1
|
Blank M, Israeli D, Shoenfeld Y. Exercise, autoimmune diseases and T-regulatory cells. J Autoimmun 2024; 149:103317. [PMID: 39303372 DOI: 10.1016/j.jaut.2024.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Diverse forms of physical activities contribute to improvement of autoimmune diseases and may prevent disease burst. T regulatory cells (Tregs) maintain tolerance in autoimmune condition. Physical activity is one of the key factors causing enhancement of Tregs number and functions, keeping homeostatic state by its secrotome. Muscles secrete myokines like IL-6, PGC1α (PPARγ coactivator-1 α), myostatin, transforming growth factor β (TGF-β) superfamily), IL-15, brain derived neurotrophic factor (BDNF) and others. The current concept points to the role of exercise in induction of highly functional and stable muscle Treg phenotype. The residing-Tregs require IL6Rα signaling to control muscle function and regeneration. Skeletal muscle Tregs IL-6Rα is a key target for muscle-Tregs cross-talk. Thus, interplay between the Tregs-skeletal muscle, following exercise, contribute to the balance of immune tolerance and autoimmunity. The cargo delivery, in the local environment and periphery, is performed by extracellular vesicles (EVs) secreted by muscle and Tregs, which deliver proteins, lipids and miRNA during persistent exercise protocols. It has been suggested that this ensemble induce protection against autoimmune diseases.
Collapse
Affiliation(s)
- Miri Blank
- Zabludowicz Centre for Autoimmune Diseases, Sheba Medical Centre, Tel-Hashomer, Israel; Reichman University, Herzelia, Israel
| | | | - Yehuda Shoenfeld
- Zabludowicz Centre for Autoimmune Diseases, Sheba Medical Centre, Tel-Hashomer, Israel; Reichman University, Herzelia, Israel.
| |
Collapse
|
2
|
Romero-García PA, Ramirez-Perez S, Miguel-González JJ, Guzmán-Silahua S, Castañeda-Moreno JA, Komninou S, Rodríguez-Lara SQ. Complementary and Alternative Medicine (CAM) Practices: A Narrative Review Elucidating the Impact on Healthcare Systems, Mechanisms and Paediatric Applications. Healthcare (Basel) 2024; 12:1547. [PMID: 39120250 PMCID: PMC11311728 DOI: 10.3390/healthcare12151547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
While research on complementary and alternative medicine (CAM) for the general population is expanding, there remains a scarcity of studies investigating the efficacy and utilisation of CAM practices, specifically in the paediatric population. In accordance with the World Health Organization (WHO), the prevalence of the parental utilisation of CAM in their dependents is estimated to reach up to 80%. This literature review identified broad, heterogeneous, and inconclusive evidence regarding CAM's applications and effectiveness, primarily attributed to variance in sociodemographic factors and differences in national healthcare systems. Additionally, the review identified a lack of consensus and polarised positions among mainstream professionals regarding the mechanisms of action, applications, and effectiveness of CAM. This narrative review presents varied results concerning the efficacy of most CAM therapies and their applications; however, some evidence suggests potential benefits for acupuncture, yoga, tai chi, and massage in improving physical and mental health. Moreover, the available evidence indicates that meditation may enhance mental health, while reiki may only influence patients' perceptions of comfort. In light of the intricate and multifaceted nature of herbal medicine, it is imperative to assess its efficacy on a case-by-case basis, taking into account the specific compounds and procedures involved. This comprehensive review serves as a valuable resource for health professionals, offering guidance for personalised healthcare approaches that consider the values and beliefs of patients, thereby facilitating integrated, evidence-based practices aimed at enhancing the quality of healthcare services and patient satisfaction.
Collapse
Affiliation(s)
- Patricia Anaid Romero-García
- School of Medicine, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico; (S.R.-P.); (J.J.M.-G.); (S.G.-S.); (J.A.C.-M.)
| | - Sergio Ramirez-Perez
- School of Medicine, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico; (S.R.-P.); (J.J.M.-G.); (S.G.-S.); (J.A.C.-M.)
- Instituto de Investigación en Reumatología y del Sistema Músculo-Esquelético (IIRSME), CUCS, Universidad de Guadalajara, Guadalajara 44100, Jalisco, Mexico
| | - Jorge Javier Miguel-González
- School of Medicine, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico; (S.R.-P.); (J.J.M.-G.); (S.G.-S.); (J.A.C.-M.)
- Departamento de Investigación, Instituto Cardiovascular de Mínima Invasión (ICMI), Zapopan 45116, Jalisco, Mexico
| | - Sandra Guzmán-Silahua
- School of Medicine, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico; (S.R.-P.); (J.J.M.-G.); (S.G.-S.); (J.A.C.-M.)
- Unidad de Investigación Epidemiológica y en Servicios de Salud, CMNO OOAD Jalisco Instituto Mexicano del Seguro Social, Guadalajara 44160, Jalisco, Mexico
| | - Javier Adan Castañeda-Moreno
- School of Medicine, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico; (S.R.-P.); (J.J.M.-G.); (S.G.-S.); (J.A.C.-M.)
| | - Sophia Komninou
- Faculty of Health and Life Science, Swansea University, Swansea SA2 8PP, UK;
| | - Simón Quetzalcoatl Rodríguez-Lara
- School of Medicine, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico; (S.R.-P.); (J.J.M.-G.); (S.G.-S.); (J.A.C.-M.)
| |
Collapse
|
3
|
Effect of Routine Therapy Assisted by Physical Exercise on Pulmonary Function in Patients with Asthma in Stable Stage: A Systematic Review and Meta-analysis of Randomized Clinical Trials. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2350297. [PMID: 35747133 PMCID: PMC9213151 DOI: 10.1155/2022/2350297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022]
Abstract
Objective This study is aimed at investigating the efficacy of physical exercise-assisted routine therapy on the pulmonary function of patients with stable asthma to provide clinical evidence and data support to guide disease management. Methods Randomized controlled clinical trials of drug therapy and/or physical exercise for patients with stable asthma were retrieved from the China National Knowledge Infrastructure (CNKI), Wanfang database, Embase, PubMed, and Web of Science database. The studies published between January 2000 and June 2021 that met the criteria were included, and corresponding data were extracted. The meta-analysis was performed using the statistical software Stata 16.0. Statistical pooled effect sizes and 95% confidence intervals were calculated using a random-effects or fixed-effects model, as funnel plots were made with Begg's rank correlation method to evaluate publication bias. Result This meta-analysis included 14 randomized controlled studies. Physical exercise-assisted treatment (experiment group) or routine therapy was associated with significantly elevated levels of forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) (P < 0.05). As for the peak expiratory flow (PEF) level (P < 0.05), its level was significantly increased with physical exercise-assisted therapy compared with the conventional approach (P > 0.05). Subgroup analysis indicated that the FVC level in the experimental group was higher than that in the control group (P < 0.05) regardless of the adoption of aerobic exercise/anaerobic exercise. In regard to the FEV1 and PEE levels, aerobic exercise was associated with elevated levels in the experimental group (P < 0.05), while no significant difference in anaerobic exercise between both groups was observed (P > 0.05). Further, FEV1, FVC, and PEF levels in the experimental group were higher than those receiving conventional treatment in the control group (P < 0.05). Conclusion Routine treatment combined with physical exercise could improve the levels of FEV1, FVC, and PEF in patients with bronchial asthma in the nonacute attack stage and enhance pulmonary functions. As a safe and efficient adjuvant therapy, physical exercise can contribute to an improved prognosis and quality of life for patients with asthma.
Collapse
|
4
|
Espinosa dos Santos B, Macedo LCDSAD, Adomaitis APG, Castro AMMD, Teixeira de Almeida J, Moraes dos Santos ML, Foerster Merey LS. Impacts of aerobic exercise on children with asthma diagnosis: integrative review. REVISTA CIÊNCIAS EM SAÚDE 2022. [DOI: 10.21876/rcshci.v12i1.1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Objective: To identify the impacts of aerobic exercise on the health of children with asthma, seeking to know protocols of rehabilitation programs and their impacts. Methods: Clinical trials published from 2010 to 2020 were selected, filtered by the descriptors: 'asthma', 'exercise' or 'physical training', 'children' OR 'adolescents' AND 'quality of life'. Results: Nineteen articles were included; the duration of the programs ranged from 4 to 24 weeks, 2 to 6 times/week, with the sessions varying from 30 min to 1h10min and intensity from 40% to 100% of the Maximum Heart Rate. The studies evaluated strength, lung capacity and function, inflammatory mediators, quality of life, and asthma control. Aerobic interventions made it possible to improve cardiorespiratory capacity, intracellular action of antioxidants, quality of life, and disease control. Significant results were found in protocols with playful exercises performed for 60 minutes, three times a week, and at least 12 weeks. Conclusion: The ease of reproducing the protocols can provide greater coverage of care and rehabilitation, which in the long term can help to reduce the hospitalization rate, cost, and hospital demand for severe exacerbations.
Collapse
|
5
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|