1
|
Wu W, Zhao Z, Zhao Z, Zhang D, Zhang Q, Zhang J, Fang Z, Bai Y, Guo X. Structure, Health Benefits, Mechanisms, and Gut Microbiota of Dendrobium officinale Polysaccharides: A Review. Nutrients 2023; 15:4901. [PMID: 38068759 PMCID: PMC10708504 DOI: 10.3390/nu15234901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Dendrobium officinale polysaccharides (DOPs) are important active polysaccharides found in Dendrobium officinale, which is commonly used as a conventional food or herbal medicine and is well known in China. DOPs can influence the composition of the gut microbiota and the degradation capacity of these symbiotic bacteria, which in turn may determine the efficacy of dietary interventions. However, the necessary analysis of the relationship between DOPs and the gut microbiota is lacking. In this review, we summarize the extraction, structure, health benefits, and related mechanisms of DOPs, construct the DOPs-host axis, and propose that DOPs are potential prebiotics, mainly composed of 1,4-β-D-mannose, 1,4-β-D-glucose, and O-acetate groups, which induce an increase in the abundance of gut microbiota such as Lactobacillus, Bifidobacterium, Akkermansia, Bacteroides, and Prevotella. In addition, we found that when exposed to DOPs with different structural properties, the gut microbiota may exhibit different diversity and composition and provide health benefits, such as metabolism regulations, inflammation modulation, immunity moderation, and cancer intervention. This may contribute to facilitating the development of functional foods and health products to improve human health.
Collapse
Affiliation(s)
- Weijie Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Ziqi Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Zhaoer Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Dandan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Qianyi Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Jiayu Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Zhengyi Fang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Yiling Bai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Xiaohui Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| |
Collapse
|
2
|
Xu X, Zhang C, Wang N, Xu Y, Tang G, Xu L, Feng Y. Bioactivities and Mechanism of Actions of Dendrobium officinale: A Comprehensive Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6293355. [PMID: 36160715 PMCID: PMC9507758 DOI: 10.1155/2022/6293355] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
Dendrobium officinale has a long history of being consumed as a functional food and medicinal herb for preventing and managing diseases. The phytochemical studies revealed that Dendrobium officinale contained abundant bioactive compounds, such as bibenzyls, polysaccharides, flavonoids, and alkaloids. The experimental studies showed that Dendrobium officinale and its bioactive compounds exerted multiple biological properties like antioxidant, anti-inflammatory, and immune-regulatory activities and showed various health benefits like anticancer, antidiabetes, cardiovascular protective, gastrointestinal modulatory, hepatoprotective, lung protective, and neuroprotective effects. In this review, we summarize the phytochemical studies, bioactivities, and the mechanism of actions of Dendrobium officinale, and the safety and current challenges are also discussed, which might provide new perspectives for its development of drug and functional food as well as clinical applications.
Collapse
Affiliation(s)
- Xiaoyu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Guoyi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Lin Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
3
|
He Y, Li L, Chang H, Cai B, Gao H, Chen G, Hou W, Jappar Z, Yan Y. Research progress on extraction, purification, structure and biological activity of Dendrobium officinale polysaccharides. Front Nutr 2022; 9:965073. [PMID: 35923195 PMCID: PMC9339781 DOI: 10.3389/fnut.2022.965073] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/30/2022] [Indexed: 12/28/2022] Open
Abstract
Dendrobium officinale Kimura et Migo (D. officinale) is a traditional medicinal and food homologous plant that has been used for thousands of years in folk medicine and nutritious food. Recent studies have shown that polysaccharide is one of the main biologically active components in D. officinale. D. officinale polysaccharides possess several biological activities, such as anti-oxidant, heptatoprotective, immunomodulatory, gastrointestinal protection, hypoglycemic, and anti-tumor activities. In the past decade, polysaccharides have been isolated from D. officinale by physical and enzymatic methods and have been subjected to structural characterization and activity studies. Progress in extraction, purification, structural characterization, bioactivity, structure-activity relationship, and possible bioactivity mechanism of polysaccharides D. officinale were reviewed. In order to provide reference for the in-depth study of D. officinale polysaccharides and the application in functional food and biomedical research.
Collapse
Affiliation(s)
- Yuan He
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Lin Li
- College of Life Sciences, Zhengzhou Normal University, Zhengzhou, China
- *Correspondence: Lin Li,
| | - Hao Chang
- Cigar Research Institute, Anhui Tobacco Technology Center, Bengbu, China
| | - Bin Cai
- Haikou Cigar Research Institute, Hainan Provincial Branch of CNTC, Haikou, China
| | - Huajun Gao
- Haikou Cigar Research Institute, Hainan Provincial Branch of CNTC, Haikou, China
| | - Guoyu Chen
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Wen Hou
- College of Life Sciences, Zhengzhou Normal University, Zhengzhou, China
| | - Zubaydan Jappar
- College of Life Sciences, Zhengzhou Normal University, Zhengzhou, China
| | - Yizhe Yan
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
- Yizhe Yan,
| |
Collapse
|
4
|
Xie X, Wu Y, Xie H, Wang H, Zhang X, Yu J, Zhu S, Zhao J, Sui L, Li S. Polysaccharides, Next Potential Agent for the Treatment of Epilepsy? Front Pharmacol 2022; 13:790136. [PMID: 35418858 PMCID: PMC8996301 DOI: 10.3389/fphar.2022.790136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a chronic neurological disorder. Current pharmacological therapies for epilepsy have limited efficacy that result in refractory epilepsy (RE). Owing to the limitations of conventional therapies, it is needed to develop new anti-epileptic drugs. The beneficial effects of polysaccharides from Chinese medicines, such as Lycium barbarum polysaccharides (COP) and Ganoderma lucidum polysaccharides (GLP), for treatment of epilepsy include regulation of inflammatory factors, neurotransmitters, ion channels, and antioxidant reactions. Especially, polysaccharides could be digested by intestinal microbial flora, referred as “intestinal brain organ” or “adult’s second brain”, may be the target for treatment of epilepsy. Actually, polysaccharides can effectively improve the type and quantity of intestinal flora such as bifidobacteria and lactic acid bacteria and achieve the purpose of treating epilepsy. Therefore, polysaccharides are hypothesized and discussed as potential agent for treatment of epilepsy.
Collapse
Affiliation(s)
- Xuemin Xie
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Youliang Wu
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Haitao Xie
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Haiyan Wang
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xiaojing Zhang
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jiabin Yu
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Shaofang Zhu
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jing Zhao
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- *Correspondence: Jing Zhao, ; Lisen Sui, ; Shaoping Li, ,
| | - Lisen Sui
- Department of Epilepsy Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- *Correspondence: Jing Zhao, ; Lisen Sui, ; Shaoping Li, ,
| | - Shaoping Li
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- *Correspondence: Jing Zhao, ; Lisen Sui, ; Shaoping Li, ,
| |
Collapse
|