1
|
Xu H, Li W, Xue K, Zhang H, Li H, Yu H, Hu L, Gu Y, Li H, Sun X, Liu Q, Wang D. ADAR1-regulated miR-142-3p/RIG-I axis suppresses antitumor immunity in nasopharyngeal carcinoma. Noncoding RNA Res 2025; 10:116-129. [PMID: 39351449 PMCID: PMC11439846 DOI: 10.1016/j.ncrna.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
Following the initial treatment of nasopharyngeal carcinoma (NPC), tumor progression often portends an adverse prognosis for these patients. MicroRNAs (miRNAs) have emerged as critical regulators of tumor immunity, yet their intricate mechanisms in NPC remain elusive. Through comprehensive miRNA sequencing, tumor tissue microarrays and tissue samples analysis, we identified miR-142-3p as a significantly upregulated miRNA that is strongly associated with poor prognosis in recurrent NPC patients. To elucidate the underlying molecular mechanism, we employed RNA sequencing, coupled with cellular and tissue assays, to identify the downstream targets and associated signaling pathways of miR-142-3p. Our findings revealed two potential targets, CFL2 and WASL, which are directly targeted by miR-142-3p. Functionally, overexpressing CFL2 or WASL significantly reversed the malignant phenotypes induced by miR-142-3p both in vitro and in vivo. Furthermore, signaling pathway analysis revealed that miR-142-3p repressed the RIG-I-mediated immune defense response in NPC by inhibiting the nuclear translocation of IRF3, IRF7 and p65. Moreover, we discovered that ADAR1 physically interacted with Dicer and promoted the formation of mature miR-142-3p in a dose-dependent manner. Collectively, ADAR1-mediated miR-142-3p processing promotes tumor progression and suppresses antitumor immunity, indicating that miR-142-3p may serve as a promising prognostic biomarker and therapeutic target for NPC patients.
Collapse
Affiliation(s)
- Haoyuan Xu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Wanpeng Li
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Kai Xue
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Huankang Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Han Li
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Haoran Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Li Hu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Yurong Gu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Houyong Li
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Xicai Sun
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Quan Liu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Dehui Wang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| |
Collapse
|
2
|
Li M, Mo T, Yang Z, Yao Y, Wang Y, Zhao Y. A fishnet between nasopharyngeal carcinoma and resistance: the competing endogenous RNA network. Curr Treat Options Oncol 2025; 26:45-54. [PMID: 39810047 DOI: 10.1007/s11864-024-01284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
OPINION STATEMENT Chemotherapy and radiotherapy (chemo-/radiotherapy) have advanced as the main treatment modalities for nasopharyngeal carcinoma (NPC), improving patient survival rates. However, chemo-/radiotherapy resistance in NPC cells has emerged as a key factor contributing to poor prognosis. Recently, competing endogenous RNA networks (ceRNETs) have garnered attention for their potential clinical value in studying chemo-/radiotherapy resistance. In this review, we aimed to explore the molecular mechanisms of ceRNA-related molecules, including circular RNA (circRNA), long non-coding RNA (lncRNA), microRNA (miRNA), and other competing endogenous RNAs, in regulating the chemo-/radiotherapy resistance in NPC. Additionally, we discuss the potential applications of ceRNA as a prognostic indicator and therapeutic target for this resistance.
Collapse
Affiliation(s)
- Mingtai Li
- Second School of Clinical Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Tongtong Mo
- Second School of Clinical Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Zisha Yang
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yunhong Yao
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China
| | - Yan Wang
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| | - Yi Zhao
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China.
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
3
|
Wang H, Zhou F, Wan J, Yu H, Wang J. Long noncoding RNA TMPO-AS1 upregulates BCAT1 expression to promote cell proliferation in nasopharyngeal carcinoma via microRNA let-7c-5p. Genes Environ 2024; 46:14. [PMID: 38937856 PMCID: PMC11210057 DOI: 10.1186/s41021-024-00308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) is a group of RNA transcripts that contribute to tumor development by post-transcriptionally regulating cancer-related genes. Nasopharyngeal carcinoma (NPC) is an epithelial tumor that occurs in the nasopharynx and is common in North Africa and Southeast Asia. The study investigated the functions of lncRNA TMPO-AS1 in NPC cell proliferation and apoptosis as well as its related competing endogenous RNA (ceRNA) mechanism. METHODS Candidate microRNA and genes that may regulated by TMPO-AS1 were predicted with the bioinformatic tool starBase. TMPO-AS1 expression in NPC tissue, cells, nuclear part, and cytoplasmic part was measured by RT-qPCR. MTT assay, EdU assay, and flow cytometry analysis were carried out to evaluate NPC cell viability, proliferation, and apoptosis, respectively. RNA immunoprecipitation assay and luciferase reporter assay were conducted to detect the binding between TMPO-AS1 and let-7c-5p or that between let-7c-5p and BCAT1. RESULTS TMPO-AS1 and BCAT1 showed high expression in NPC tissue and cells, while let-7c-5p was downregulated in NPC. The silencing of TMPO-AS1 suppressed NPC cell proliferation while promoting cell apoptosis. Moreover, TMPO-AS1 interacted with let-7c-5p and negatively regulated let-7c-5p expression. BCAT1 was a target of let-7c-5p and was inversely regulated by let-7c-5p in NPC cells. The repressive impact of TMPO-AS1 knockdown on NPC cell growth was countervailed by overexpressed BCAT1. CONCLUSION TMPO-AS1 accelerates NPC cell proliferation and represses cell apoptosis by interacting with let-7c-5p to regulate BCAT1 expression.
Collapse
Affiliation(s)
- Huan Wang
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China
| | - Fuming Zhou
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China
| | - Jia Wan
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China
| | - Hong Yu
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China
| | - Jin Wang
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China.
| |
Collapse
|
4
|
Mokhtari M, Khoshbakht S, Esmaeil Akbari M, Sayyed Sajjad M. WASF3 overexpression affects the expression of circular RNA hsa-circ-0100153, which promotes breast cancer progression by sponging hsa-miR-31, hsa-miR-767-3p, and hsa-miR-935. Heliyon 2023; 9:e22874. [PMID: 38125536 PMCID: PMC10731075 DOI: 10.1016/j.heliyon.2023.e22874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Background The WASF3 gene has been linked to promoting metastasis in breast cancer (BC) cells, and low expression reduces invasion potential. Circular RNAs (circRNAs) function as microRNA (miRNA) modulators and are involved in cancer progression, but the relationship between these factors remains unclear. Methods This study used bioinformatics methods and a computational approach to investigate the role of circRNAs and miRNAs in the context of WASF3 overexpression. Differentially expressed mRNAs, circRNAs, and miRNAs were identified using Gene Expression Omnibus (GEO) datasets. A competing endogenous RNA (ceRNA) network was constructed based on circRNA-miRNA pairs and miRNA-mRNA pairs. Functional and pathway enrichment analyses were predicted using a circRNA-miRNA-mRNA network. Results RNA expression patterns were significantly different between normal and tumor samples. A total of 190 circRNAs, 76 miRNAs, and 678 mRNAs were differentially expressed. The analysis of the circRNA-miRNA-mRNA regulatory network revealed interactions between hsa-circ-0100153, hsa-miR-31, hsa-miR-767-3p, and hsa-miR-935 with WASF3 in cancer. These interactions primarily function in DNA replication and the cell cycle. Conclusions This study reveals a mechanism by which WASF3 overexpression affects the expression of circRNAs hsa-circ-0100153, promoting BC progression by sponging hsa-miR-31/hsa-miR-767-3p /hsa-miR-935. This mechanism may increase the invasive potential of cancers, in addition to other reported molecular mechanisms involving the WASF3 gene.
Collapse
Affiliation(s)
- Majid Mokhtari
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Samane Khoshbakht
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | | | - Moravveji Sayyed Sajjad
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| |
Collapse
|
5
|
Mu T, Hu H, Ma Y, Yang C, Feng X, Wang Y, Liu J, Yu B, Zhang J, Gu Y. Identification of critical lncRNAs for milk fat metabolism in dairy cows using WGCNA and the construction of a ceRNAs network. Anim Genet 2022; 53:740-760. [PMID: 36193627 DOI: 10.1111/age.13249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022]
Abstract
As key regulators, long non-coding RNAs (lncRNAs) play a crucial role in the ruminant mammary gland. However, the function of lncRNAs in milk fat synthesis from dairy cows is largely unknown. In this study, we used the weighted gene co-expression network analysis (WGCNA) to comprehensive analyze the expression profile data of lncRNAs from the group's previous Illumina PE150 sequencing results based on bovine mammary epithelial cells from high- and low-milk-fat-percentage (MFP) cows, and identify core_lncRNAs significantly associated with MFP by module membership (MM) and gene significance (GS). Functional enrichment analysis (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes) of core_lncRNA target genes (co-localization and co-expression) was performed to screen potential lncRNAs regulating milk fat metabolism and further construct an interactive regulatory network of lipid metabolism-related competing endogenous RNAs (ceRNAs). A total of 4876 lncRNAs were used to construct the WGCNA. The MEdarkturquoise module among the 19 modules obtained was significantly associated with MFP (r = 0.78, p-value <0.05) and contained 64 core_lncRNAs (MM > 0.8, GS > 0.4). Twenty-four lipid metabolism-related lncRNAs were identified by core_lncRNA target gene enrichment analysis. TCONS_00054233, TCONS_00152292, TCONS_00048619, TCONS_00033839, TCONS_00153791 and TCONS_00074642 were key candidate lncRNAs for regulating milk fat synthesis. The 22 ceRNAs most likely to be involved in milk fat metabolism were constructed by interaction network analysis, and TCONS_00133813 and bta-miR-2454-5p were located at the network's core. TCONS_00133813_bta-miR-2454-5p_TNFAIP3, TCONS_00133813_bta-miR-2454-5p_ARRB1 and TCONS_00133813_bta-miR-2454-5p_PIK3R1 are key candidate ceRNAs associated with milk fat metabolism. This study provides a framework for the co-expression module of MFP-related lncRNAs in ruminants, identifies several major lncRNAs and ceRNAs that influence milk fat synthesis, and provides a new understanding of the complex biology of milk fat synthesis in dairy cows.
Collapse
Affiliation(s)
- Tong Mu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Honghong Hu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yanfen Ma
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Yinchuan, China
| | - Chaoyun Yang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Xiaofang Feng
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Ying Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Jiamin Liu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Baojun Yu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Juan Zhang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Yaling Gu
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
6
|
Dai Y, Chen W, Huang J, Zheng L, Lin Q, Cui T, Huang C. Multiomics Integrative Analysis Identifying EPC1 as a Prognostic Biomarker in Head and Neck Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1074412. [PMID: 36158885 PMCID: PMC9507713 DOI: 10.1155/2022/1074412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/10/2022] [Indexed: 12/09/2022]
Abstract
Background Biomarker research in head and neck squamous cell carcinoma (HNSCC) is constantly revealing promising findings. An enhancer of polycomb homolog 1 (EPC1) was found to play a procancer role in nasopharyngeal carcinoma (NPC), but its role in HNSCC with strong heterogeneity is still unclear. Herein, we investigated the prognostic significance and related mechanisms of EPC1 in HNSCC. Methods The Kaplan-Meier plotter was used to evaluate the prognostic significance of EPC1. Based on a range of published public databases, the multiomics expression of EPC1 in HNSCC was explored to investigate the mechanisms affecting prognosis. Results According to the clinical data, high EPC1 expression in HNSCC was a predictor of patient prognosis (hazard ratio (HR) = 0.64; 95% confidence interval (CI) 0.49-0.83; P < 0.01). EPC1 expression varied among clinical subtypes and was related to key factors, such as TP53 and human papillomavirus (HPV) (P < 0.05). At the genetic level, EPC1 expression level may be associated with protein phosphorylation, cell adhesion, cancer-related pathways, etc. For the noncoding region, a competing endogenous RNA network was constructed, and 6 microRNAs and 12 long noncoding RNAs were identified. At the protein level, a protein-protein interaction (PPI) network related to EPC1 expression was constructed and found to be involved in HPV infection, endocrine resistance, and multiple cancer pathways. At the immune level, EPC1 expression was correlated with a variety of immune cells and immune molecules, which together constituted the immune microenvironments of tumors. Conclusion High EPC1 expression may predict a better prognosis in HNSCC, as it is more frequently found in HNSCC with HPV infection. EPC1 may participate in the genomics, transcriptomics, proteomics, and immunomics of HNSCC, and the results can provide a reference for the development of targeted drugs and evaluation of patient prognosis.
Collapse
Affiliation(s)
- Yongmei Dai
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fujian 350001, China
| | - Wenhan Chen
- The Second Clinical Medical College of Fujian Medical University, Fujian 362000, China
- Department of Clinical Medicine, Fujian Medical University, Fujian 350122, China
| | - Junpeng Huang
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fujian 350001, China
| | - Lijing Zheng
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fujian 350001, China
| | - Qing Lin
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fujian 350001, China
| | - Tongjian Cui
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fujian 350001, China
| | - Chen Huang
- Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fujian 350001, China
| |
Collapse
|
7
|
Ye D, Liu Y, Chen Y, Li G, Sun B, Peng J, Xu Q. Identification of lncRNA biomarkers in hepatocellular carcinoma by comprehensive analysis of the lncRNA-mediated ceRNA network. Front Genet 2022; 13:832952. [PMID: 36105104 PMCID: PMC9465287 DOI: 10.3389/fgene.2022.832952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022] Open
Abstract
Growing evidence implicates that miRNAs can interact with long non-coding RNAs (lncRNAs) to regulate target mRNAs through competitive interactions. However, this mechanism that regulate tumorigenesis and cancer progression remains largely unexplored. Long non-coding RNAs (lncRNAs) act as competing endogenous RNAs (ceRNAs), which play a significant role in regulating gene expression. The purpose of our study was to determine potential lncRNA biomarkers to predict the prognosis of HCC by comprehensive analysis of a ceRNA network. The edgeR package was used to obtain the differentially expressed RNA datasets by analyzing 370 HCC tissues and 50 adjacent non-HCC tissues from The Cancer Genome Atlas (TCGA). Through investigating the differentially expressed between HCC tissues and adjacent non-HCC tissues, a total of 947 lncRNAs, 52 miRNAs, and 1,650 mRNAs were obtained. The novel constructed ceRNA network incorporated 99 HCC-specific lncRNAs, four miRNAs, and 55 mRNAs. Survival analysis identified 22 differentially expressed mRNAs, four miRNAs, and nine lncRNAs which were associated with overall survival (OS) time in HCC (p < 0.05), and further exploration was performed to assess the correlation of these differentially expressed genes with tumor stage. The Interpretation of the potential functions of these differentially expressed genes in HCC was realized by Gene ontology (GO) and KEGG pathway enrichment analyses. Seven lncRNAs were confirmed based on univariate Cox regression analysis, lasso COX regression analysis and multivariate Cox regression analysis to construct a predictive model in HCC patients which were related to the prognosis of OS. In summary, ceRNAs contributed to explore the mechanism of tumorigenesis and development, and a model with seven lncRNAs might be potential biomarker to predict the prognosis of HCC. These findings supported the need to studies on the mechanisms involved in the regulation of HCC by ceRNAs.
Collapse
Affiliation(s)
- Dingde Ye
- Medicine School of Southeast University Nanjing Drum Tower Hospital, Nanjing, China
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yaping Liu
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yanuo Chen
- Medicine School of Southeast University Nanjing Drum Tower Hospital, Nanjing, China
| | - Guoqiang Li
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Beicheng Sun
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Beicheng Sun, ; Jin Peng, ; Qingxiang Xu,
| | - Jin Peng
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Beicheng Sun, ; Jin Peng, ; Qingxiang Xu,
| | - Qingxiang Xu
- Medicine School of Southeast University Nanjing Drum Tower Hospital, Nanjing, China
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Beicheng Sun, ; Jin Peng, ; Qingxiang Xu,
| |
Collapse
|
8
|
Wang X, Nie P, Zhu D. LncRNA HOXA10-AS Activated by E2F1 Facilitates Proliferation and Migration of Nasopharyngeal Carcinoma Cells Through Sponging miR-582-3p to Upregulate RAB31. Am J Rhinol Allergy 2022; 36:348-359. [PMID: 35072529 DOI: 10.1177/19458924211064400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a kind of head and neck cancer with a characteristic regional distribution. Increasing evidence has illustrated that long noncoding RNAs (lncRNAs) exert the regulatory function in tumor development. Nevertheless, the specific functions of lncRNA HOXA10 antisense RNA (HOXA10-AS) in NPC remain to be clarified. In this research, quantitative reverse transcription polymerase chain reaction detected HOXA10-AS expression in NPC cells. Cell counting kit-8, colony formation, and transwell assays were utilized to measure the proliferation and migration of NPC cells. Moreover, mechanism assays detected the interaction of different genes. Briefly, HOXA10-AS was highly expressed in NPC cells. HOXA10-AS down-regulation restrained NPC cell proliferation and migration. Further, HOXA10-AS could bind to miR-582-3p by acting as a competing endogenous RNA. Besides, Ras-related protein Rab-31 (RAB31) was proven as the target gene of miR-582-3p. Additionally, E2F transcription factor 1 (E2F1) acted as a transcription factor to activate HOXA10-AS expression. In the final rescue assays, we observed that the effect of HOXA10-AS depletion on NPC cell growth could be fully reversed by RAB31 overexpression or miR-582-3p inhibition. In short, our research proved that HOXA10-AS activated by E2F1 facilitated proliferation and migration of NPC cells through sponging miR-582-3p to upregulate RAB31.
Collapse
Affiliation(s)
- Xinyan Wang
- Jinan Fourth People's Hospital, Jinan, China
| | - Peilan Nie
- Jinan Fourth People's Hospital, Jinan, China
| | - Dongmei Zhu
- Jinan Fourth People's Hospital, Jinan, China
| |
Collapse
|
9
|
Cell Proliferation and Apoptosis-Related Genes Affect the Development of Human Nasopharyngeal Carcinoma Through PI3K/AKT Signaling Pathway. Mol Biotechnol 2021; 63:1081-1091. [PMID: 34236626 DOI: 10.1007/s12033-021-00357-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/13/2021] [Indexed: 12/08/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the common malignant tumors in China, which occurs on the top and sidewalls of the nasopharyngeal cavity. The incidence of malignant tumors of the ear, nose and throat is the highest. However, little is known about the growth of the cells. Therefore, this study constructed a multi-regulator-driven NPC cell growth-related module, aiming to explore the mechanism of functional pathways regulating the proliferation of NPC cells in an all-round way. Firstly, differential expression analysis, co-expression analysis, enrichment analysis and connectivity analysis were synthesized to identify the intrinsic genes of expression disorder module. Subsequently, we analyzed the module by crosstalk, and observed the interaction between modules intuitively. Finally, based on hypergeometric test, the significance of multi-regulators on the regulation of potential modules is calculated. We obtained 17 cell growth-related expression disorder modules by 2148 gene modules focusing. These modules are mainly involved in the growth cycle of NPC cells, including cell proliferation, migration and apoptosis. At the same time, they mainly affect the proliferation and apoptosis of NPC cells through PI3K-AKT signaling pathway, NF-kappa B signaling pathway and Wnt signaling pathway. Based on the growth-related modules of NPC cells, we have obtained a series of non-coding RNAs (ncRNAs) including microRNA-92a-3p, microRNA-19a-3p and microRNA-130a-3p, play an important role in regulating the growth of NPC cells. Similarly, we also predicted transcription factors (involving E2F1, NFKB1, SP1, etc.) that may play a key role in cell growth-related modules. This study is based on cell growth-related expression disorder module to explore the regulatory role of its functional pathway on cell proliferation mechanism, which will help researchers to have a deeper understanding of the potential pathogenesis of NPC.
Collapse
|
10
|
Wu Q, Zhao Y, Shi R, Wang T. LncRNA SNHG16 Facilitates Nasopharyngeal Carcinoma Progression by Acting as ceRNA to Sponge miR-520a-3p and Upregulate MAPK1 Expression. Cancer Manag Res 2021; 13:4103-4114. [PMID: 34045897 PMCID: PMC8147710 DOI: 10.2147/cmar.s305544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Background Accumulating evidence shows that lncRNAs are widely involved cellular processes of various tumors. The aim of this study was to explore the potential role and molecular mechanism of lncRNA SNHG16 in nasopharyngeal carcinoma (NPC). Methods SNHG16, miR-520a-3p, and MAPK1 levels were measured by RT-qPCR assay. CCK-8, colony formation, transwell, and flow cytometry assays were adopted to analyze the proliferation, migration, invasion, and apoptosis of NPC cell lines (SUNE1 and 5–8F). Murine xenograft model was used to investigate tumor growth and metastasis in vivo. Immunohistochemical staining was employed to evaluate the levels of Bcl-2, cleaved caspase-3, Bax, and Ki-67. Dual-luciferase reporter assays were conducted to analyze the binding ability between miR-520a-3p and SNHG16 or MAPK1. Results SNHG16 was overexpressed in NPC tissues and cells. High SNHG16 expression indicated a poor prognosis. SNHG16 knockdown could cause significant inhibition on cell proliferation and metastasis, induce cell apoptosis in NPC cells, and repressed tumor growth and metastasis in vivo. Additionally, SNHG16 could directly bind to miR-520a-3p, thus positively regulating MAPK1 expression. Moreover, functional analysis indicated that miR-520a-3p exerted a tumor-suppressing role in NPC progression. Rescue assays demonstrated that MAPK1 upregulation could abrogate the inhibitory effects on NPC cell proliferation and metastasis, as well as the promoting effects on NPC cell apoptosis caused by SNHG16 knockdown. In conclusion, SNHG16 contributed to the proliferation and metastasis of NPC cells by modulating the miR-520a-3p/MAPK1 axis. Conclusion These results suggest that SNHG16 acts as an oncogene in the progression of NPC via modulating the miR-520a-3p/MAPK1 axis.
Collapse
Affiliation(s)
- Qingwei Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yingying Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Runjie Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tao Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|