1
|
Belisheva NK, Drogobuzhskaya SV. Rare Earth Element Content in Hair Samples of Children Living in the Vicinity of the Kola Peninsula Mining Site and Nervous System Diseases. BIOLOGY 2024; 13:626. [PMID: 39194565 DOI: 10.3390/biology13080626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
The aim of this study is to assess the rare earth element (REE) content in hair samples of children living in Lovozero village, near an REE mining site, and the possible effects of REEs on the prevalence of nervous system diseases in Lovozersky District (Murmansk region, Kola Peninsula). Fifty-three school-age children were recruited for the analysis of REE content in hair samples. REE (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) content was estimated by means of inductively coupled plasma mass spectrometry (ICP-MS). The analysis of REE content in the hair of children living in Russia, Kazakhstan, and China indicated REE intake from the environment. The possible contribution of REEs to nervous system disorders is supported by the link between the REE content in hair samples of children living near REE mining areas (China) and the manifestation of cognitive disorders in these children. It is also found that the prevalence of nervous system diseases in children aged 15-17 years is higher in Lovozersky District compared to the other districts of the Murmansk region. In this paper, the possible contribution of REEs to the prevalence of episodic paroxysmal disorders (G40-G47), cerebral palsy (G80-G83), and epilepsy and status epilepticus (G40-G41) is discussed.
Collapse
Affiliation(s)
- Natalia K Belisheva
- Research Centre for Human Adaptation in the Arctic, Federal Research Centre "Kola Science Centre of the Russian Academy of Sciences" (RCHAA KSC RAS), Akademgorodok, 41a, 184209 Apatity, Russia
| | - Svetlana V Drogobuzhskaya
- Tananaev Institute of Chemistry-Subdivision of the Federal Research Centre "Kola Science Centre of the Russian Academy of Sciences", Akademgorodok, 26 a, 184209 Apatity, Russia
| |
Collapse
|
2
|
Wang N, Sun G, Zhang Q, Gao Q, Wang B, Guo L, Cheng G, Hu Y, Huang J, Ren R, Wang C, Chen C. Broussonin E against acute respiratory distress syndrome: the potential roles of anti-inflammatory. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3195-3209. [PMID: 37906275 DOI: 10.1007/s00210-023-02801-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
We applied network pharmacology and molecular docking analyses to study the efficacy of Broussonin E (BRE) in acute respiratory distress syndrome (ARDS) treatment and to determine the core components, potential targets, and mechanism of action of BRE. The SwissTargetprediction and SEA databases were used to predict BRE targets, and the GeneCards and OMIM databases were used to predict ARDS-related genes. The drug targets and disease targets were mapped to obtain an intersecting drug target gene network, which was then uploaded into the String database for protein-protein interaction network analysis. The intersecting gene was also uploaded into the DAVID database for gene ontology enrichment analysis and Kyoto encyclopedia of genes and genomes pathway analysis. Molecular docking analysis was performed to verify the interaction of BRE with the key targets. Finally, to validate the experiment in vivo, we established an oleic acid-induced ARDS rat model and evaluated the protective effect of BRE on ARDS by histological evaluation and enzyme-linked immunosorbent assay. Overall, 79 targets of BRE and 3974 targets of ARDS were predicted, and 79 targets were obtained after intersection. Key genes such as HSP90AA1, JUN, ESR1, MTOR, and PIK3CA play important roles in the nucleus and cytoplasm by regulating the tumor necrosis factor, nuclear factor-κB, and PI3K-Akt signaling pathways. Molecular docking results showed that small molecules of BRE could freely bind to the active site of the target proteins. In vivo experiments showed that BRE could reduce ARDS-related histopathological changes, release of inflammatory factors, and infiltration of macrophages and oxidative stress reaction. BRE exerts its therapeutic effect on ARDS through target and multiple pathways. This study also predicted the potential mechanism of BRE on ARDS, which provides the theoretical basis for in-depth and comprehensive studies of BRE treatment on ARDS.
Collapse
Affiliation(s)
- Ning Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Guangcheng Sun
- Department of Cardiology, Anhui Chest Hospital, Hefei, Anhui, China
| | - Qiaoyun Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Qian Gao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Bingjie Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Lingling Guo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Gao Cheng
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Yuexia Hu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China
| | - Jian Huang
- Department of Thoracic Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, No.17, Lujiang Road, Luyang District, Hefei, 230001, Anhui, China.
| | - Ruguo Ren
- Department of Cardiovascular Hospital, Xi'an No.1 Hospital and The First Affiliated Hospital of Northwest University, Beilin District, No.30, South Street powder Lane, Xi'an, 710002, Shaanxi, China.
| | - Chunhui Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China.
| | - Chen Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University and Anhui Public Health Clinical Center, Xinzhan District, No.100, Huaihai Road, Hefei, 230011, Anhui, China.
| |
Collapse
|
3
|
Wang W, Yang Y, Wang D, Huang L. Toxic Effects of Rare Earth Elements on Human Health: A Review. TOXICS 2024; 12:317. [PMID: 38787096 PMCID: PMC11125915 DOI: 10.3390/toxics12050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Rare earth elements (REEs) are a new type of material resource which have attracted significant attention in recent years. REEs have emerged as essential metals in modern-day technology due to their unique functions. The long-term, large-scale mining and utilization of rare earths has caused serious environmental pollution and constitutes a global health issue, which has raised concerns regarding the safety of human health. However, the toxicity profile of suspended particulate matter in REEs in the environment, which interacts with the human body, remains largely unknown. Studies have shown that REEs can enter the human body through a variety of pathways, leading to a variety of organ and system dysfunctions through changes in genetics, epigenetics, and signaling pathways. Through an extensive literature search and critical analysis, we provide a comprehensive overview of the available evidence, identify knowledge gaps, and make recommendations for future research directions.
Collapse
Affiliation(s)
| | | | | | - Lihua Huang
- School of Public Health, Baotou Medical College, Baotou 014030, China; (W.W.); (Y.Y.); (D.W.)
| |
Collapse
|
4
|
Xu L, Li L, Chen Q, Huang Y, Chen X, Qiao D. The Role of Non-coding RNAs in Methamphetamine-Induced Neurotoxicity. Cell Mol Neurobiol 2023; 43:2415-2436. [PMID: 36752885 PMCID: PMC11410138 DOI: 10.1007/s10571-023-01323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Methamphetamine (METH) is an amphetamine-type stimulant that is highly toxic to the central nervous system (CNS). Repeated intake of METH can lead to addiction, which has become a globalized problem, resulting in multiple public health and safety problems. Recently, the non-coding RNA (ncRNA) has been certified to play an essential role in METH addiction through various mechanisms. Herein, we mainly focused on three kinds of ncRNAs including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), which are involved in neurotoxicity effects such as cognitive impairment, behavioral abnormalities, and psychiatric disorders due to METH abuse. In addition, differential expression (DE) ncRNAs also suggest that specific responses and sensitivity to METH neurotoxicity exist in different brain regions and cells. We summarized the relationships between the ncRNAs and METH-induced neurotoxicity and psychiatric disturbances, respectively, hoping to provide new perspectives and strategies for the prevention and treatment of METH abuse. Schematic diagram of the non-coding RNAs (ncRNAs) was involved in methamphetamine (METH)-induced neurotoxicity. The ncRNAs were involved in METH-induced blood-brain barrier disruption, neuronal, astrocyte, and microglial damage, and synaptic neurotransmission impairment. The study of ncRNAs is a hot spot in the future to further understand the neurotoxicity of METH and provide more favorable scientific support for clinical diagnosis and innovation of related treatments.
Collapse
Affiliation(s)
- Luyao Xu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Lingyue Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Qianling Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Yuebing Huang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Xuebing Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China.
| | - Dongfang Qiao
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China.
| |
Collapse
|
5
|
Bacha L, Ventura R, Barrios M, Seabra J, Tschoeke D, Garcia G, Masi B, Macedo L, Godoy JMDO, Cosenza C, de Rezende CE, Lima V, Ottoni AB, Thompson C, Thompson F. Risk of Collapse in Water Quality in the Guandu River (Rio de Janeiro, Brazil). MICROBIAL ECOLOGY 2022; 84:314-324. [PMID: 34424345 DOI: 10.1007/s00248-021-01839-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The Guandu River, one of the main rivers in the state of Rio de Janeiro, provides water for more than nine million people in the metropolitan region. However, the Guandu has suffered from massive domestic and industrial pollution for more than two decades, leading to high levels of dissolved total phosphorus, cyanobacteria, and enteric bacteria observed during the summers of 2020 and 2021. The use of Phoslock, a palliative compound, was not effective in mitigating the levels of phosphorus in the Guandu River. Furthermore, potable water driven from the river had levels of 2-MIB/geosmin and a mud smell/taste. With all these problems, several solutions are proposed for improving the Guandu River water quality, including establishment of (i) sewage treatment plants (STPs), (ii) strict water quality monitoring, (iii) environmental recovery (e.g., reforestation), and (iv) permanent protected areas. The objective of this paper is to verify the poor water quality in the Guandu and the ineffectiveness and undesired effects of Phoslock.
Collapse
Affiliation(s)
- Leonardo Bacha
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rodrigo Ventura
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Maria Barrios
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jean Seabra
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo Tschoeke
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gizele Garcia
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno Masi
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Larissa Macedo
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Carlos Cosenza
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos E de Rezende
- Laboratório de Ciências Ambientais, Universidade Estadual Do Norte Fluminense (UENF), Campos de Goytacazes, Brazil
| | - Vinicius Lima
- Laboratório de Ciências Ambientais, Universidade Estadual Do Norte Fluminense (UENF), Campos de Goytacazes, Brazil
| | - Adacto B Ottoni
- Departamento de Engenharia Sanitária E Do Meio Ambiente, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Cristiane Thompson
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano Thompson
- Institute of Biology and Sage-Coppe, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Chen F, Deng Q, Wu Y, Wu Y, Chen J, Chen Y, Lin L, Qiu Y, Pan L, Zheng X, Wei L, Liu F, He B, Wang J. U-Shaped Relationship of Rare Earth Element Lanthanum and Oral Cancer Risk: A Propensity Score-Based Study in the Southeast of China. Front Public Health 2022; 10:905690. [PMID: 35646760 PMCID: PMC9133527 DOI: 10.3389/fpubh.2022.905690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
As an important rare earth element (REE) extensively applied to industry, agriculture, and medicine, lanthanum (La) has attracted a host of health concerns. This study aimed to explore the relationship between La exposure and the risk of developing oral cancer through a case-control study with a large sample size. Serum La levels of 430 oral cancer patients and 1,118 healthy controls were detected by inductively coupled plasma mass spectrometry (ICP-MS). The association of La level with the risk of oral cancer was assessed in two ways: (1) as a continuous scale based on restricted cubic splines (RCS); (2) as a priori defined centile categories using multivariate logistic regression model, based on propensity score matching (PSM) and inverse probability of treatment weighting (IPTW). The RCS revealed a non-linear U-shaped relationship between serum La and oral cancer risk. Serum La deficiency or excess was associated with an increased risk of oral cancer. When the La level was analyzed as a categorical variable, a similar U-shaped association was observed. Of note, compared to those with La concentrations of 0.243-0.341 μg/L (reference quantiles, 41st-60th), the risk was increased in those with the lower or higher quantiles (0.132-0.242 μg/L vs. 0.243-0.341 μg/L: OR = 1.80, 95%CI: 1.07-3.02; 0.342-0.497 μg/L vs. 0.243-0.341 μg/L: OR = 2.30, 95%CI: 1.38-3.84). The results were generally consistent with the PSM and IPTW analyses. This preliminary study provides strong evidence that there was a U-shaped relationship between serum La levels and oral cancer risk. Much additional work is warranted to confirm our findings.
Collapse
Affiliation(s)
- Fa Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Qingrong Deng
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yuxuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yuying Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jinfa Chen
- Laboratory Center, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yujia Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Lisong Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yu Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lizhen Pan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoyan Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lihong Wei
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fengqiong Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Baochang He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jing Wang
- Laboratory Center, School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Fang S, Zhang P, Chen X, Liu F, Wang F. Lanthanum Chloride Sensitizes Cisplatin Resistance of Ovarian Cancer Cells via PI3K/Akt Pathway. Front Med (Lausanne) 2022; 8:776876. [PMID: 34977076 PMCID: PMC8714849 DOI: 10.3389/fmed.2021.776876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Our previous study manifested that lanthanum chloride (LaCl3) can enhance the anticancer ability of cisplatin (DDP) in ovarian cancer cells. Here, ovarian cancer cells SKOV3 and SKOV3/DDP were subjected to DDP and LaCl3. Cell viability, apoptosis, DNA repair, and PI3K/Akt pathway were detected. LaCl3 induced more cell death and apoptosis caused by DDP in two cell lines, accompanied by upregulation of Bax and Cleaved caspase 3 proteins, and downregulation of Bcl-2 protein. LaCl3 also could decrease RAD51 protein by inactivation of the PI3K/Akt pathway. These data indicated that LaCl3 could be a potential drug to modulate DDP resistance by inactivating of PI3K/Akt pathway and attenuating DNA repair in ovarian cancer.
Collapse
Affiliation(s)
- Shanyu Fang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ping Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Jiujiang University Clinical Medical College, Jiujiang University Hospital, Jiujiang, China
| | - Xinping Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fujun Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fen Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
The Protective Effect of Aspirin Eugenol Ester on Oxidative Stress to PC12 Cells Stimulated with H 2O 2 through Regulating PI3K/Akt Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5527475. [PMID: 34257805 PMCID: PMC8249132 DOI: 10.1155/2021/5527475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. This study is aimed at identifying the protective effect of AEE against H2O2-induced apoptosis in rat adrenal pheochromocytoma PC12 cells and the possible mechanisms. The results of cell viability assay showed that AEE could increase the viability of PC12 cells stimulated by H2O2, while AEE alone had no significant effect on the viability of PC12 cells. Compared with the control group, the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were significantly decreased, and the content of malondialdehyde (MDA) was significantly increased in the H2O2 group. By AEE pretreatment, the level of MDA was reduced and the levels of SOD, CAT, and GSH-Px were increased in H2O2-stimulated PC12 cells. In addition, AEE could reduce the apoptosis of PC12 cells induced by H2O2 via reducing superoxide anion, intracellular ROS, and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). Furthermore, the results of western blotting showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of Caspase-3 and Bax was significantly increased in the H2O2 group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of Caspase-3 and Bax in PC12 cells stimulated with H2O2. The silencing of PI3K with shRNA and its inhibitor-LY294002 could abrogate the protective effect of AEE in PC12 cells. Therefore, AEE has a protective effect on H2O2-induced PC12 cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.
Collapse
|