1
|
Zheng J, Jiao Z, Yang X, Ruan Q, Huang Y, Jin C, Gui S, Xuan Z, Jia X. Network pharmacology-based exploration of the mechanism of Wenweishu granule in treating chronic atrophic gastritis with spleen-stomach cold deficiency syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119591. [PMID: 40054637 DOI: 10.1016/j.jep.2025.119591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/14/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wenweishu (WWS) is a traditional Chinese medicine compound formulated for chronic atrophic gastritis (CAG) treatment by warming the stomach and alleviating pain. However, its pharmacological mechanisms remain underexplored. AIM OF THE STUDY This study investigated the therapeutic effects and potential mechanisms of WWS on CAG with spleen-stomach cold deficiency syndrome (SSCDS). METHODS To achieve this, an SSCDS-CAG rat model and a human gastric mucosal epithelial cells (GES-1) cell model were established using multi-factor modeling and N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG) induction, respectively. WWS's effects on gastric injury were evaluated through pathology, inflammation, serum biomarkers, and apoptosis. Additionally, MNNG's effects on GES-1 cells were analyzed. Network pharmacology, involving protein-protein interaction networks, GO/KEGG enrichment, and molecular docking, was employed to predict WWS's potential targets and mechanisms in SSCDS-CAG. Mechanistic insights were further validated using immunohistochemistry, quantitative reverse transcription polymerase chain reaction, and western blotting. RESULTS In vivo results showed that WWS alleviated symptoms in SSCDS-CAG rats, lowering symptom scores and improving gastric histopathology. It modulated serum biomarkers and reduced inflammation and apoptosis in both in vivo and in vitro studies. Network pharmacology results revealed 263 overlapping targets between WWS and SSCDS-CAG, associated with apoptosis, inflammation, and the PI3K/AKT pathway. Molecular docking revealed strong binding affinity between the core target and active WWS components. In SSCDS-CAG rats and GES-1 cells, WWS inhibited PI3K/AKT phosphorylation, increased PTEN expression, and regulated Bcl-2, Bax, and cleaved caspase-3 levels. CONCLUSION WWS reduces inflammation and apoptosis in multi-factor CAG rats and MNNG-induced GES-1 cells by modulating the PTEN/PI3K/AKT signaling pathway and apoptosis-related proteins.
Collapse
Affiliation(s)
- Jia Zheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Bioactive Natural Products, Hefei, 230012, China
| | - Zhiyong Jiao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Bioactive Natural Products, Hefei, 230012, China
| | - Xinyu Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Bioactive Natural Products, Hefei, 230012, China
| | - Qing Ruan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Bioactive Natural Products, Hefei, 230012, China
| | - Yuzhe Huang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Cheng Jin
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Zihua Xuan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Bioactive Natural Products, Hefei, 230012, China
| | - Xiaoyi Jia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Bioactive Natural Products, Hefei, 230012, China.
| |
Collapse
|
2
|
Zheng S, Liang Y, Xue T, Wang W, Li S, Zhang P, Li X, Cao X, Liu Q, Qi W, Ye Y, Zao X. Application of network pharmacology in traditional Chinese medicine for the treatment of digestive system diseases. Front Pharmacol 2024; 15:1412997. [PMID: 39086391 PMCID: PMC11289720 DOI: 10.3389/fphar.2024.1412997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
With the general improvement in living standards in recent years, people's living habits, including their dietary habits, have changed. More people around the world do not follow a healthy diet, leading to an increase in morbidity and even mortality due to digestive system diseases, which shows an increasing trend every year. The advantage of traditional Chinese medicine (TCM) in treating digestive system diseases is evident. Consequently, the mechanisms of action of single Chinese herbs and compound Chinese medicines have become the focus of research. The research method of the network pharmacology system was highly consistent with the holistic concept of TCM, and provided a new perspective and theoretical basis for basic research on digestive system diseases. This article summarizes the common databases currently used in research on TCM. It also briefly introduces the basic methods and technologies of network pharmacology studies. It also summarizes the advancements of network pharmacology technology through a comprehensive literature search on PubMed. Based on this analysis, we further explored the role of TCM in treating digestive system diseases, including chronic gastritis, gastric cancer, ulcerative colitis, and liver cirrhosis. This study provides new ideas and references for treating digestive system diseases with TCM in the future and serves as a reference for relevant researchers.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yijun Liang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyu Xue
- First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Size Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyao Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Ye X, Yang C, Xu H, He Q, Sheng L, Lin J, Wang X. Exploring the therapeutic mechanisms of Coptidis Rhizoma in gastric precancerous lesions: a network pharmacology approach. Discov Oncol 2024; 15:211. [PMID: 38837097 PMCID: PMC11153449 DOI: 10.1007/s12672-024-01070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Gastric precancerous lesions are a critical stage in the development of gastric cancer or gastric adenocarcinoma, and their outcome plays an important role in the malignant progression of gastric cancer. Coptidis Rhizoma has a good effect on Gastric precancerous lesions. However, the specific mechanisms of its action remain incompletely elucidated. METHODS Network pharmacology and molecular docking techniques were used to explore the active ingredients and molecular mechanism of Coptidis Rhizoma in treating gastric precancerous lesions. The active compounds of Coptidis Rhizoma and their potential gastric precancerous lesions related targets were obtained from TCMSP, GeneCards, and OMIM databases. An interaction network based on protein-protein interactions (PPIs) was constructed to visualize the interactions between hub genes. Analysis of GO enrichment and KEGG pathway were conducted using the DAVID database. An investigation of interactions between active compounds and potential targets was carried out by molecular docking. Finally, animal experiments were conducted to verify the effect and mechanism of Coptidis Rhizoma in treating precancerous lesions of gastric cancer. RESULTS A total of 11 active compounds and 95 anti-gastric precancerous lesions targets of Coptidis Rhizoma were screened for analysis. GO enrichment analysis showed that the mechanism of Coptidis Rhizoma acting on gastric precancerous lesions involves gene expression regulation and apoptosis regulation. KEGG pathway enrichment analysis showed that Coptidis Rhizoma against gastric precancerous lesions involving the AKT /HIF-1α/VEGF signalling pathway. Molecular docking simulations indicated potential interactions between these compounds and core targets involved in anti-gastric precancerous lesions activity. In addition, it was confirmed in vivo that Berberine and Coptidis Rhizoma may reverse atrophy and potential intestinal metaplasia by inhibiting the expression of p-AKT, HIFA, and VEGF. CONCLUSION Bioactive compounds in Coptidis Rhizoma have the potential to prevent atrophy and intestinal metaplasia. These compounds function by regulating the proteins implicated in AKT /HIF-1α/VEGF signalling pathways that are crucial in gastric epithelial cell differentiation, proliferation and maturation.
Collapse
Affiliation(s)
- Xuxing Ye
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321000, Zhejiang, China
| | - Chao Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310000, China
| | - Hanzhi Xu
- Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Qin He
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321000, Zhejiang, China
| | - Lin Sheng
- Department of Pulmonary and Critical Care Medicine, Jinhua Municipal Central Hospital, Jinhua, 321000, Zhejiang, China
| | - Junmei Lin
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321000, Zhejiang, China.
| | - Xiaobo Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310000, China.
| |
Collapse
|
4
|
Xing C, Liu Y, Wang S, Zhang J, Liu G, Li N, Leng Y, Ying D, Xu C. Regulation of intestinal flora in patients with chronic atrophic gastritis by modified Chai Shao Liu Jun Zi decoction based on 16S rRNA sequencing. Medicine (Baltimore) 2024; 103:e37053. [PMID: 38335441 PMCID: PMC10860994 DOI: 10.1097/md.0000000000037053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 02/12/2024] Open
Abstract
Chai Shao Liu Jun Zi decoction (CSLJZD) is an effective Chinese medicine for the treatment of chronic atrophic gastritis (CAG). However, the effect of CSLJZD on the intestinal flora of patients with CAG remains unclear. We used 16S rRNA gene sequencing to investigate the regulatory effects of CSLJZD on intestinal microflora in patients with CAG. Eight patients with CAG were randomly selected as the model group and 8 healthy medical examiners as the control group; the treatment group comprised patients with CAG after CSLJZD treatment. High-throughput sequencing and bioinformatics analysis of the V3V4 region of the 16S rRNA gene of intestinal bacteria obtained from the intestinal isolates of fecal specimens from all participants were performed separately. A rarefaction curve, species accumulation curve, Chao1 index, and ACE index were calculated to assess the alpha diversity. Principal component analysis (PCA), non-metric multi-dimensional scaling, and the unweighted pair group method with arithmetic mean were used to examine beta diversity. The LEfSe method was used to identify the differentially expressed bacteria. Differential function analysis was performed using PCA based on KEGG function prediction. Rarefaction and species accumulation curves showed that the sequencing data were reasonable. The Chao1 and ACE indices were significantly increased in patients with CAG compared with those in the healthy group. Following CSLJZD and vitacoenzyme treatment, Chao1 and ACE indices decreased. The PCA, non-metric multi-dimensional scaling, and unweighted pair group method with arithmetic mean results showed that the CAG group was distinct from the healthy and treatment groups. The LEfSe results showed that the abundances of the genus Bilophila, family Desulfovibrionaceae, order Desulfovibrionales and genus Faecalibacterium were significantly higher in the healthy group. The abundance of genus Klebsiella, order Deltaproteobacteria, genus Gemmiger, and other genera was significantly higher in the treatment group. Treatment with CSLJZD had a therapeutic effect on the intestinal flora of patients with CAG.
Collapse
Affiliation(s)
- Chongyi Xing
- Changchun University of Chinese Medicine, Changchun, China
| | - Yuna Liu
- Clinical Laboratory, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Shaohua Wang
- Department of Gastroenterology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Jing Zhang
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Gang Liu
- Department of Gastroenterology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Na Li
- Laboratory of Molecular Pharmacology of Traditional Chinese Medicine, Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yan Leng
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Dashi Ying
- Jilin Agricultural Science and Technology University, Jilin, China
| | - Chunfeng Xu
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| |
Collapse
|
5
|
Sun CX, Li DH, Xu YP, Yang ZF, Wei LY, Gao YM, Liu Y, Yan CH, Li YZ. Hua-Zhuo-Jie-Du Decoction Combined with Cisplatin Inhibits the Development of Gastric Cancer Cells by Regulating Immune and Autophagy Signaling. Biol Pharm Bull 2024; 47:1823-1831. [PMID: 39522975 DOI: 10.1248/bpb.b24-00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Host immunity and autophagy of cancer cells markedly impact the development of gastric cancer. Hua-Zhuo-Jie-Du decoction (TDP) has been used in gastritis clinically. This study aimed to evaluate the effects of TDP combined with cisplatin (DDP) on gastric cancer and explore the molecular mechanism. A total of 16 BALB/c nude mice were used to model the SGC7901 cells xenograft and treated with TDP and DDP or both, with the model group as the control. Hematoxylin-Eosin (H&E) and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining were performed, and the expression levels of CD31 and Ki-67 were quantified by immunohistochemistry staining. Additionally, cyclooxygenase (COX)-2, matrix metalloproteinas (MMP)-2, and MMP-9 expression levels were quantified using quantitative real-time PCR (qRT-PCR) and Western blotting (WB). WB was used to determine Cleaved-caspase3, Beclin-1, LC3B, and p-p62 levels. Lastly, flow cytometry was employed to evaluate immune responses in mice. TDP and DDP significantly decreased tumor weight and nuclear division, resulting in loosely distributed cells. Besides, TDP and DDP down-regulated the protein expression levels of Ki-67, CD31, COX-2, MMP-2, and MMP-9, as well as decreased the number of CD4+ IL-17+ cells. Conversely, TDP and DDP up-regulated Cleaved-caspase3 expression and the proportion of CD3+/CD4+ and CD8+/CD3+ cells. Notably, optimal effects were achieved using the combination of DDP and TDP. Furthermore, DDP increased the LCII/LCI ratio and the Beclin-1 levels while down-regulating p62 levels. However, TDP alleviated these effects. These results collectively indicated that the combination of TDP with DDP can inhibit the development of gastric cancer cells by mediating the immune and autophagy signaling pathways.
Collapse
Affiliation(s)
| | - De-Hui Li
- Second Oncology, Hebei Province Hospital of TCM
| | - Ya-Pei Xu
- Department of Digestive Endoscopy, Hebei Province Hospital of TCM
| | - Zhu-Feng Yang
- Department of Digestive Endoscopy, Hebei Province Hospital of TCM
| | - Li-Ying Wei
- Second Oncology, Hebei Province Hospital of TCM
| | | | - Yi Liu
- Second Oncology, Hebei Province Hospital of TCM
| | - Cui-Huan Yan
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine
| | - Yong-Zhang Li
- Department of Urology, Hebei Province Hospital of Chinese Medicine
| |
Collapse
|
6
|
Fu H, Liang X, Tan W, Hu X. Unraveling the protective mechanisms of Chuanfangyihao against acute lung injury: Insights from experimental validation. Exp Ther Med 2023; 26:535. [PMID: 37869635 PMCID: PMC10587870 DOI: 10.3892/etm.2023.12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023] Open
Abstract
Chuanfangyihao (CFYH) is an effective treatment for acute lung injury (ALI) in clinical practice; however, its underlying mechanism of action remains unclear. Therefore, the aim of the present study was to elucidate the pharmacological mechanism of action of CFYH in ALI through experimental validation. First, a rat model of ALI was established using lipopolysaccharide (LPS). Next, the pathological changes in the lungs of the rats and the pathological damage were scored. The wet/dry weight ratios were measured, and ROS content was detected using flow cytometry. ELISA was used to examine IL-6, TNF-α, IL-1β, IL-18, and LDH levels. Immunohistochemistry was used to detect Beclin-1 and NLRP3 expression. Western blotting was performed to analyze the expression of HMGB1, RAGE, TLR4, NF-κB p65, AMPK, p-AMPK, mTOR, p-mTOR, Beclin-1, LC3-II/I, p62, Bcl-2, Bax, Caspase-3, Caspase-1, and GSDMD-NT. The mRNA levels of HMGB1, RAGE, AMPK, mTOR, and HIF-1α were determined using reverse transcription quantitative PCR. CFYH alleviated pulmonary edema and decreased the expression of IL-6, TNF-α, TLR4, NF-κB p65, HMGB1/RAGE, ROS, and HIF-1α. In addition, pretreatment with CFYH reversed ALI-induced programmed cell death. In conclusion, CFYH alleviates LPS-induced ALI, and these findings provide a preliminary clarification of the predominant mechanism of action of CFYH in ALI.
Collapse
Affiliation(s)
- Hongfang Fu
- Infectious Disease Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Xiao Liang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Wanying Tan
- Infectious Disease Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Xiaoyu Hu
- Infectious Disease Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
7
|
Zhang Q, Yang M, Zhang P, Wu B, Wei X, Li S. Deciphering gastric inflammation-induced tumorigenesis through multi-omics data and AI methods. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0129. [PMID: 37589244 PMCID: PMC11033716 DOI: 10.20892/j.issn.2095-3941.2023.0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023] Open
Abstract
Gastric cancer (GC), the fifth most common cancer globally, remains the leading cause of cancer deaths worldwide. Inflammation-induced tumorigenesis is the predominant process in GC development; therefore, systematic research in this area should improve understanding of the biological mechanisms that initiate GC development and promote cancer hallmarks. Here, we summarize biological knowledge regarding gastric inflammation-induced tumorigenesis, and characterize the multi-omics data and systems biology methods for investigating GC development. Of note, we highlight pioneering studies in multi-omics data and state-of-the-art network-based algorithms used for dissecting the features of gastric inflammation-induced tumorigenesis, and we propose translational applications in early GC warning biomarkers and precise treatment strategies. This review offers integrative insights for GC research, with the goal of paving the way to novel paradigms for GC precision oncology and prevention.
Collapse
Affiliation(s)
- Qian Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Mingran Yang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Peng Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Bowen Wu
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xiaosen Wei
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Shao Li
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Yi Z, Jia Q, Wang Y, Zhang Y, Xie T, Ling J. Elian granules alleviate precancerous lesions of gastric cancer in rats by suppressing M2-type polarization of tumor-associated macrophages through NF-κB signaling pathway. BMC Complement Med Ther 2023; 23:188. [PMID: 37291549 DOI: 10.1186/s12906-023-04015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/28/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Precancerous lesions of gastric cancer (PLGC) refer to a kind of histopathological changes in the gastric mucosa that can progress to gastric cancer. Elian granules (ELG), a Chinese medicinal prescription, have achieved satisfactory results in the treatment of PLGC. However, the exact mechanism underlying the therapeutic effect of ELG remains unclear. Here, this study aims to explore the mechanism of ELG alleviating PLGC in rats. METHODS The chemical ingredients of ELG were analyzed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS). Specific Pathogen Free SD rats were randomly assigned to 3 groups: the control, model, and ELG groups. The 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG) integrated modeling method was adopted to construct the PLGC rat model in groups except for the control group. Meanwhile, normal saline was used as an intervention for the control and model groups, and ELG aqueous solution for the ELG group, lasting 40 weeks. Subsequently, the stomach of rats was harvested for further analysis. Hematoxylin-eosin staining of the gastric tissue was conducted to assess the pathological changes. Immunofluorescence was carried out for the expression of CD68, and CD206 proteins. Real-time quantitative PCR combined with Western blot was conducted to analyze the expression of arginase-1(Arg-1), inducible nitric oxide synthase (iNOS), p65, p-p65, nuclear factor inhibitor protein-α (IκBα), and p-IκBα in gastric antrum tissue. RESULTS Five chemical ingredients including Curcumol, Curzerenone, Berberine, Ferulic Acid, and 2-Hydroxy-3-Methylanthraquine were identified in ELG. The gastric mucosal glands of rats treated with ELG were orderly arranged, with no intestinal metaplasia and no dysplasia. Furthermore, ELG decreased the percentage of M2-type TAMs marked with CD68 and CD206 proteins, and the ratio of Arg-1 to iNOS in the gastric antrum tissue of rats with PLGC. In addition, ELG could also down-regulate the protein and mRNA expression of p-p65, p65, and p-IκBα, but up-regulate the expression of IκBα mRNA in rats with PLGC. CONCLUSIONS The results showed that ELG attenuates PLGC in rats by suppressing the M2-type polarization of tumor-associated macrophages (TAMs) through NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhirong Yi
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Qingling Jia
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China
| | - Yujiao Wang
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China
| | - Yuqin Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Tianyi Xie
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Jianghong Ling
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China.
| |
Collapse
|
9
|
Yang L, Liu X, Zhu J, Zhang X, Li Y, Chen J, Liu H. Progress in traditional Chinese medicine against chronic gastritis: From chronic non-atrophic gastritis to gastric precancerous lesions. Heliyon 2023; 9:e16764. [PMID: 37313135 PMCID: PMC10258419 DOI: 10.1016/j.heliyon.2023.e16764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/13/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Chronic gastritis (CG) is a persistent inflammation of the gastric mucosa that can cause uncomfortable symptoms in patients. Traditional Chinese medicine (TCM) has been widely used to treat CG due to its precise efficacy, minimal side effects, and holistic approach. Clinical studies have confirmed the effectiveness of TCM in treating CG, although the mechanisms underlying this treatment have not yet been fully elucidated. In this review, we summarized the clinical research and mechanisms of TCM used to treat CG. Studies have shown that TCM mechanisms for CG treatment include H. pylori eradication, anti-inflammatory effects, immune modulation, regulation of gastric mucosal cell proliferation, apoptosis, and autophagy levels.
Collapse
Affiliation(s)
- Liangjun Yang
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Xinying Liu
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Jiajie Zhu
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Xi Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ya Li
- Lin ‘an Hospital of Traditional Chinese Medicine, Hangzhou 311300, China
| | - Jiabing Chen
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Haiyan Liu
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| |
Collapse
|
10
|
Zhong YL, Wang PQ, Hao DL, Sui F, Zhang FB, Li B. Traditional Chinese medicine for transformation of gastric precancerous lesions to gastric cancer: A critical review. World J Gastrointest Oncol 2023; 15:36-54. [PMID: 36684050 PMCID: PMC9850768 DOI: 10.4251/wjgo.v15.i1.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
Gastric cancer (GC) is a common gastrointestinal tumor. Gastric precancerous lesions (GPL) are the last pathological stage before normal gastric mucosa transforms into GC. However, preventing the transformation from GPL to GC remains a challenge. Traditional Chinese medicine (TCM) has been used to treat gastric disease for millennia. A series of TCM formulas and active compounds have shown therapeutic effects in both GC and GPL. This article reviews recent progress on the herbal drugs and pharmacological mechanisms of TCM in preventing the transformation from GPL to GC, especially focusing on anti-inflammatory, anti-angiogenesis, proliferation, and apoptosis. This review may provide a meaningful reference for the prevention of the transformation from GPL to GC using TCM.
Collapse
Affiliation(s)
- Yi-Lin Zhong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng-Qian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feng-Bin Zhang
- Department of Gastroenterology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
11
|
Wang P, Xu T, Yan Z, Zheng X, Zhu F. Jian-Pi-Yi-Qi-Fang ameliorates chronic atrophic gastritis in rats through promoting the proliferation and differentiation of gastric stem cells. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:932. [PMID: 36172111 PMCID: PMC9511200 DOI: 10.21037/atm-22-3749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 11/14/2022]
Abstract
Background Jian-Pi-Yi-Qi-Fang (JPYQF) is a traditional Chinese medicine (TCM) herbal formula for treating chronic atrophic gastritis (CAG) in the clinic; however, its related mechanism remains unclear. The purpose of this study was to explore the potential mechanisms of JPYQF in treating CAG by examining proteins and genes related to the proliferation and differentiation of gastric stem cells and Wnt signaling. Methods A CAG model was established in Sprague-Dawley (SD) rats which were induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and ranitidine. We randomly divided 25 CAG rats into 5 groups: the model group, positive drug group, low-dose group of JPYQF (JPYQF-L), middle-dose group of JPYQF (JPYQF-M), and high-dose group of JPYQF (JPYQF-H), with 5 rats of the same age classified into the control group. The body weight of rats was measured and their gastric morphology was visually assessed. Furthermore, pathological analysis of rat gastric tissue was performed. The expression levels of proteins and genes associated with the proliferation and differentiation of gastric stem cells and Wnt signaling were measured via immunohistochemistry and reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results Compared with the model group, treatment with JPYQF increased the body weight of the rats, and relieved the gastric atrophy and inflammation. Compared with the control group, the protein and messenger RNA (mRNA) expression levels of gastric stem cell proliferation and differentiation markers Lgr5, Sox2, Ki67, PCNA, Muc5AC, and Wnt signaling initiator Wnt3A and enhancer R-spondin-1 (Rspo1) were decreased in the model group. Treatment with JPYQF increased the protein and mRNA expression levels of these markers. Conclusions The Wnt signaling of CAG rats may be in a low activation state, which inhibits the proliferation and differentiation of gastric stem cells, so that gland cells cannot be replenished in time to repair the damaged gastric mucosa. The TCM formula JPYQF could enhance Wnt signaling to promote the restricted proliferation and normal differentiation of gastric stem cells, thereby improving gastric mucosal atrophy in CAG rats, which provides a novel and robust theoretical basis for CAG treatment.
Collapse
Affiliation(s)
- Pei Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Xu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhanpeng Yan
- Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xue Zheng
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangshi Zhu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Network Pharmacological Study on the Mechanism of Cynanchum paniculatum (Xuchangqing) in the Treatment of Bungarus multicinctus Bites. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3887072. [PMID: 35837378 PMCID: PMC9276512 DOI: 10.1155/2022/3887072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/17/2022] [Indexed: 12/18/2022]
Abstract
Background Bungarus multicinctus is one of the top ten venomous snakes in China. Its venom is mainly neurotoxin-based. Novel antivenom drugs need to be further researched and developed. Objective This study aimed to explore the molecular mechanism of Cynanchum paniculatum in treating Bungarus multicinctus bites based on network pharmacology. Material and methods. The potential active ingredients of Cynanchum paniculatum were screened and their SDF structures were obtained using the PubChem database and imported into the SwissTargetPrediction database, and targets were obtained for the antitoxin effects of Cynanchum paniculatum in the treatment of Bungarus multicinctus bites. The Cynanchum paniculatum-active compound-potential target network and protein-protein interaction network were constructed by using Cytoscape software, and then biological function analysis and KEGG pathway enrichment analysis were performed using the DAVID. Results Seven potential active components (cynapanoside C, cynatratoside B, tomentolide A, sitosterol, sarcostin, tomentogenin, and paeonol) and 286 drug targets were obtained, including 30 key targets for the treatment of bungarotoxin toxicity. The active components mainly acted on PIK3CA, MAPK1, MAP2K1, JAK2, FYN, ACHE, CHRNA7, CHRNA4, and CHRNB2, and they antagonized the inhibitory effect of bungarotoxin on the nervous system through cholinergic synapses and the neurotrophin signaling pathway. Conclusions Cynanchum paniculatum exerts a therapeutic effect on Bungarus multicinctus bites through multiple active components, multiple targets, and multiple pathways. The findings provide a theoretical basis for the extraction of active components of Cynanchum paniculatum and for related antivenom experiments.
Collapse
|
13
|
Zhou P, Yang T, Xu M, Zhao Y, Shen P, Wang Y. 16S rRNA sequencing-based evaluation of the protective effects of Hua-Zhuo-Jie-Du on rats with chronic atrophic gastritis. BMC Complement Med Ther 2022; 22:71. [PMID: 35296316 PMCID: PMC8928654 DOI: 10.1186/s12906-022-03542-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Disturbance of the intestinal flora is a pathogenic factor for chronic atrophic gastritis (CAG). Hua-Zhuo-Jie-Du (HZJD) has been shown to be an effective Chinese herbal preparation for treating CAG. However, the effects of HZJD on the intestinal flora of CAG is unclear. In this study, we probed the regulating effects of HZJD on intestinal microbes in CAG rats using 16S rRNA gene sequencing. Methods High-performance liquid chromatography (HPLC) analysis was used to perform quality control of HZJD preparations. We then administered 1-methyl-3-nitro-1-nitrosoguanidine (200 μg/ml) to Sprague–Dawley rats to establish a CAG model. HZJD and vitacoenzyme were administered orally to these rats over a 10 week period. Hematoxylin and eosin (H&E) staining was performed to observe the histopathology of CAG rats. A rarefaction curve, species accumulation curve, Chao1 index, and ACE index were calculated to assess the alpha diversity. Principal component analysis (PCA), non-metric multi-dimensional scaling (NMDS), and unweighted pair group method with arithmetic mean (UPGMA) were conducted to examine the beta diversity. The LEfSe method was used to identify differential bacteria. Differential function analysis used PCA based on KEGG function prediction. Results HPLC showed that our HZJD preparation method was feasible. H&E staining showed that HZJD significantly improved the pathological state of the gastric mucosa in CAG rats. The rarefaction curve and species accumulation curve showed that the sequencing data were reasonable. The Chao1 and ACE indices were significantly increased in CAG rats compared to the N group. Following HZJD and vitacoenzyme treatment, the Chao1 and ACE indices were decreased. PCA, NMDS, and UPGMA results showed that the M group was separated from the N, HZJD, and V groups, and LEfSe results showed that the relative abundance of Akkermansia, Oscillospira, Prevotella, and CF231 were significantly higher in the N group. Proteobacteria and Escherichia were significantly enriched in the M group, Allobaculum, Bacteroides, Jeotgalicoccus, Corynebacterium, and Sporosarcina were significantly enriched in the V group, and Firmicutes, Lactobacillus, and Turicibacter were significantly enriched in the HZJD group. Conclusion HZJD exhibited a therapeutic effect on the intestinal flora of CAG rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03542-z.
Collapse
Affiliation(s)
- Pingping Zhou
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, Hebei, China.,The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Tianxiao Yang
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, Hebei, China.,The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Miaochan Xu
- Shijiazhuang Pingan Hospital Co., Ltd, Shijiazhuang, 050025, Hebei, China
| | - Yuejia Zhao
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, Hebei, China.,The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Pengpeng Shen
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, Hebei, China.,The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yangang Wang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Anwai Xiaoguan Street No. 51, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
14
|
Zhou P, Hao X, Liu Y, Yang Z, Xu M, Liu S, Zhang S, Yang T, Wang X, Wang Y. Determination of the protective effects of Hua-Zhuo-Jie-Du in chronic atrophic gastritis by regulating intestinal microbiota and metabolites: combination of liquid chromatograph mass spectrometer metabolic profiling and 16S rRNA gene sequencing. Chin Med 2021; 16:37. [PMID: 33933119 PMCID: PMC8088729 DOI: 10.1186/s13020-021-00445-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background
Hua-Zhuo-Jie-Du (HZJD), a Chinese herbal prescription consisting of 11 herbs, is commonly used in China to treat chronic atrophic gastritis (CAG). We aimed to determine the effect of HZJD on the microbiome-associated metabolic changes in CAG rats. Methods
The CAG rat models were induced by 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) combined with irregular fasting and 2% sodium salicylate, which was intragastrically administrated in fasted animals for 24 weeks. The CAG rats in the Chinese medicine (CM) group were administered a daily dose of 14.81 g/kg/day HZJD, and the vitacoenzyme (V) group were administered a daily dose of 0.08 g/kg/day vitacoenzyme. All animals were treated for 10 consecutive weeks, consecutively. Hematoxylin and eosin (H&E) staining was used to assess the histopathological changes in the gastric tissues. An integrated approach based on liquid chromatograph mass spectrometer (LC-MS) metabolic profiling combined with 16S rRNA gene sequencing was carried out to assess the effects of HZJD on CAG rats. Spearman analysis was used to calculate the correlation coefficient between the different intestinal microbiota and the metabolites. Results The H&E results indicated that HZJD could improve the pathological condition of CAG rats. The LC–MS results indicated that HZJD could significantly improve 21 gastric mucosal tissue perturbed metabolites in CAG rats; the affected metabolites were found to be involved in multiple metabolic pathways, such as the central carbon metabolism in cancer. The results of 16S rRNA gene sequencing indicated that HZJD could regulate the diversity, microbial composition, and abundance of the intestinal microbiota of CAG rats. Following HZJD treatment, the relative abundance of Turicibacter was increased, and the relative abundance of Desulfococcus and Escherichia were decreased in the CM group when compared with the M group. Spearman analysis revealed that perturbed intestinal microbes had a strong correlation with differential metabolites, Escherichia exhibited a negative correlation with l-Leucine, Turicibacter was negatively correlated with urea, and Desulfococcus exhibited a positive correlation with trimethylamine, and a negative correlation with choline. Conclusions HZJD could protect CAG by regulating intestinal microbiota and its metabolites.
Collapse
Affiliation(s)
- Pingping Zhou
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Xinyu Hao
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Yu Liu
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Zeqi Yang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Miaochan Xu
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Shaowei Liu
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Shixiong Zhang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Tianxiao Yang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Xiaomei Wang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Yangang Wang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China. .,Beijing University of Chinese Medicine Third Affiliated Hospital, Anwai Xiaoguan Street No. 51, Chaoyang District, 100029, Beijing, China.
| |
Collapse
|