1
|
Huang Y, Li Y, Guan D, Pan Y, Yang C, Liu H, Chen C, Chen W, Liu J, Wan T, Zhuang L, Wang Q, Zhang Y. Acorus tatarinowii oils exert protective effects on microglia-mediated inflammatory injury via restoring gut microbiota composition in experimental stroke rats. Brain Res Bull 2024; 213:110990. [PMID: 38821245 DOI: 10.1016/j.brainresbull.2024.110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Growing evidence has demonstrated that gut microbiota could be developed as a therapeutic target due to its contribution to microglia activation in the pathological process of ischemic stroke. Acorus tatarinowii oils (AT oils), which is considered as the active fraction of a traditional Chinese herbal medicine Acorus tatarinowii, exerts various bioactivities and prebiotic effects. However, it remains unclear that the effect of AT oils on inflammatory response after ischemic stroke and whether its underlying mechanism is associated to gut microbiota and the intestinal barrier. In the current study, we aim to investigate the anti-microglial neuroinflammation mechanism of AT oils in a middle cerebral artery occlusion model of ischemic stroke. The compositions of AT oils were identified by GC-MS. Our results demonstrated that AT oils could effectively relieve cerebral infarction, inhibit neuronal apoptosis, degrade the release of pro-inflammatory factors (TNF-α, IL-17, IL-6 and IFN-γ), and mediate the polarization of microglia. Moreover, AT oils restored the composition and the balance of gut microbiota in stroke rats, and reduced abundance of opportunistic genera including Verrucomicrobia, Akkermansia and Tenericutes, as well as increased beneficial bacteria abundance such as Tenericutes and Prevotella_copri. To investigate the role of gut microbiota on AT oils against ischemic stroke, we conducted the fecal microbiota transplantation (FMT) experiments with gut microbiota consumption, which suggested that the depletion of gut microbiota took away the protective effect of AT oils, confirming the importance of gut microbiota in the protective effect of AT oils on ischemic stroke. FMT experiments have demonstrated that AT oils preserved the gut permeability and blood-brain barrier, as well as mediated the microglial phenotype under the intervention of gut microbiota. In summary, AT oils could efficaciously moderate neuronal damage and intervene microglial phenotype by reversing gut microbiota disorder in ischemic stroke rats.
Collapse
Affiliation(s)
- Yueyue Huang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530022, China
| | - Yongyi Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Danni Guan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Yaru Pan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Chao Yang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Huina Liu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Chaoyan Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Weitao Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Jinman Liu
- Affiliated Jiangmen TCM Hospital, Ji'nan University, Jiangmen, Guangdong 529000, China
| | - Ting Wan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Lixing Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Qi Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China.
| | - Yifan Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong 510405, China.
| |
Collapse
|
2
|
Sun D, Wu L, Lan S, Chi X, Wu Z. β-asarone induces viability and angiogenesis and suppresses apoptosis of human vascular endothelial cells after ischemic stroke by upregulating vascular endothelial growth factor A. PeerJ 2024; 12:e17534. [PMID: 38948219 PMCID: PMC11214739 DOI: 10.7717/peerj.17534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
Ischemic stroke (IS) is a disease with a high mortality and disability rate worldwide, and its incidence is increasing per year. Angiogenesis after IS improves blood supply to ischemic areas, accelerating neurological recovery. β-asarone has been reported to exhibit a significant protective effect against hypoxia injury. The ability of β-asarone to improve IS injury by inducing angiogenesis has not been distinctly clarified. The experimental rats were induced with middle cerebral artery occlusion (MCAO), and oxygen-glucose deprivation (OGD) model cells were constructed using human microvascular endothelial cell line (HMEC-1) cells. Cerebral infarction and pathological damage were first determined via triphenyl tetrazolium chloride (TTC) and hematoxylin and eosin (H&E) staining. Then, cell viability, apoptosis, and angiogenesis were assessed by utilizing cell counting kit-8 (CCK-8), flow cytometry, spheroid-based angiogenesis, and tube formation assays in OGD HMEC-1 cells. Besides, angiogenesis and other related proteins were identified with western blot. The study confirms that β-asarone, like nimodipine, can ameliorate cerebral infarction and pathological damage. β-asarone can also upregulate vascular endothelial growth factor A (VEGFA) and endothelial nitric oxide synthase (eNOS) and induce phosphorylation of p38. Besides, the study proves that β-asarone can protect against IS injury by increasing the expression of VEGFA. In vitro experiments affirmed that β-asarone can induce viability and suppress apoptosis in OGD-mediated HMEC-1 cells and promote angiogenesis of OGD HMEC-1 cells by upregulating VEGFA. This establishes the potential for β-asarone to be a latent drug for IS therapy.
Collapse
Affiliation(s)
- Dazhong Sun
- Department of Acupuncture and Moxibustion Rehabilitation, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Lulu Wu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siyuan Lan
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangfeng Chi
- Department of Acupuncture and Moxibustion Rehabilitation, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Zhibing Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Ou SM, Hsu YC, Fu SL, Lin LC, Lin CH. Galgravin Isolated from Piper kadsura Ameliorates Lipopolysaccharide (LPS)-Induced Endotoxemia in Mice. Int J Mol Sci 2023; 24:16572. [PMID: 38068895 PMCID: PMC10706620 DOI: 10.3390/ijms242316572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Sepsis results from uncontrolled inflammation, characterized by cytokine storm and immunoparalysis. To assess whether galgravin, a natural lignan isolated from Piper kadsura, can be used to treat sepsis, models of bacterial lipopolysaccharide (LPS)-activated macrophages and LPS-induced endotoxemia mice were used. Galgravin suppressed NF-κB activation in LPS-activated RAW 264.7 macrophages without causing significant cytotoxicity, in which proinflammatory molecules like TNF-α, IL-6, iNOS, and COX-2 were downregulated. In addition, the expression of TNF-α and IL-6 was also suppressed by galgravin in LPS-activated murine bone marrow-derived macrophages. Moreover, galgravin significantly downregulated the mRNA expression of TNF-α, IL-6, and iNOS in the lungs and decreased TNF-α and IL-6 in the serum and IL-6 in the bronchoalveolar lavage fluid of LPS-challenged mice. The COX-2 expression in tissues, including the lung, liver, and kidney, as well as the lung alveolar hemorrhage, was also reduced by galgravin. The present study reveals the anti-inflammatory effects of galgravin in mouse models and implies its potential application in inflammation diseases.
Collapse
Affiliation(s)
- Shih-Ming Ou
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11467, Taiwan
| | - Yin-Chieh Hsu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-C.H.); (S.-L.F.)
| | - Shu-Ling Fu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-C.H.); (S.-L.F.)
| | - Lie-Chwen Lin
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
4
|
Wu J, Cao M, Peng Y, Dong B, Jiang Y, Hu C, Zhu P, Xing W, Yu L, Xu R, Chen Z. Research progress on the treatment of epilepsy with traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155022. [PMID: 37647670 DOI: 10.1016/j.phymed.2023.155022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/18/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Traditional Chinese Medicine (TCM) system is a medical system that has been expanding for thousands of years that was formed by the extensive clinical practice experience of many physicians and the accumulation of personal medication habits in China. In TCM, there is a history of long-term medication for epilepsy, the main treatment for epilepsy is TCM drugs and its prescription, supplemented by TCM modalities such as acupuncture therapy, moxibustion therapy, tuina, emotion adjustment therapy, etc. PURPOSE: With the modernization of TCM, the active ingredients and molecular mechanisms of TCM for epilepsy treatment have been gradually revealed. This review aimed to comprehensively summarize the TCM treatment of epilepsy, focusing on the current TCM drugs and some TCM formulae for the treatment of epilepsy, and to discuss the research progress of TCM for the treatment of epilepsy, and to provide a reference to develop future related studies in this field. MATERIALS AND METHODS The mechanism of action of antiepileptic drugs (AEDs) was interpreted from different perspectives by searching online databases and querying various materials identify drugs used in both modern medicine and TCM systems for the treatment of epilepsy. We collected all relevant TCM for epilepsy literature published in the last 30 years up to December 2022 from electronic databases such as PubMed, CNKI and Web of Science, and statistically analyzed the literature for the following keyword information. The search terms comprise the keywords "TCM", "phytochemistry", "pharmacological activity", "epilepsy" and "traditional application" as a combination. Scientific plant names were provided by "The Plant List" (www.theplantlist.org). RESULTS Epilepsy is a complex and serious disease of the brain and nervous system. At present, the treatment of epilepsy in modern medicine is mainly surgery and chemotherapy, but there are many serious side effects. By summarizing the treatment of epilepsy in TCM, it is found that there are various methods to treat epilepsy in TCM, mainly TCM drugs and its formulae. Many TCM drugs have antiepileptic effects. Now found that the main effective TCM drugs for the treatment of epilepsy are Curcumae Longae Rhizoma, Scorpio, Acori Tatarinowii Rhizoma, Uncariae Ramulus Cum Uncis and Ganoderma, etc. And the main compounds that play a role in the treatment of epilepsy are curcumin, gastrodin, ligustrazine, baicalin and rhynchophylline, etc. These TCM drugs have played an important role in the treatment of epilepsy in TCM clinic. However, the chemically active components of these TCM drugs are diverse and their mechanisms of action are complex, which are not fully understood and need to be further explored. CONCLUSIONS TCM treats epilepsy in a variety of ways, and with the discovery of a variety of potential bioactive substances for treatment of epilepsy. With the new progress in the research of other TCM treatment methods for epilepsy, TCM will have greater potential in the clinical application of epilepsy.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Mayijie Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Ying Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Baohua Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Yunxiu Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Changjiang Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Pengjin Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Weidei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Lingying Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Liu J, Liu S, Hao L, Liu F, Mu S, Wang T. Uncovering the mechanism of Radix Paeoniae Alba in the treatment of restless legs syndrome based on network pharmacology and molecular docking. Medicine (Baltimore) 2022; 101:e31791. [PMID: 36401463 PMCID: PMC9678500 DOI: 10.1097/md.0000000000031791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Restless legs syndrome (RLS) is a neurological motor disorder with a high prevalence. The treatment efficacy of RLS is unsatisfactory. Radix Paeoniae Alba (RPA) can effectively treat RLS symptoms such as the discomfort of the legs. RPA has great potential for the development of new medications for RLS. Hence, we explored the mechanism of RPA in the treatment of RLS using network pharmacology and molecular docking. The active components and targets of RPA were obtained from the Traditional Chinese Medicine System Pharmacology database and analysis platform and PharmMapper platform. The RLS-related targets were found in GeneCards, OMIM, DrugBank, and DisGeNET databases. The overlapping targets of RPA and RLS were then collected. The "active components-overlapping targets" network was built, and network topology analysis was performed. Furthermore, Cytoscape 3.9.1 software was used to screen the key components of RPA in the treatment of RLS. Protein-protein interaction was performed using the Search Tool for the Retrieval of Interacting Genes. The gene ontology functions and Kyoto Encyclopedia of Genes and Genomes signaling pathways were analyzed using ClusterProfiler, PathView, and other R packages to reveal the main mechanism of RPA in treating RLS. Component and protein structures were downloaded from the Traditional Chinese Medicine System Pharmacology and Protein Data Bank databases, respectively. The AutoDock 4.2.6 software was used for molecular docking. A total of 12 active components and 109 targets of RPA, as well as 2387 RLS-related targets, were collected. Following that, 47 overlapping targets were obtained. Furthermore, 5 key components and 12 core targets were screened. The results of gene ontology functions were as follows: 2368 biological processes, 264 molecular functions, and 164 cellular components. A total of 207 Kyoto Encyclopedia of Genes and Genomes signaling pathways were obtained, including the lipid and atherosclerosis pathway, the endocrine resistance pathway, the prolactin signaling pathway, and the IL-17 signaling pathway. The components and the core targets completed molecular docking stably. RPA has multi-component, multi-target, and multi-pathway characteristics in treating RLS, which could provide a basis for future research and improve clinical efficacy.
Collapse
Affiliation(s)
- Jun Liu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Suxian Liu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liansheng Hao
- Department 2 of Bone Trauma, Liaocheng Hospital of Traditional Chinese Medicine, Liaocheng, China
| | - Fangfang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengkai Mu
- Department 2 of Bone Trauma, Liaocheng Hospital of Traditional Chinese Medicine, Liaocheng, China
| | - Tengteng Wang
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * Correspondence: Tengteng Wang, Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China (e-mail: )
| |
Collapse
|
6
|
The Combination of Individual Herb of Mi-Jian-Chang-Pu Formula Exerts a Synergistic Effect in the Treatment of Ischemic Stroke in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9365760. [PMID: 36312894 PMCID: PMC9597002 DOI: 10.1155/2022/9365760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022]
Abstract
Mi-Jian-Chang-Pu formula (MJCPF), composed of Crocus sativus L. and Acorus tatarinowii Schott, is a well-known TCM for treatment of hemiplegia, facial paralysis as well as language dysfunction caused by stroke both in ancient and modern times. By using pharmacodynamics, pharmacokinetics, and metabolomics, our present study discusses whether the combination of individual herbs or major active components of MJCPF possess synergistic neuroprotective effects against ischemic stroke (IS). 108 adult male Sprague-Dawley rats were randomly and equally divided into 9 groups, including sham group (N, vehicle), middle cerebral artery occlusion (MCAO) model group (M, vehicle), positive group (P, 36 mg/kg/day nimodipine), crocin I (A1, 40 mg/kg/day), β-asarone (B1, 15 mg/kg/day), crocin I + β-asarone (A1B1, 55 mg/kg/day), C. sativus (A, 580 mg/kg/day), A. tatarinowii (B, 480 mg/kg/day), and C. sativus + A. tatarinowii, also named MJCPF (AB, 1060 mg/kg/day) groups. All drugs were orally administered to rats once a day for 14 consecutive days. Neurological deficit score, cerebral infarct volume, body weight change, TTC, HE and IHC staining, behavioral evaluation, metabolic profiles, and pharmacokinetic parameters were determined. MCAO led to severe brain damage including large infarct volume, more severe brain tissue injury, and worse neurological function as compared to the sham rats. All treatment groups showed a significant neuroprotective effect on MCAO rats. Furthermore, the pharmacodynamics' results demonstrated that MJCPF had a synergistic effect evidenced by small infarct volume, more regular arrangement of neuronal cells, and more improved neural function, and the levels of inflammatory factors were closer to normality. A total of 53 differential metabolites between MCAO and sham groups were screened by integration of serum and brain metabolisms, all of which were restored at varying degrees in treatment. PCA and PLS-DA analysis showed that the levels of differential metabolites treated with MJCPF were closer to the sham group than the individual herb and single compound alone or A1B1 combination. The pharmacokinetic parameters further verified the above results that MJCPF could synergistically promote drug absorption greater than others. Our integrated pharmacodynamics, metabolomics, and pharmacokinetic approach reveals the synergistic effect of MJCPF on treatment of IS, which powerfully contribute to the understanding of scientific connotation of TMC formula.
Collapse
|
7
|
Uncovering the Mechanism of Curcuma in the Treatment of Ulcerative Colitis Based on Network Pharmacology, Molecular Docking Technology, and Experiment Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6629761. [PMID: 34221084 PMCID: PMC8225429 DOI: 10.1155/2021/6629761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/22/2021] [Accepted: 05/31/2021] [Indexed: 12/25/2022]
Abstract
Aim The incidence of ulcerative colitis (UC) is increasing steadily in developed countries, it is plaguing nearly 1 million people in the United States and European countries, while developing countries have had a rapidly increased incidence over the past decades. Curcuma is widely used in treating malaria, UC, Crohn's disease, and colon cancer, which lead to diarrhea and bloody stool. However, the systemic mechanism of curcuma in treating UC is still unclear. Our work was supposed to expound how does curcuma alleviate UC in a comprehensive and systematic way by network pharmacology, molecular docking, and experiment verification. Methods Traditional Chinese Medicine System Pharmacology Database (TCMSP), Shanghai Chemistry & Chemical Industry Data Platform (SGST), and papers published in Chinese Network Knowledge Infrastructure (CNKI) and PubMed were used to collect the chemical constituents of curcuma based on ADME (absorption, distribution, metabolism, and excretion). And effective targets were predicted by Swiss Target Prediction to establish the curcuma-related database. The disease targets of UC were screened by GeneCards and DrugBank databases, and Wayne (Venn) analysis was carried out with curcuma targets to determine the intersection targets. AutoDock software and TCMNPAS system were used to dock the core chemical components of curcuma with key UC targets. Protein interaction (PPI) network was constructed based on the STRING database and Cytoscape software. Gene function GO analysis and KEGG pathway enrichment analysis were carried out by using Metascape database. Finally, HE staining was performed to identify the inflammatory infiltration and expression difference in TNF-α and STAT3 before and after the treatment of curcuma which was verified by immunoblotting. Results Twelve active components containing 148 target genes were selected from curcuma. Potential therapeutic targets of curcuma in the treatment of UC were acquired from 54 overlapped targets from UC and curcuma. Molecular docking was used to filter the exact 24 core proteins interacting with compounds whose docking energy is lower than -5.5 and stronger than that of 5-aminosalicylic acid (5-ASA). GO and KEGG analyses showed that these targets were highly correlated with EGFR tyrosine kinase inhibitor resistance, PI3K-Akt signaling pathway, JAK-STAT signaling pathway, MAPK signaling pathway, and inflammatory bowel disease (IBD). Experiments verified curcuma relieved pathological manifestation and decreased the expression of TNF-α and STAT3. Conclusion Curcuma relieved the colon inflammation of ulcerative colitis via inactivating TNF pathway, inflammatory bowel disease pathway, and epithelial cell signaling in Helicobacter pylori infection pathway, probably by binding to STAT3 and TNF-α.
Collapse
|
8
|
Li S, Sun X, Bi L, Tong Y, Liu X. Research Progress on Natural Product Ingredients' Therapeutic Effects on Parkinson's Disease by Regulating Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5538200. [PMID: 33981351 PMCID: PMC8088354 DOI: 10.1155/2021/5538200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and older adults. Abnormal proteins such as α-synuclein are essential factors in PD's pathogenesis. Autophagy is the main participant in the clearance of abnormal proteins. The overactive or low function of autophagy leads to autophagy stress. Not only is it difficult to clear abnormal proteins but also it can cause damage to neurons. In this article, the effects of natural products ingredients, such as salidroside, paeoniflorin, curcumin, resveratrol, corynoxine, and baicalein, on regulating autophagy and protecting neurons were discussed in detail to provide a reference for the research and development of drugs for the treatment of PD.
Collapse
Affiliation(s)
- Sicong Li
- School of Pharmacy, Peking University Health Science Centre, Beijing, China
| | - Xu Sun
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Lei Bi
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yujia Tong
- Institute of Medical Information, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xin Liu
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| |
Collapse
|