1
|
Kleinerova J, Chipika RH, Tan EL, Yunusova Y, Marchand-Pauvert V, Kassubek J, Pradat PF, Bede P. Sensory Dysfunction in ALS and Other Motor Neuron Diseases: Clinical Relevance, Histopathology, Neurophysiology, and Insights from Neuroimaging. Biomedicines 2025; 13:559. [PMID: 40149536 PMCID: PMC11940395 DOI: 10.3390/biomedicines13030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The clinical profiles of MNDs are dominated by inexorable motor decline, but subclinical proprioceptive, nociceptive and somatosensory deficits may also exacerbate mobility, dexterity, and bulbar function. While extra-motor pathology and frontotemporal involvement are widely recognised in motor neuron diseases (MNDs), reports of sensory involvement are conflicting. The potential contribution of sensory deficits to clinical disability is not firmly established and the spectrum of sensory manifestations is poorly characterised. Methods: A systematic review was conducted to examine the clinical, neuroimaging, electrophysiology and neuropathology evidence for sensory dysfunction in MND phenotypes. Results: In ALS, paraesthesia, pain, proprioceptive deficits and taste alterations are sporadically reported and there is also compelling electrophysiological, histological and imaging evidence of sensory network alterations. Gait impairment, impaired dexterity, and poor balance in ALS are likely to be multifactorial, with extrapyramidal, cerebellar, proprioceptive and vestibular deficits at play. Human imaging studies and animal models also confirm dorsal column-medial lemniscus pathway involvement as part of the disease process. Sensory symptoms are relatively common in spinal and bulbar muscular atrophy (SBMA) and Hereditary Spastic Paraplegia (HSP), but are inconsistently reported in primary lateral sclerosis (PLS) and in post-poliomyelitis syndrome (PPS). Conclusions: Establishing the prevalence and nature of sensory dysfunction across the spectrum of MNDs has a dual clinical and academic relevance. From a clinical perspective, subtle sensory deficits are likely to impact the disability profile and care needs of patients with MND. From an academic standpoint, sensory networks may be ideally suited to evaluate propagation patterns and the involvement of subcortical grey matter structures. Our review suggests that sensory dysfunction is an important albeit under-recognised facet of MND.
Collapse
Affiliation(s)
- Jana Kleinerova
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Rangariroyashe H. Chipika
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yana Yunusova
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Jan Kassubek
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany;
| | - Pierre-Francois Pradat
- Laboratoire d’Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, 75013 Paris, France
- Department of Neurology, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Peter Bede
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Neurology, St James’s Hospital Dublin, D08 NHY1 Dublin, Ireland
| |
Collapse
|
2
|
Dehghan Y, Sarbaz Y. Cortical complexity alterations in motor subtypes of Parkinson's disease: A surface-based morphometry analysis of fractal dimension. Eur J Neurosci 2024; 60:7249-7262. [PMID: 39627178 DOI: 10.1111/ejn.16612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 12/17/2024]
Abstract
Based on motor symptoms, Parkinson's disease (PD) can be classified into tremor dominant (TD) and postural instability gait difficulty (PIGD) subtypes. Few studies have examined cortical complexity differences in PD motor subtypes. This study aimed to investigate differences in cortical complexity and grey matter volume (GMV) between TD and PIGD. We enrolled 36 TD patients, 27 PIGD patients and 66 healthy controls (HC) from the PPMI (Parkinson's Progression Markers Initiative) database. Voxel-based morphometry (VBM) and surface-based morphometry (SBM) were utilized to assess differences in GMV, cortical thickness and cortical complexity. The structural MRI data of participants was analysed using CAT12/SPM12 (p < 0.05, FDR corrected). Additionally, correlations between clinical data and structural changes were examined (p < 0.05, Holm-Bonferroni corrected). In comparison to both HC and TD groups, PIGD patients exhibited a significant fractal dimension (FD) decrease in many cortical regions. A significant negative correlation between age and FD was observed in the left insula for the PIGD patients and in the bilateral insula for the TD patients. However, no significant differences were found in GMV, cortical thickness or other complexity indices. Altered FD in the bilateral insula indicates that postural instability and gait disturbances may result from a failure to integrate information from various structures, whereas parkinsonian rest tremor is not associated with this integration. Also, widespread decreases in cortical FD demonstrate that FD is more sensitive than other complexity measures and can serve as a novel biomarker for identifying subtle changes in cortical morphology in the PIGD subtype.
Collapse
Affiliation(s)
- Yousef Dehghan
- Biological Systems Modeling Laboratory, Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Yashar Sarbaz
- Biological Systems Modeling Laboratory, Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Liping W, Minghui L, Jiayuan Z, Aijie W, Ranran H, Zengcai Z, Guowei Z. Abnormal topological structure of structural covariance networks based on fractal dimension in noise induced hearing loss. Sci Rep 2024; 14:29644. [PMID: 39609512 PMCID: PMC11605099 DOI: 10.1038/s41598-024-80731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
The topological attributes of structural covariance networks (SCNs) based on fractal dimension (FD) and changes in brain network connectivity were investigated using graph theory and network-based statistics (NBS) in patients with noise-induced hearing loss (NIHL). High-resolution 3D T1 images of 40 patients with NIHL and 38 healthy controls (HCs) were analyzed. FD-based Pearson correlation coefficients were calculated and converted to Fisher's Z to construct the SCNs. Topological attributes and network hubs were calculated using the graph theory. Topological measures between groups were compared using nonparametric permutation tests. Abnormal connection networks were identified using NBS analysis. The NIHL group showed a significantly increased normalized clustering coefficient, normalized characteristic path length, and decreased nodal efficiency of the right medial orbitofrontal gyrus. Additionally, the network hubs based on betweenness centrality and degree centrality were both the right transverse temporal gyrus and left parahippocampal gyrus in the NIHL group. The NBS analysis revealed two subnetworks with abnormal connections. The subnetwork with enhanced connections was mainly distributed in the default mode, frontoparietal, dorsal attention, and somatomotor networks, whereas the subnetwork with reduced connections was mainly distributed in the limbic, visual, default mode, and auditory networks. These findings demonstrate the abnormal topological structure of FD-based SCNs in patients with NIHL, which may contribute to understand the complex mechanisms of brain damage at the network level, providing a new theoretical basis for neuropathological mechanisms.
Collapse
Affiliation(s)
- Wang Liping
- Imaging Department, Yantaishan Hospital, Yantai, China
| | - Lv Minghui
- Imaging Department, Yantaishan Hospital, Yantai, China
| | - Zhang Jiayuan
- Intelligence Control System, Yantai Vocational College, Yantai, China
| | - Wang Aijie
- Imaging Department, Yantaishan Hospital, Yantai, China
| | - Huang Ranran
- Imaging Department, Yantaishan Hospital, Yantai, China
| | - Zhang Zengcai
- Shandong Luhang Intelligent Technology Co., LTD, Yantai, China.
| | - Zhang Guowei
- Imaging Department, Yantaishan Hospital, Yantai, China.
| |
Collapse
|
4
|
Yeske B, Hou J, Chu DY, Adluru N, Nair VA, Beniwal-Patel P, Saha S, Prabhakaran V. Structural brain morphometry differences and similarities between young patients with Crohn's disease in remission and healthy young and old controls. Front Neurosci 2024; 18:1210939. [PMID: 38356645 PMCID: PMC10864509 DOI: 10.3389/fnins.2024.1210939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Crohn's disease (CD), one of the main phenotypes of inflammatory bowel disease (IBD), can affect any part of the gastrointestinal tract. It can impact the function of gastrointestinal secretions, as well as increasing the intestinal permeability leading to an aberrant immunological response and subsequent intestinal inflammation. Studies have reported anatomical and functional brain changes in Crohn's Disease patients (CDs), possibly due to increased inflammatory markers and microglial cells that play key roles in communicating between the brain, gut, and systemic immune system. To date, no studies have demonstrated similarities between morphological brain changes seen in IBD and brain morphometry observed in older healthy controls.. Methods For the present study, twelve young CDs in remission (M = 26.08 years, SD = 4.9 years, 7 male) were recruited from an IBD Clinic. Data from 12 young age-matched healthy controls (HCs) (24.5 years, SD = 3.6 years, 8 male) and 12 older HCs (59 years, SD = 8 years, 8 male), previously collected for a different study under a similar MR protocol, were analyzed as controls. T1 weighted images and structural image processing techniques were used to extract surface-based brain measures, to test our hypothesis that young CDs have different brain surface morphometry than their age-matched young HCs and furthermore, appear more similar to older HCs. The phonemic verbal fluency (VF) task (the Controlled Oral Word Association Test, COWAT) (Benton, 1976) was administered to test verbal cognitive ability and executive control. Results/Discussion On the whole, CDs had more brain regions with differences in brain morphometry measures when compared to the young HCs as compared to the old HCs, suggesting that CD has an effect on the brain that makes it appear more similar to old HCs. Additionally, our study demonstrates this atypical brain morphometry is associated with function on a cognitive task. These results suggest that even younger CDs may be showing some evidence of structural brain changes that demonstrate increased resemblance to older HC brains rather than their similarly aged healthy counterparts.
Collapse
Affiliation(s)
- Benjamin Yeske
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Jiancheng Hou
- Center for Cross-Straits Cultural Development, Fujian Normal University, Fuzhou City, Fujian, China
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniel Y. Chu
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Nagesh Adluru
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- The Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Veena A. Nair
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Poonam Beniwal-Patel
- Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sumona Saha
- Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin- Madison, Madison, WI, United States
| | - Vivek Prabhakaran
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychology and Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
5
|
Davidson JM, Zhang L, Yue GH, Di Ieva A. Fractal Dimension Studies of the Brain Shape in Aging and Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 36:329-363. [PMID: 38468041 DOI: 10.1007/978-3-031-47606-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The fractal dimension is a morphometric measure that has been used to investigate the changes of brain shape complexity in aging and neurodegenerative diseases. This chapter reviews fractal dimension studies in aging and neurodegenerative disorders in the literature. Research has shown that the fractal dimension of the left cerebral hemisphere increases until adolescence and then decreases with aging, while the fractal dimension of the right hemisphere continues to increase until adulthood. Studies in neurodegenerative diseases demonstrated a decline in the fractal dimension of the gray matter and white matter in Alzheimer's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia. In multiple sclerosis, the white matter fractal dimension decreases, but conversely, the fractal dimension of the gray matter increases at specific stages of disease. There is also a decline in the gray matter fractal dimension in frontotemporal dementia and multiple system atrophy of the cerebellar type and in the white matter fractal dimension in epilepsy and stroke. Region-specific changes in fractal dimension have also been found in Huntington's disease and Parkinson's disease. Associations were found between the fractal dimension and clinical scores, showing the potential of the fractal dimension as a marker to monitor brain shape changes in normal or pathological processes and predict cognitive or motor function.
Collapse
Affiliation(s)
- Jennilee M Davidson
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Guang H Yue
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Antonio Di Ieva
- Computational Neurosurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
6
|
Zhang L, Shen Q, Liao H, Li J, Wang T, Zi Y, Zhou F, Song C, Mao Z, Wang M, Cai S, Tan C. Aberrant Changes in Cortical Complexity in Right-Onset Versus Left-Onset Parkinson's Disease in Early-Stage. Front Aging Neurosci 2021; 13:749606. [PMID: 34819848 PMCID: PMC8606890 DOI: 10.3389/fnagi.2021.749606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
There is increasing evidence to show that motor symptom lateralization in Parkinson’s disease (PD) is linked to non-motor features, progression, and prognosis of the disease. However, few studies have reported the difference in cortical complexity between patients with left-onset of PD (LPD) and right-onset of PD (RPD). This study aimed to investigate the differences in the cortical complexity between early-stage LPD and RPD. High-resolution T1-weighted magnetic resonance images of the brain were acquired in 24 patients with LPD, 34 patients with RPD, and 37 age- and sex-matched healthy controls (HCs). Cortical complexity including gyrification index, fractal dimension (FD), and sulcal depth was analyzed using surface-based morphometry via CAT12/SPM12. Familywise error (FWE) peak-level correction at p < 0.05 was performed for significance testing. In patients with RPD, we found decreased mean FD and mean sulcal depth in the banks of the left superior temporal sulcus (STS) compared with LPD and HCs. The mean FD in the left superior temporal gyrus (STG) was decreased in RPD compared with HCs. However, in patients with LPD, we did not identify significantly abnormal cortical complex change compared with HCs. Moreover, we observed that the mean FD in STG was negatively correlated with the 17-item Hamilton Depression Scale (HAMD) among the three groups. Our findings support the specific influence of asymmetrical motor symptoms in cortical complexity in early-stage PD and reveal that the banks of left STS and left STG might play a crucial role in RPD.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junli Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tianyu Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuheng Zi
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhou
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chendie Song
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenni Mao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Kritikos M, Clouston SAP, Huang C, Pellecchia AC, Mejia-Santiago S, Carr MA, Kotov R, Lucchini RG, Gandy SE, Bromet EJ, Luft BJ. Cortical complexity in world trade center responders with chronic posttraumatic stress disorder. Transl Psychiatry 2021; 11:597. [PMID: 34815383 PMCID: PMC8611009 DOI: 10.1038/s41398-021-01719-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Approximately 23% of World Trade Center (WTC) responders are experiencing chronic posttraumatic stress disorder (PTSD) associated with their exposures at the WTC following the terrorist attacks of 9/11/2001, which has been demonstrated to be a risk factor for cognitive impairment raising concerns regarding their brain health. Cortical complexity, as measured by analyzing Fractal Dimension (FD) from T1 MRI brain images, has been reported to be reduced in a variety of psychiatric and neurological conditions. In this report, we hypothesized that FD would be also reduced in a case-control sample of 99 WTC responders as a result of WTC-related PTSD. The results of our surface-based morphometry cluster analysis found alterations in vertex clusters of complexity in WTC responders with PTSD, with marked reductions in regions within the frontal, parietal, and temporal cortices, in addition to whole-brain absolute bilateral and unilateral complexity. Furthermore, region of interest analysis identified that the magnitude of changes in regional FD severity was associated with increased PTSD symptoms (reexperiencing, avoidance, hyperarousal, negative affect) severity. This study confirms prior findings on FD and psychiatric disorders and extends our understanding of FD associations with posttraumatic symptom severity. The complex and traumatic experiences that led to WTC-related PTSD were associated with reductions in cortical complexity. Future work is needed to determine whether reduced cortical complexity arose prior to, or concurrently with, onset of PTSD.
Collapse
Affiliation(s)
- Minos Kritikos
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Sean A P Clouston
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| | - Chuan Huang
- Department of Radiology, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Alison C Pellecchia
- World Trade Center Health and Wellness Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Stephanie Mejia-Santiago
- World Trade Center Health and Wellness Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Melissa A Carr
- World Trade Center Health and Wellness Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Roman Kotov
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Roberto G Lucchini
- Department of Environmental Health Sciences, Robert Stempel School of Public Health, Florida International University, Miami, FL, USA
| | - Samuel E Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and Mount Sinai Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evelyn J Bromet
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Benjamin J Luft
- World Trade Center Health and Wellness Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|