants and animal models, including timing of MSC transplant post-injury and source of MSCs. Additionally, difficulty in the comparison of functional outcome measures across species limits the predictive nature of the animal research. These findings have been summarised, and recommendations for further research are discussed to better enable the translation of animal models to MSC-based human clinical therapy.
Collapse
Affiliation(s)
- Louis D. V. Johnson
- Chester Medical School, University of Chester, Chester CH1 4BJ, UK
- Correspondence: (L.D.V.J.); (W.E.B.J.); Tel.: +44-7557-353206 (L.D.V.J.); +44-774-5616225 (W.E.B.J.)
| | - Mark R. Pickard
- University Centre Shrewsbury, University of Chester, Shrewsbury SY3 8HQ, UK;
| | - William E. B. Johnson
- Chester Medical School, University of Chester, Chester CH1 4BJ, UK
- University Centre Shrewsbury, University of Chester, Shrewsbury SY3 8HQ, UK;
- Correspondence: (L.D.V.J.); (W.E.B.J.); Tel.: +44-7557-353206 (L.D.V.J.); +44-774-5616225 (W.E.B.J.)
| |
Collapse
|
11
|
Lewis MJ, Granger N, Jeffery ND. Emerging and Adjunctive Therapies for Spinal Cord Injury Following Acute Canine Intervertebral Disc Herniation. Front Vet Sci 2020; 7:579933. [PMID: 33195591 PMCID: PMC7593405 DOI: 10.3389/fvets.2020.579933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
Some dogs do not make a full recovery following medical or surgical management of acute canine intervertebral disc herniation (IVDH), highlighting the limits of currently available treatment options. The multitude of difficulties in treating severe spinal cord injury are well-recognized, and they have spurred intense laboratory research, resulting in a broad range of strategies that might have value in treating spinal cord-injured dogs. These include interventions that aim to directly repair the spinal cord lesion, promote axonal sparing or regeneration, mitigate secondary injury through neuroprotective mechanisms, or facilitate functional compensation. Despite initial promise in experimental models, many of these techniques have failed or shown mild efficacy in clinical trials in humans and dogs, although high quality evidence is lacking for many of these interventions. However, the continued introduction of new options to the veterinary clinic remains important for expanding our understanding of the mechanisms of injury and repair and for development of novel and combined strategies for severely affected dogs. This review outlines adjunctive or emerging therapies that have been proposed as treatment options for dogs with acute IVDH, including discussion of local or lesion-based approaches as well as systemically applied treatments in both acute and subacute-to-chronic settings. These interventions include low-level laser therapy, electromagnetic fields or oscillating electrical fields, adjunctive surgical techniques (myelotomy or durotomy), systemically or locally-applied hypothermia, neuroprotective chemicals, physical rehabilitation, hyperbaric oxygen therapy, electroacupuncture, electrical stimulation of the spinal cord or specific peripheral nerves, nerve grafting strategies, 4-aminopyridine, chondroitinase ABC, and cell transplantation.
Collapse
Affiliation(s)
- Melissa J Lewis
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, United States
| | - Nicolas Granger
- The Royal Veterinary College, University of London, Hertfordshire, United Kingdom.,CVS Referrals, Bristol Veterinary Specialists at Highcroft, Bristol, United Kingdom
| | - Nick D Jeffery
- Department of Small Animal Clinical Sciences, Texas A & M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States
| | | |
Collapse
|
12
|
Zhang C, Zhang C, Xu Y, Li C, Cao Y, Li P. Exosomes derived from human placenta-derived mesenchymal stem cells improve neurologic function by promoting angiogenesis after spinal cord injury. Neurosci Lett 2020; 739:135399. [PMID: 32979457 DOI: 10.1016/j.neulet.2020.135399] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious central nervous system condition with no effective clinal treatment. Recently, transplantation of bone marrow mesenchymal stem cells (MSCs) derived exosomes has been proposed as a potential treatment for SCI. However, whether exosomes have similar functions as transplanted human placenta-derived MSCs(hPMSCs) has remained unclear. METHODS The hPMSCs-derived exosomes (hPMSCs-Exos) were extracted using a sequential centrifugation approach. Then, the effects of hPMSCs-Exos on angiogenesis were analysis both in vitro and in vivo. In addition, the sensory and locomotor functions of mice after SCI were also analyzed. RESULTS The administration of hPMSCs-Exos promote the tube formation and migration of human umbilical vein endothelial cell (HUVECs). Furthermore, vessel numbers, vessel volume fraction and vessel connectivity in spinal cords significantly increased after exosomes were intrathecally injected in the SCI model. In addition, the locomotor and sensory function, also significantly improved in the exosome treatment group. CONCLUSIONS The results of the present study demonstrated that hPMSCs-Exos have proangiogenic effects on endothelial cells and enhanced angiogenesis in SCI model. Thus, this treatment strategy demonstrates great potential for the treatment of SCI.
Collapse
Affiliation(s)
- Ciliu Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University Changsha, 410008, China
| | - ChengLiang Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China
| | - Chengjun Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, 410008 Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008 Changsha, China.
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, 410008 Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008 Changsha, China.
| | - Ping Li
- Department of Obstetrics, Xiangya Hospital, Central South University Changsha, 410008, China; Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, 410008, China.
| |
Collapse
|