1
|
Feasibility of Leukemia-Derived Exosome Enrichment and Co-isolated dsDNA Sequencing in Acute Myeloid Leukemia Patients: A Proof of Concept for New Leukemia Biomarkers Detection. Cancers (Basel) 2022; 14:cancers14184504. [PMID: 36139664 PMCID: PMC9497185 DOI: 10.3390/cancers14184504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The present pilot study aimed at investigating the feasibility of a leukemia-derived exosome enrichment approach followed by exosomal dsDNA target re-sequencing for adult Acute Myeloid Leukemias (AML) marker detection. To our knowledge, this is the first time that a proof-of-concept combining a leukemia-derived exosome enrichment strategy based on a commercial CE-IVD kit and next-generation sequencing was applied in a cohort of adult AML patients. The reported approach is easy, quick and user friendly and gives the possibility of obtaining a good quantity of exosomal dsDNA (composed of exosomal cargo and surrounding DNA) suitable for further analysis. The time-effective procedure opens up future effective clinical applications. This pilot study presents the potential of a proof-of-concept based on exosome analysis to be applied in clinical practice, as well as the feasibility of this kind of investigations using a certified kit, avoiding many additional analyses. It may encourage further studies regarding extracellular vesicles in myeloid neoplasia. Abstract Exosomes are extracellular vesicles playing a pivotal role in the intercellular communication. They shuttle different cargoes, including nucleic acids from their cell of origin. For this reason, they have been studied as carriers of tumor markers in different liquid biopsy approaches, in particular for solid tumors. Few data are available concerning exosomes as markers of myeloid neoplasia. To better understand their real potential and the best approach to investigate leukemic exosomes, we present the results of a pilot feasibility study evaluating the application of next-generation sequencing analysis of dsDNA derived from exosomes isolated in 14 adult patients affected by acute myeloid leukemias. In particular, leukemia-derived exosome fractions have been analyzed. The concentration of dsDNA co-extracted with exosomes and the number and types of mutations detected were considered and compared with ones identified in the Bone Marrow (BM) and Peripheral Blood (PB) cells. Exosomal DNA concentration, both considering the cargo and the DNA surrounding the lipid membrane resulted in a linear correlation with leukemic burden. Moreover, exosomal DNA mutation status presented 86.5% of homology with BM and 75% with PB. The results of this pilot study confirmed the feasibility of a leukemia-derived exosome enrichment approach followed by exosomal dsDNA NGS analysis for AML biomarker detection. These data point to the use of liquid biopsy in myeloid neoplasia for the detection of active leukemic cells resident in the BM via a painless procedure.
Collapse
|
2
|
Stratification of Oligometastatic Prostate Cancer Patients by Liquid Biopsy: Clinical Insights from a Pilot Study. Biomedicines 2022; 10:biomedicines10061321. [PMID: 35740343 PMCID: PMC9219949 DOI: 10.3390/biomedicines10061321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
We propose a pilot, prospective, translational study with the aim of identifying possible molecular markers underlying metastatic prostate cancer (PC) evolution with the use of liquid biopsy. Twenty-eight castrate sensitive, oligometastatic PC patients undergoing bone and/or nodal stereotactic body radiotherapy (SBRT) were recruited. Peripheral blood samples were collected before the commencement of SBRT, then they were processed for circulating cell free DNA (cfDNA) extraction. Deep targeted sequencing was performed using a custom gene panel. The primary endpoint was to identify differences in the molecular contribution between the oligometastatic and polymetastatic evolution of PC to same-first oligo-recurrent disease presentation. Seventy-seven mutations were detected in 25/28 cfDNA samples: ATM in 14 (50%) cases, BRCA2 11 (39%), BRCA1 6 (21%), AR 13 (46%), ETV4, and ETV6 2 (7%). SBRT failure was associated with an increased risk of harboring the BRCA1 mutation (OR 10.5) (p = 0.043). The median cfDNA concentration was 24.02 ng/mL for ATM mutation carriers vs. 40.04 ng/mL for non-carriers (p = 0.039). Real-time molecular characterization of oligometastatic PC may allow for the identification of a true oligometastatic phenotype, with a stable disease over a long time being more likely to benefit from local, curative treatments or the achievement of long-term disease control. A prospective validation of our promising findings is desirable for a better understanding of the real impact of liquid biopsy in detecting tumor aggressiveness and clonal evolution.
Collapse
|
3
|
Comparative Mutational Profiling of Hematopoietic Progenitor Cells and Circulating Endothelial Cells (CECs) in Patients with Primary Myelofibrosis. Cells 2021; 10:cells10102764. [PMID: 34685741 PMCID: PMC8534986 DOI: 10.3390/cells10102764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
A role of endothelial cells (ECs) in Primary Myelofibrosis (PMF) was supposed since JAK2 mutation was found in endothelial precursor cells (EPCs) and in ECs captured by laser microdissection. By Cell Search method, the circulating endothelial cells (CECs) from 14 PMF patients and 5 healthy controls have been isolated and compared by NGS with CD34+Hematopoietic stem and progenitors cells (HSPCs) for panel of 54 myeloid-associated mutations. PMF patients had higher levels of CECs. No mutation was found in HSPCs and CECs from controls, while CECs from PMF patients presented several somatic mutations. 72% of evaluable patients shared at least one mutation between HSPCs and CECs. 2 patients shared the JAK2 mutation, together with ABL1, IDH1, TET2 and ASXL1, KMT2A, respectively. 6 out of 8 shared only NON MPN-driver mutations: TET2 and NOTCH1 in one case; individual paired mutations in TP53, KIT, SRSF2, NOTCH1 and WT1, in the other cases. In conclusion, 70% of PMF patients shared at least one mutation between HSPCs and CECs. These latter harbored several myeloid-associated mutations, besides JAK2V617F mutation. Our results support a primary involvement of EC in PMF and provide a new methodological approach for further studies exploring the role of the “neoplastic” vascular niche.
Collapse
|
4
|
Bernardi S, Farina M. Exosomes and Extracellular Vesicles in Myeloid Neoplasia: The Multiple and Complex Roles Played by These " Magic Bullets". BIOLOGY 2021; 10:biology10020105. [PMID: 33540594 PMCID: PMC7912829 DOI: 10.3390/biology10020105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Extracellular vesicles (EVs) are released by the majority of cell types and can be isolated from both cell cultures and body fluids. They are involved in cell-to-cell communication and may shuttle different messages (RNA, DNA, and proteins). These messages are known to influence the microenvironment of cells and their behavior. In recent years, some evidence about the involvement of EVs and exosomes, an EV subgroup, in immunomodulation, the transfer of disease markers, and the treatment of myeloid malignancies have been reported. Little is known about these vesicles in this particular setting of hematologic neoplasia; here, we summarize and critically review the available results, aiming to encourage further investigations. Abstract Extracellular vesicles (exosomes, in particular) are essential in multicellular organisms because they mediate cell-to-cell communication via the transfer of secreted molecules. They are able to shuttle different cargo, from nucleic acids to proteins. The role of exosomes has been widely investigated in solid tumors, which gave us surprising results about their potential involvement in pathogenesis and created an opening for liquid biopsies. Less is known about exosomes in oncohematology, particularly concerning the malignancies deriving from myeloid lineage. In this review, we aim to present an overview of immunomodulation and the microenvironment alteration mediated by exosomes released by malicious myeloid cells. Afterwards, we review the studies reporting the use of exosomes as disease biomarkers and their influence in response to treatment, together with the recent experiences that have focused on the use of exosomes as therapeutic tools. The further development of new technologies and the increased knowledge of biological (exosomes) and clinical (myeloid neoplasia) aspects are expected to change the future approaches to these malignancies.
Collapse
Affiliation(s)
- Simona Bernardi
- Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy;
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- Correspondence: or ; Tel.: +39-0303998464
| | - Mirko Farina
- Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy;
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
5
|
Farina M, Bernardi S, Gandolfi L, Zanaglio C, Morello E, Turra A, Zollner T, Gramegna D, Rambaldi B, Cattina F, Polverelli N, Malagola M, Russo D. Case Report: Late Onset of Myelodysplastic Syndrome From Donor Progenitor Cells After Allogeneic Stem Cell Transplantation. Which Lessons Can We Draw From the Reported Case? Front Oncol 2020; 10:564521. [PMID: 33178592 PMCID: PMC7591784 DOI: 10.3389/fonc.2020.564521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/21/2020] [Indexed: 01/22/2023] Open
Abstract
Background Myelodysplastic syndromes and acute leukemias after allogeneic stem cell transplantation (allo-SCT) are mainly caused by recurrence of the primitive leukemic clones. More rarely, they originate from donor hematopoietic stem cells, developing the so-called donor cell leukemia (DCL) or myelodysplastic syndromes (DC-MDSs). DCL and DC-MDS can be considered as an in vivo model of leukemogenesis, and even if the pathogenetic mechanisms remain speculative, a genetic predisposition of donor progenitor cells, an altered host microenvironment, and the impairment of immune surveillance are considered the main causes. Case Presentation We report a case of DC-MDS diagnosed 5 years after an allo-SCT from a matched related donor (patient’s sister) in a patient with Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia (Ph+ B-ALL). The sex-mismatch allowed us to identify the donor cell origin. At the onset, the DC-MDS was characterized by chromosome seven monosomy and NRAS, RUNX1, and BCOR mutations. Because of a familiar history of colorectal neoplasia and the variant allele frequency (VAF) of NRAS mutation at the onset, this mutation was searched on germline DNA in both the donor and the recipient, but the result was negative. Moreover, after transplant (+4 months), the patient developed severe and long-lasting chronic graft-versus-host disease (cGVHD), requiring multiple lines of treatments. Because of the severe immunosuppression, recurrent infections occurred and, lately, the patient died due to septic shock. Conclusion This case report highlights the need, whenever possible, to evaluate the donor origin of the posttransplant myelodysplasia and acute leukemias. The potential key role of the impaired immune surveillance and of long-lasting immunosuppression appears to be emerging in the development of this case of DC-MDS. Finally, this case reminds the importance to investigate the familiar genetic predisposition in donors with a familiar history of neoplasia.
Collapse
Affiliation(s)
- Mirko Farina
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Simona Bernardi
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy.,CREA Laboratory (Centro di Ricerca Emato-Oncologica AIL), ASST Spedali Civili di Brescia, Brescia, Italy
| | - Lisa Gandolfi
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Camilla Zanaglio
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy.,CREA Laboratory (Centro di Ricerca Emato-Oncologica AIL), ASST Spedali Civili di Brescia, Brescia, Italy
| | - Enrico Morello
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandro Turra
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Tatiana Zollner
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Doriana Gramegna
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Benedetta Rambaldi
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Federica Cattina
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Nicola Polverelli
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Michele Malagola
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Domenico Russo
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|