1
|
Huang M, Cai J, Zeng H, Zhu Y, Zhang F, Li S. miR-103 promotes esophageal squamous cell carcinoma metastasis by targeting FOXP1. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2025:1-14. [PMID: 40117454 DOI: 10.1080/15257770.2025.2478980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/17/2025] [Accepted: 03/08/2025] [Indexed: 03/23/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC), a prevalent malignancy within the digestive tract, is associated with a significantly high mortality rate. MicroRNAs were already demonstrated to work in a wide range of tumors. The objective of the present research was to elucidate the involvement of miR-103 in the pathogenesis of ESCC and to explore its underlying mechanisms of action. Real-time quantitative polymerase chain reaction was used to detect miR-103 expressions in ESCC tissues and cells. The clinical significance of these expressions was assessed by a series of statistical analyses. Transwell assay was used to study the impact of miR-103 on migration and invasion ability of ESCC cells. Furthermore, a dual luciferase reporter gene method was adopted to study the association of miR-103 with the targeting of forkhead box protein 1 (FOXP1). miR-103 was significantly up-regulation in ESCC tissues and cell lines. Clinically, high miR-103 expression was associated with negative prognosis in ESCC. The low miR-103 expression significantly inhibited cell proliferation, migration and invasion in ESCC cell lines. Furthermore, miR-103 regulated the mechanism of action of ESCC by targeting FOXP1. In this study, we found that miR-103 may serve as a biomarker for ESCC prognosis. miR-103 may promote ESCC cell metastasis by targeting FOXP1. These studies may elucidate the potential of miR-103 as a novel target for the treatment of ESCC.
Collapse
Affiliation(s)
- Min Huang
- Department of Oncology, The First People's Hospital of Jingzhou City, Jingzhou, China
| | - Jun Cai
- Department of Oncology, The First People's Hospital of Jingzhou City, Jingzhou, China
| | - Hai Zeng
- Department of Oncology, The First People's Hospital of Jingzhou City, Jingzhou, China
| | - Yan Zhu
- Department of Oncology, The First People's Hospital of Jingzhou City, Jingzhou, China
| | - Fan Zhang
- Department of Oncology, The First People's Hospital of Jingzhou City, Jingzhou, China
| | - Shuang Li
- Department of Oncology, The First People's Hospital of Jingzhou City, Jingzhou, China
| |
Collapse
|
2
|
Zhong S, Chen C, Yang L, Jin M, Zeng Y, Zou GM, Zhang Q, Wang Y. Identification of circRNA-associated ceRNA networks in peripheral blood mononuclear cells as potential biomarkers for chronic obstructive pulmonary disease. Biosci Rep 2023; 43:BSR20230005. [PMID: 37650285 PMCID: PMC10619198 DOI: 10.1042/bsr20230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), which is a common respiratory disorder with high morbidity and mortality globally, has a complex pathogenesis that is not fully understood. Some circular RNAs (circRNAs) have been recognized to serve as miRNA sponges for regulating target RNA transcripts during the processes of human diseases. In the present study, we aimed to investigate novel circRNA-associated biomarkers for COPD, 245 differentially expressed circRNAs were identified, including 111 up-regulated and 134 down-regulated circRNAs. These candidate circRNAs were enriched in inflammation-associated pathways (such as mTOR, B-cell receptor, and NF-κB signaling pathways) via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. A combination of two circRNAs (up-regulated hsa_circ_0067209 and down-regulated hsa_circ_0000673) demonstrated good diagnostic value (area under the receiver operating characteristic curve [AUC] = 0.866) for COPD by receiver operating characteristic curve (ROC) analysis and qRT-PCR validation. Subsequently, hsa-miR-8082 and hsa-miR-1248 were identified as targets for hsa_circ_0067209 and hsa_circ_0000673, respectively, via bioinformatics analysis and a dual-luciferase reporter assay, and the combination of these two miRNAs displayed better diagnosis potential for COPD (AUC = 0.967) than each other. Evaluation of COPD-related mRNA profiles revealed that the up-regulated genes ABR and TRPM6 were predicted downstream targets for hsa_circ_0067209/hsa-miR-8082, whereas the down-regulated gene RORC was a predicted downstream target for hsa_circ_0000673/hsa-miR-1248. In summary, hsa_circ_0067209 and hsa_circ_0000673 have potential as novel diagnostic biomarkers of COPD. In addition, competing endogenous RNA networks of hsa_circ_0067209/hsa-miR-8082/ABR/TRPM6 and hsa_circ_0000673/hsa-miR-1248/RORC may play critical regulation roles for COPD pathogenesis.
Collapse
Affiliation(s)
- Shan Zhong
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, PR China
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Chengshui Chen
- Department of Respiratory Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Li Yang
- Department of Respiratory Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Meiling Jin
- Department of Respiratory Medicine, Zhongshan Affiliated Hospital of Fudan University, Shanghai 200030, PR China
| | - Yiming Zeng
- Department of Respiratory Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, PR China
| | - Gang-Ming Zou
- School of Nursing and Dental Health. University of Hawaii at Manoa, 2528 McCarthy Mall, Webster Hall. Honolulu, HI 96822, USA
| | - Qingying Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Yun Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China
| |
Collapse
|
3
|
Mbatha S, Hull R, Dlamini Z. Exploiting the Molecular Basis of Oesophageal Cancer for Targeted Therapies and Biomarkers for Drug Response: Guiding Clinical Decision-Making. Biomedicines 2022; 10:biomedicines10102359. [PMID: 36289620 PMCID: PMC9598679 DOI: 10.3390/biomedicines10102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Worldwide, oesophageal cancer is the sixth leading cause of deaths related to cancer and represents a major health concern. Sub-Saharan Africa is one of the regions of the world with the highest incidence and mortality rates for oesophageal cancer and most of the cases of oesophageal cancer in this region are oesophageal squamous cell carcinoma (OSCC). The development and progression of OSCC is characterized by genomic changes which can be utilized as diagnostic or prognostic markers. These include changes in the expression of various genes involved in signaling pathways that regulate pathways that regulate processes that are related to the hallmarks of cancer, changes in the tumor mutational burden, changes in alternate splicing and changes in the expression of non-coding RNAs such as miRNA. These genomic changes give rise to characteristic profiles of altered proteins, transcriptomes, spliceosomes and genomes which can be used in clinical applications to monitor specific disease related parameters. Some of these profiles are characteristic of more aggressive forms of cancer or are indicative of treatment resistance or tumors that will be difficult to treat or require more specialized specific treatments. In Sub-Saharan region of Africa there is a high incidence of viral infections such as HPV and HIV, which are both risk factors for OSCC. The genomic changes that occur due to these infections can serve as diagnostic markers for OSCC related to viral infection. Clinically this is an important distinction as it influences treatment as well as disease progression and treatment monitoring practices. This underlines the importance of the characterization of the molecular landscape of OSCC in order to provide the best treatment, care, diagnosis and screening options for the management of OSCC.
Collapse
Affiliation(s)
- Sikhumbuzo Mbatha
- SAMRC Precision Oncology Research Unit (PORU), SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
- Department of Surgery, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
- Correspondence: (S.M.); (Z.D.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
- Correspondence: (S.M.); (Z.D.)
| |
Collapse
|
4
|
Mukherjee A, Acharya PB, Singh A, Mukunthan KS. Identification of therapeutic
miRNAs
from the Arsenic induced gene expression profile of hepatocellular carcinoma. Chem Biol Drug Des 2022; 101:1027-1041. [PMID: 36052834 DOI: 10.1111/cbdd.14132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 11/03/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, with a rising worldwide burden due to a lack of efficient treatment techniques and diagnosis after it has metastasized. Therefore, small non-coding RNA (miRNAs) as protein translation inhibitors are gaining attention that degrades or suppress specific gene transcripts, making it a prime strategy for oncogenes or tumor suppression. Systematic research with miRNAs in combination with Arsenic, which has been employed as a drug to treat several diseases, including cancer, was focused on cellular responses through interacting with multiple biological targets. The differential gene expression of the DNA microarray dataset (GSE48441) revealed the association of sterol, cholesterol, and lipid metabolic processes. With the aid of the network pharmacology approach, hsa-mir-335-5p was uncovered to negatively regulate the important nodes driving the transport and utilization of essential compounds for the rapid growth and proliferation of cancer cells. The binding energies of the duplexes were validated by the minimal free energies of the mRNAs for hsa-mir-335-5p, indicating energetically desirable binding association. The molecular interactions between hsa-mir-335-5p, which interacts with the Argonaute protein in the RNA induced silencing complex, and the target-specific genes were also investigated, revealing its susceptibility to be employed in in vitro studies.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Department of Biotechnology, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India
| | | | - Akshita Singh
- Department of Biotechnology, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India
| | - K. S. Mukunthan
- Department of Biotechnology, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India
| |
Collapse
|