1
|
Kim WJ, Ryu R, Doo EH, Choi Y, Kim K, Kim BK, Kim H, Kim M, Huh CS. Supplementation with the Probiotic Strains Bifidobacterium longum and Lactiplantibacillus rhamnosus Alleviates Glucose Intolerance by Restoring the IL-22 Response and Pancreatic Beta Cell Dysfunction in Type 2 Diabetic Mice. Probiotics Antimicrob Proteins 2025; 17:541-556. [PMID: 37804432 DOI: 10.1007/s12602-023-10156-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Type 2 diabetes (T2D) is known as adult-onset diabetes, but recently, T2D has increased in the number of younger people, becoming a major clinical burden in human society. The objective of this study was to determine the effects of Bifidobacterium and Lactiplantibacillus strains derived from the feces of 20 healthy humans on T2D development and to understand the mechanism underlying any positive effects of probiotics. We found that Bifidobacterium longum NBM7-1 (Chong Kun Dang strain 1; CKD1) and Lactiplantibacillus rhamnosus NBM17-4 (Chong Kun Dang strain 2; CKD2) isolated from the feces of healthy Korean adults (n = 20) have anti-diabetic effects based on the insulin sensitivity. During the oral gavage for 8 weeks, T2D mice were supplemented with anti-diabetic drugs (1.0-10 mg/kg body weight) to four positive and negative control groups or four probiotics (200 uL; 1 × 109 CFU/mL) to groups separately or combined to the four treatment groups (n = 6 per group). While acknowledging the relatively small sample size, this study provides valuable insights into the potential benefits of B. longum NBM7-1 and L. rhamnosus NBM17-4 in mitigating T2D development. The animal gene expression was assessed using a qRT-PCR, and metabolic parameters were assessed using an ELISA assay. We demonstrated that B. longum NBM7-1 in the CKD1 group and L. rhamnosus NBM17-4 in the CKD2 group alleviate T2D development through the upregulation of IL-22, which enhances insulin sensitivity and pancreatic functions while reducing liver steatosis. These findings suggest that B. longum NBM7-1 and L. rhamnosus NBM17-4 could be the candidate probiotics for the therapeutic treatments of T2D patients as well as the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Won Jun Kim
- Department of Agricultural Biotechnology, College of Agriculture Sciences, Seoul National University, Seoul, South Korea
| | - Ri Ryu
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, South Korea
| | - Eun-Hee Doo
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, South Korea
- Department of Yuhan Biotechnology, School of Bio-Health Sciences, Yuhan University, Bucheon, 14780, South Korea
| | - Yukyung Choi
- Research Institute, Chong Kun Dang Bio Co. Ltd, Ansan, South Korea
| | - Kyunghwan Kim
- Research Institute, Chong Kun Dang Bio Co. Ltd, Ansan, South Korea
| | - Byoung Kook Kim
- Research Institute, Chong Kun Dang Bio Co. Ltd, Ansan, South Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, College of Agriculture Sciences, Seoul National University, Seoul, South Korea
- Department of Animal Science and Biotechnology, Seoul National University, Seoul, South Korea
| | - Myunghoo Kim
- Department of Animal Science, Pusan National University, Miryang, South Korea.
| | - Chul Sung Huh
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, South Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea.
| |
Collapse
|
2
|
Liu J, Li F, Yang L, Luo S, Deng Y. Gut microbiota and its metabolites regulate insulin resistance: traditional Chinese medicine insights for T2DM. Front Microbiol 2025; 16:1554189. [PMID: 40177494 PMCID: PMC11963813 DOI: 10.3389/fmicb.2025.1554189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
The gut microbiota is closely associated with the onset and development of type 2 diabetes mellitus (T2DM), characterized by insulin resistance (IR) and chronic low-grade inflammation. However, despite the widespread use of first-line antidiabetic drugs, IR in diabetes and its complications continue to rise. The gut microbiota and its metabolic products may promote the development of T2DM by exacerbating IR. Therefore, regulating the gut microbiota has become a promising therapeutic strategy, with particular attention given to probiotics, prebiotics, synbiotics, and fecal microbiota transplantation. This review first examines the relationship between gut microbiota and IR in T2DM, summarizing the research progress of microbiota-based therapies in modulating IR. We then delve into how gut microbiota-related metabolic products contribute to IR. Finally, we summarize the research findings on the role of traditional Chinese medicine in regulating the gut microbiota and its metabolic products to improve IR. In conclusion, the gut microbiota and its metabolic products play a crucial role in the pathophysiological process of T2DM by modulating IR, offering new insights into potential therapeutic strategies for T2DM.
Collapse
Affiliation(s)
- Jing Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Fuxing Li
- Ningxiang Traditional Chinese Medicine Hospital, Changsha, China
| | - Le Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shengping Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yihui Deng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Zhu J, Peng F, Yang H, Luo J, Zhang L, Chen X, Liao H, Lei H, Liu S, Yang T, Luo G, Chen G, Zhao H. Probiotics and muscle health: the impact of Lactobacillus on sarcopenia through the gut-muscle axis. Front Microbiol 2025; 16:1559119. [PMID: 40160272 PMCID: PMC11952772 DOI: 10.3389/fmicb.2025.1559119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Sarcopenia refers to the decline in skeletal muscle mass and function. Due to its increased mortality rate and severe disability, the clinical importance of sarcopenia is becoming increasingly prominent. Although the exact cause of sarcopenia is not fully understood, the gut microbiota (GM) plays a crucial role in the pathogenesis of sarcopenia, and increasing evidence suggests that gut dysbiosis may be associated with disease development. In the past few decades, the use of probiotics has surged, few studies have explored their impact on sarcopenia prevention and treatment. Lactobacillus probiotics are commonly used for gut health and immune support, but their mechanism in sarcopenia via the gut-muscle axis remains uncertain. This review highlights the treatment challenges, GM's role in sarcopenia, and the potential of Lactobacillus as an adjunct therapy. In addition, we also discuss the possible mechanisms by which Lactobacillus affect muscle function, such as alleviating inflammatory states, clearing excessive reactive oxygen species (ROS), improving skeletal muscle metabolism, enhancing intestinal barrier function and modulating the gut microbiota and its metabolites. These mechanisms may collectively contribute to the preservation of muscle mass and function, offering a promising avenue for advancing microbial therapies for sarcopenia.
Collapse
Affiliation(s)
- Jingjun Zhu
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fei Peng
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Huixin Yang
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, China
| | - Jing Luo
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Zhang
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaolong Chen
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Huazhi Liao
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hao Lei
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shuai Liu
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Tingqian Yang
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Guanghua Luo
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guodong Chen
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Heng Zhao
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
4
|
Japar KV, Hariyanto TI, Hamzah DV, Prasetya IB, Suastika K. Probiotics Supplementation for Improving Glucolipid Parameters in Individuals with Prediabetes: A Systematic Review and Meta-Analysis of Randomized Trials. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10449-x. [PMID: 39806201 DOI: 10.1007/s12602-025-10449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
The absence of suitable intervention significantly increases the likelihood of type 2 diabetes mellitus (T2DM) development in people with prediabetes. Recent statistical findings indicate that the gut microbiome might influences the development of insulin resistance. The objective of our study was to assess the efficacy and safety of probiotic supplementation in individuals diagnosed with prediabetes. A thorough search was carried out on the Cochrane Library, Medline, Scopus, and ClinicalTrials.gov databases until September 12th, 2024, using a mix of pertinent keywords. This review incorporates randomized clinical trials (RCTs) concerning the effect of probiotics for prediabetes. We used random-effect models to examine the mean difference (MD). A total of eight RCTs were incorporated. The results of our meta-analysis indicated that probiotics supplementation was associated with higher reduction in hemoglobin A1c (HbA1c) (MD -0.07% (95% CI -0.11, -0.03), p = 0.0005, I2 = 0%) among individuals with prediabetes when compared to placebo. Other indicators such as total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), and body mass index (BMI) did not differ significantly between probiotics and placebo. No significant difference was observed in the occurrence of adverse events (AEs) between the two groups. This study indicates the efficacy and safety of probiotics supplementation to improve the glycemic parameters in patients with prediabetes.
Collapse
Affiliation(s)
- Karunia Valeriani Japar
- Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman Street, Karawaci, Tangerang, 15811, Indonesia
| | - Timotius Ivan Hariyanto
- Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman Street, Karawaci, Tangerang, 15811, Indonesia.
| | - Damian Vidana Hamzah
- Faculty of Medicine, Methodist University, Medan, North Sumatra, 20132, Indonesia
| | - Ignatius Bima Prasetya
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang, 15811, Indonesia
| | - Ketut Suastika
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Faculty of Medicine, Udayana University, Denpasar, Bali, 80232, Indonesia
| |
Collapse
|
5
|
Islam S, Biswas S, Islam MA, Biswas J, Dutta AK, Mohiuddin GG, Saleh MA, Zaman S. Multifaceted Analysis of Lactobacillus plantarum DMR14 Reveals Promising Antidiabetic Properties Through In Vivo Assays and Molecular Simulations. J Cell Mol Med 2025; 29:e70347. [PMID: 39865621 PMCID: PMC11769970 DOI: 10.1111/jcmm.70347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/02/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Due to the growing concern about diabetes worldwide, we investigated the antidiabetic potential of Lactobacillus plantarum DMR14, assessing its effects on the diabetic mice and identifying safe, bioactive compounds targeting DPP4 protein for drug development through various methods, including in vivo assays, GC-MS analysis and molecular docking simulations. The animal experiments showed that after 3 weeks of treatment, the blood sugar levels of mice given the bacteria were reduced by 35.03% compared to baseline. The treatment also significantly lowered blood lipids such as triglycerides, total cholesterol and LDL cholesterol, but did not affect HDL cholesterol levels. Additionally, we identified three compounds that effectively targeted a protein (DPP4) involved in diabetes (PDB ID: 4A5S). These compounds were predicted to be safe for absorption, processing and elimination by the body, and showed no signs of inducing cancer in computer simulations. Further simulations indicated that these compounds bind stably to the protein over time. Diabetic mice treated with Lactobacillus plantarum DMR14 exhibited improved organ health, reduced glucose levels and better metabolic markers. Computer analysis suggested compounds that could enhance enzyme inhibition, indicating potential antidiabetic properties in this strain. These suggested compounds could be considered potential candidates for developing antidiabetic drugs.
Collapse
Affiliation(s)
- Shirmin Islam
- Microbiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Md. Ariful Islam
- Microbiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Jui Biswas
- Microbiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Amit Kumar Dutta
- Department of MicrobiologyUniversity of RajshahiRajshahiBangladesh
| | - Golam Gaus Mohiuddin
- Department of PharmacyNoakhali Science & Technology UniversitySonapurNoakhaliBangladesh
| | - Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| |
Collapse
|
6
|
Vaishnavi VVK, Banik U, Sabesan GS, Adhikary AK, Parasuraman S. Evaluation of Acute and Sub-Chronic Toxicity of Lactobacillus rhamnosus GG in Sprague-Dawley Rats. Adv Biomed Res 2024; 13:126. [PMID: 40007733 PMCID: PMC11850946 DOI: 10.4103/abr.abr_13_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 02/27/2025] Open
Abstract
Background Probiotic-based bacteriotherapy has emerged as a potentially effective strategy for preventing infectious diseases. Lactobacillus strains consumed as probiotics and the safety of these spp. has been questioned due to reported unexpected responses. Hence, the present study has been conducted to evaluate the acute and sub-chronic toxicity of Lactobacillus rhamnosus GG in Sprague-Dawley (SD) rats. Materials and Methods The acute and sub-chronic toxicity effect of L. rhamnosus is studied in rats as per the Organization for Economic Cooperation and Development (OECD), test guideline 423 and 407, respectively. Results In acute toxicity, L. rhamnosus at 1 × 107, 1 × 108, 1 × 109, and 1 × 1010 CFU/mL don't show any toxic signs. In sub-chronic toxicity, L. rhamnosus at 1 × 106,1 × 107 and 1 × 108 CFU/mL dosages showed dose-depended changes in biochemical and haematological parameters. In this study, one male and one female rat administered with 1 x 108 CFU/mL of L. rhamnosus showed mortality on days 16 and 26, respectively. The animals administered with L. rhamnosus showed no histological changes in the organs such as heart, liver and kidney. Conclusion L. rhamnosus exhibited mild-to-moderate toxic effects at the dose levels of 1 × 106 CFU/mL, 1 × 107 and 1 × 108 CFU/mL in rats.
Collapse
Affiliation(s)
- Vedam Venkata Kanthi Vaishnavi
- Department of Oral Pathology, Faculty of Dentistry, AIMST University, Bedong, Kedah Darul Aman, Malaysia
- Department of Microbiology, Faculty of Medicine, AIMST University, Bedong, Kedah Darul Aman, Malaysia
| | - Urmila Banik
- Faculty of Medicine, Nursing & Health Sciences, SEGi University, Kota Damansara, Malaysia
| | - Gokul Shankar Sabesan
- Department of Microbiology, Faculty of Medicine, Manipal University College-Malaysia (MUCM), Malaysia
| | - Arun K. Adhikary
- International Medical School, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Subramani Parasuraman
- Department of Pharmacology, Toxicology and Basic Health Sciences, Faculty of Pharmacy, AIMST University, Bedong, Kedah Darul Aman, Malaysia
| |
Collapse
|
7
|
Aggarwal H, Gautam J, Gupta SK, Das B, Kumar Y, Jagavelu K, Dikshit M. Improved metabolic stability in iNOS knockout mice with Lactobacillus supplementation. Nutr Res 2024; 132:95-111. [PMID: 39532058 DOI: 10.1016/j.nutres.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
Oxidative and nitrosative stress play pivotal roles in normal physiological processes and the pathogenesis of metabolic disorders. Previous studies from our lab demonstrated insulin resistance (IR), and dyslipidemia in iNOS-/- mice, emphasizing the importance of maintaining optimal redox balance. These mice exhibited altered gut microbiota with decreased Lactobacillus. Therefore, we hypothesized that Lactobacillus supplementation could mitigate metabolic disturbances in iNOS-/- mice. To test this hypothesis, iNOS-/- mice and wild-type (WT) mice were divided into four groups: iNOS-/- with or without Lactobacillus supplementation, WT with or without Lactobacillus supplementation and glucose tolerance, insulin resistance, gluconeogenesis, lipids, gene expression related to glucose and lipid metabolism (qPCR), fecal gut microbiota (16S rRNA sequencing), and serum and caecum metabolomics (LC-MS) were monitored. IR and dyslipidemic iNOS-/- mice exhibited reduced microbial diversity, diminished presence of Lactobacillus, and altered serum metabolites, indicating metabolic dysregulation. Lactobacillus supplementation in iNOS-/- mice effectively reversed glucose intolerance, IR, dyslipidemia, and associated metabolic irregularities compared to WT. These improvements correlated with changes in gene expression related to fatty acid synthesis in liver and adipose tissue, lipid oxidation in liver, and lipid efflux in intestinal tissue as compared to untreated iNOS-/- mice. Despite the positive effects on metabolic markers, Lactobacillus supplementation did not reduce body weight or rectify disrupted energy balance, as evidenced by reduced VCO2 production, heat generation, and metabolic rates in iNOS-/- mice. The results suggest that Lactobacillus supplementation ameliorates metabolic disturbances but did not fully restore disrupted energy balance, highlighting complex interactions between the gut microbiome and metabolism.
Collapse
Affiliation(s)
- Hobby Aggarwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India; Non-communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Jyoti Gautam
- Non-communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India; Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Sonu Kumar Gupta
- Non-communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Yashwant Kumar
- Non-communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Kumaravelu Jagavelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India; Non-communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India.
| |
Collapse
|
8
|
Arriaga-Morales JJ, Ordaz-Pichardo C, Castro-Muñoz R, Durán-Páramo E. Attenuation of Hyperglycemia in Diabetic Rats Assisted by Immobilized Probiotic in Sodium Alginate. Probiotics Antimicrob Proteins 2024; 16:2218-2228. [PMID: 37816987 PMCID: PMC11573870 DOI: 10.1007/s12602-023-10166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
Diabetes mellitus type 2 (DM2) is the most common chronic disease worldwide, characterized mainly by increased glucose concentration in the blood and affecting several organs' functionality. The daily consumption of probiotic bacteria can help control diabetes and reduce the damage caused. Cell immobilization techniques are a powerful tool that provides physical cell protection to such probiotic bacteria against gastrointestinal conditions. We suggest that cell immobilization could be a significant vector for delivering a high quantity of viable probiotics to the gut, helping attenuate hyperglycemia in diabetic rats. Seventy male Wistar rats were used in this work. Nicotinamide was administrated via intraperitoneal injection 15 minutes before inducing type 2 diabetes (DM2), followed by a second intraperitoneal injection of streptozotocin to induce DM2. Rats were divided into seven groups. For 45 days, a specific treatment was applied to each group. The group of rats, supplied with immobilized Lactobacillus casei, showed a serum glucose concentration of 137 mg/dL, which was close to the one observed in the groups of healthy rats (117 mg/dL) and rats treated with metformin (155 mg/dL). The diabetic rats without treatment presented a higher serum glucose concentration (461 mg/dL). In the rats treated with immobilized L. casei, there was no biochemical parameter alteration, and the cell morphology of the analyzed tissues was similar to those of the healthy group. The consumption of immobilized L. casei could allow a high quantity of viable probiotics to be delivered to the gut, reducing serum glucose concentration by up to 70% compared to diabetic rats and reducing organ damage caused by diabetes.
Collapse
Affiliation(s)
- José J Arriaga-Morales
- Laboratorio de Bioconversiones, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. La Laguna, Gustavo A. Madero, 07340, CDMX, Mexico
| | - Cynthia Ordaz-Pichardo
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Col. La Escalera, Gustavo A. Madero, 07320, CDMX, Mexico
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca. Av. Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico.
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80 - 233, Gdansk, Poland.
| | - Enrique Durán-Páramo
- Laboratorio de Bioconversiones, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. La Laguna, Gustavo A. Madero, 07340, CDMX, Mexico.
| |
Collapse
|
9
|
Islam MM, Mahbub NU, Hong ST, Chung HJ. Gut bacteria: an etiological agent in human pathological conditions. Front Cell Infect Microbiol 2024; 14:1291148. [PMID: 39439902 PMCID: PMC11493637 DOI: 10.3389/fcimb.2024.1291148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Through complex interactions with the host's immune and physiological systems, gut bacteria play a critical role as etiological agents in a variety of human diseases, having an impact that extends beyond their mere presence and affects the onset, progression, and severity of the disease. Gaining a comprehensive understanding of these microbial interactions is crucial to improving our understanding of disease pathogenesis and creating tailored treatment methods. Correcting microbial imbalances may open new avenues for disease prevention and treatment approaches, according to preliminary data. The gut microbiota exerts an integral part in the pathogenesis of numerous health conditions, including metabolic, neurological, renal, cardiovascular, and gastrointestinal problems as well as COVID-19, according to recent studies. The crucial significance of the microbiome in disease pathogenesis is highlighted by this role, which is comparable to that of hereditary variables. This review investigates the etiological contributions of the gut microbiome to human diseases, its interactions with the host, and the development of prospective therapeutic approaches. To fully harness the benefits of gut microbiome dynamics for improving human health, future research should address existing methodological challenges and deepen our knowledge of microbial interactions.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
10
|
Prapa I, Kompoura V, Pavlatou C, Nelios G, Mitropoulou G, Kostomitsopoulos N, Plessas S, Bezirtzoglou E, Karathanos VT, Yanni AE, Kourkoutas Y. Effects of Free or Immobilized Pediococcus acidilactici ORE5 on Corinthian Currants on Gut Microbiome of Streptozotocin-Induced Diabetic Rats. Microorganisms 2024; 12:2004. [PMID: 39458313 PMCID: PMC11509866 DOI: 10.3390/microorganisms12102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
The present study aimed to investigate the effect of a dietary intervention including free or immobilized cells of the presumptive probiotic Pediococcus acidilactici ORE5 on Corinthian currants, a food with beneficial impact in the condition of Type-1 Diabetes Mellitus (T1DM), on the microbiome composition of STZ-induced diabetic rats. Twenty four male Wistar rats were divided into four groups (n = 6 per group): healthy animals, which received the free (H_FP) or the immobilized Pediococcus acidilactici ORE5 cells (H_IPC), and diabetic animals, which received the free (D_FP) or the immobilized Pediococcus acidilactici ORE5 cells(D_IPC) for 4 weeks (109 cfu/day, in all groups). At the end of the dietary intervention, the D_IPC group exerted a lower concentration of the inflammatory cytokine IL-1 beta compared to D_FP. Consumption of immobilized P. acidilactici ORE5 cells on Corinthian currants by diabetic animals led to increased loads of fecal lactobacilli and lower Enterobacteriaceae, coliforms, and Escherichia coli levels, while Actinobacteria phylum, Akkermansia, and Bifidobacterium genera abundances were increased, and fecal lactic acid was elevated. Overall, the results of the present research demonstrated that functional ingredients could ameliorate gut dysbiosis present in T1DM and could be used to design dietary patterns aiming at T1DM management. However, well-designed clinical trials are necessary, in order to confirm the beneficial effects in humans.
Collapse
Affiliation(s)
- Ioanna Prapa
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Vasiliki Kompoura
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Chrysoula Pavlatou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Grigorios Nelios
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Stavros Plessas
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Vaios T. Karathanos
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece;
- Agricultural Cooperatives’ Union of Aeghion, Corinthou 201, 25100 Aeghion, Greece
| | - Amalia E. Yanni
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece;
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| |
Collapse
|
11
|
Narang A, Rashid M, Thakur S, Jain SK, Kaur A, Kaur S. Acute Pre- and Post-administration of Lactiplantibacillus plantarum 2034 and Its Secretory Metabolites Ameliorates Hyperglycaemia, Hyperlipidaemia, and Oxidative Stress in Diabetic Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10343-y. [PMID: 39150651 DOI: 10.1007/s12602-024-10343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
The global prevalence rate of diabetes in 2021 was 6.1% making diabetes one of the top 10 causes of death. Prolonged use of antidiabetic medications is associated with various side effects; therefore, alternative treatment strategies for diabetes need exploration. The antidiabetic properties of Lactiplantibacillus plantarum 2034 was explored both in in vitro and in vivo studies. Secretory metabolites of probiotic L. plantarum 2034 exhibited alpha-glucosidase, alpha-amylase, and lipase inhibitory activities, in vitro. Further, the antidiabetic efficacy of 2034 was evaluated in streptozotocin-nicotinamide-induced diabetic rats. In the therapeutic model, oral administration of L. plantarum resulted in normalization of body weight, fasting blood glucose, total cholesterol (TC), and liver enzymes, and significant (p < 0.05) reduction in insulin and triglyceride (TG) levels. Histological evaluation of pancreas, liver, and kidney showed restoration of normal architecture in probiotic-treated group. Similarly, in a preventive + therapeutic model, 14 days of pre-administration of 2034 in pre, pre + post, and cell-free supernatant resulted in significant reduction in glucose, TG, TC, and liver biochemistry of diabetic rats as compared to untreated diabetic rats. An oral glucose tolerance test showed that the glucose levels normalized within 90 min in all the treated groups. Further, the oxidative stress parameters were also studied that showed that in all the treated groups, the concentration of antioxidant enzymes significantly (p < 0.05) increased as compared to diabetic untreated rats. Thus, administration of L. plantarum 2034 and its metabolites successfully ameliorated hyperglycaemia and hypercholesterolemia in both the models probably due to inhibition of gut enzymes and by increasing the concentration of liver antioxidant enzymes.
Collapse
Affiliation(s)
- Anmol Narang
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Muzamil Rashid
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
12
|
Vivekanandan KE, Kasimani R, Kumar PV, Meenatchisundaram S, Sundar WA. Overview of cloning in lactic acid bacteria: Expression and its application of probiotic potential in inflammatory bowel diseases. Biotechnol Appl Biochem 2024; 71:881-895. [PMID: 38576028 DOI: 10.1002/bab.2584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Inflammatory bowel disease (IBD) imposes a significant impact on the quality of life for affected individuals. However, there was a current lack of a systematic summary regarding the latest epidemic trends and the underlying pathogenesis of IBD. This highlights the need for a thorough examination of both the epidemiological aspects of IBD and the specific mechanisms by which lactic acid bacteria (LAB) contribute to mitigating this condition. In developed countries, higher incidences and death rates of IBD have been observed, influenced by a combination of environmental and genetic factors. LAB offer significant advantages and substantial potential for enhancing IBD treatment. LAB's capabilities include the production of bioactive metabolites, regulation of gut immunity, protection of intestinal mechanical barriers, inhibition of oxidative damage, and restoration of imbalanced gut microbiota. The review suggests that screening effective LAB using cell models and metabolites, optimizing LAB intake through dose-effect studies, enhancing utilization through nanoencapsulation and microencapsulation, investigating mechanisms to deepen the understanding of LAB, and refining clinical study designs. These efforts aim to contribute to comprehending the epidemic trend, pathogenesis, and treatment of IBD, ultimately fostering the development of targeted therapeutic products, such as LAB-based interventions.
Collapse
Affiliation(s)
- K E Vivekanandan
- Department of Microbiology, Nehru Arts and Science College, Coimbatore, Tamil Nadu, India
| | - R Kasimani
- Department of Microbiology, Nehru Arts and Science College, Coimbatore, Tamil Nadu, India
| | - P Vinoth Kumar
- Department of Microbiology, Nehru Arts and Science College, Coimbatore, Tamil Nadu, India
| | - S Meenatchisundaram
- Department of Microbiology, Shree Nehru Maha Vidyalaya College of Arts and Science, Coimbatore, Tamil Nadu, India
| | - William Arputha Sundar
- Department of Pharmaceuticals, Swamy Vivekananda College of Pharmacy, Namakkal, Tamil Nadu, India
| |
Collapse
|
13
|
Li S, Liu Z, Zhang Q, Su D, Wang P, Li Y, Shi W, Zhang Q. The Antidiabetic Potential of Probiotics: A Review. Nutrients 2024; 16:2494. [PMID: 39125375 PMCID: PMC11313988 DOI: 10.3390/nu16152494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetes has become one of the most prevalent global epidemics, significantly impacting both the economy and the health of individuals. Diabetes is associated with numerous complications, such as obesity; hyperglycemia; hypercholesterolemia; dyslipidemia; metabolic endotoxemia; intestinal barrier damage; insulin-secretion defects; increased oxidative stress; and low-grade, systemic, and chronic inflammation. Diabetes cannot be completely cured; therefore, current research has focused on developing various methods to control diabetes. A promising strategy is the use of probiotics for diabetes intervention. Probiotics are a class of live, non-toxic microorganisms that can colonize the human intestine and help improve the balance of intestinal microbiota. In this review, we summarize the current clinical studies on using probiotics to control diabetes in humans, along with mechanistic studies conducted in animal models. The primary mechanism by which probiotics regulate diabetes is improved intestinal barrier integrity, alleviated oxidative stress, enhanced immune response, increased short-chain fatty acid production, etc. Therefore, probiotic supplementation holds great potential for the prevention and management of diabetes.
Collapse
Affiliation(s)
- Shiming Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100193, China
| | - Zichao Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qi Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Dan Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA;
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Wenbiao Shi
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| | - Qian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (S.L.); (Z.L.); (Q.Z.); (P.W.); (Y.L.)
| |
Collapse
|
14
|
Sun C, Liu Q, Ye X, Li R, Meng M, Han X. The Role of Probiotics in Managing Glucose Homeostasis in Adults with Prediabetes: A Systematic Review and Meta-Analysis. J Diabetes Res 2024; 2024:5996218. [PMID: 38529045 PMCID: PMC10963111 DOI: 10.1155/2024/5996218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Methods The Preferred Reporting Items for Systematic Reviews and Analysis checklist was used. A comprehensive literature search of the PubMed, Embase, and Cochrane Library databases was conducted through August 2022 to assess the impact of probiotics on blood glucose, lipid, and inflammatory markers in adults with prediabetes. Data were pooled using a random effects model and were expressed as standardized mean differences (SMDs) and 95% confidence interval (CI). Heterogeneity was evaluated and quantified as I2. Results Seven publications with a total of 550 patients were included in the meta-analysis. Probiotics were found to significantly reduce the levels of glycosylated hemoglobin (HbA1c) (SMD -0.44; 95% CI -0.84, -0.05; p = 0.03; I2 = 76.13%, p < 0.001) and homeostatic model assessment of insulin resistance (HOMA-IR) (SMD -0.27; 95% CI -0.45, -0.09; p < 0.001; I2 = 0.50%, p = 0.36) and improve the levels of high-density lipoprotein cholesterol (HDL) (SMD -8.94; 95% CI -14.91, -2.97; p = 0.003; I2 = 80.24%, p < 0.001), when compared to the placebo group. However, no significant difference was observed in fasting blood glucose, insulin, total cholesterol, triglycerides, low-density lipoprotein cholesterol, interleukin-6, tumor necrosis factor-α, and body mass index. Subgroup analyses showed that probiotics significantly reduced HbA1c in adults with prediabetes in Oceania, intervention duration of ≥3 months, and sample size <30. Conclusions Collectively, our meta-analysis revealed that probiotics had a significant impact on reducing the levels of HbA1c and HOMA-IR and improving the level of HDL in adults with prediabetes, which indicated a potential role in regulating blood glucose homeostasis. However, given the limited number of studies included in this analysis and the potential for bias, further large-scale, higher-quality randomized controlled trials are needed to confirm these findings. This trial is registered with CRD42022358379.
Collapse
Affiliation(s)
- Chao Sun
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qingyin Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaona Ye
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ronghua Li
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Miaomiao Meng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xingjun Han
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
15
|
Chen S, Zhang Y. Mechanism and application of Lactobacillus in type 2 diabetes-associated periodontitis. Front Public Health 2023; 11:1248518. [PMID: 38098816 PMCID: PMC10720667 DOI: 10.3389/fpubh.2023.1248518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) accelerates the progression of periodontitis through diverse pathways. Abnormal immune responses, excessive activation of inflammation, increased levels of advanced glycation end products, and oxidative stress have defined roles in the pathophysiological process of T2DM-associated periodontitis. Furthermore, in the periodontium of diabetic individuals, there are high levels of advanced glycation end-products and glucose. Meanwhile, progress in microbiomics has revealed that dysbacteriosis caused by T2DM also contributes to the progression of periodontitis. Lactobacillus, owing to its fine-tuning function in the local microbiota, has sparked tremendous interest in this field. Accumulating research on Lactobacillus has detailed its beneficial role in both diabetes and oral diseases. In this study, we summarize the newly discovered mechanisms underlying Lactobacillus-mediated improvement of T2DM-associated periodontitis and propose the application of Lactobacillus in the clinic.
Collapse
Affiliation(s)
- Sisi Chen
- Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Medical University, Chongqing, China
| | - Yuhan Zhang
- Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Liang M, Wang L, Wang W. The 15-hydroxyprostaglandin dehydrogenase inhibitor SW033291 ameliorates abnormal hepatic glucose metabolism through PGE 2-EP4 receptor-AKT signaling in a type 2 diabetes mellitus mouse model. Cell Signal 2023; 108:110707. [PMID: 37164143 DOI: 10.1016/j.cellsig.2023.110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with high rates of morbidity and mortality worldwide. Prostaglandin E2 (PGE2) is a lipid signaling molecule that can ameliorate the symptoms of some metabolic diseases, including T2DM, and improve tissue repair and regeneration. Although SW033291 can increase PGE2 levels through its action as a small molecule inhibitor of the PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase, its effects on T2DM remain unclear. In the present study, we evaluated whether SW033291 treatment exerts a protective effect against T2DM and explored the underlying mechanisms. A T2DM mouse model was established using a high-fat diet combined with streptozotocin treatment. Palmitic acid-treated LO2 cells were used as an insulin-resistant cell model. SW033291 treatment reduced body weight and fasting blood glucose levels as well as serum triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels in vivo. In addition to ameliorating glucose and insulin tolerance, SW033291 treatment reversed the T2DM-induced decrease in glycogen synthesis and increase in gluconeogenesis in the liver. Furthermore, SW033291 administration increased hepatic glycogen synthase kinase 3 beta (GSK3β) phosphorylation levels to promote glycogen synthesis. SW033291 treatment also inhibited gluconeogenesis by upregulating AKT serine/threonine kinase (AKT) and forkhead box O1 (FOXO1) phosphorylation and reducing glucose-6-phosphatase and phosphoenolpyruvate carboxykinase 1 expression in the livers of T2DM model mice. Additionally, SW033291 treatment improved abnormal hepatic glucose metabolism through the PGE2-EP4 receptor-AKT-GSK3β/FOXO1 signaling pathway in vitro. These results suggest a novel role of SW033291 in improving T2DM and support its potential as a novel therapeutic agent.
Collapse
Affiliation(s)
- Mingjie Liang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China; Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou, Guangdong Province, China; Key Laboratory of Glucolipid Metabolic Diseases, Ministry of Education, Guangzhou, Guangdong Province, China; Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Lexun Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China; Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou, Guangdong Province, China; Key Laboratory of Glucolipid Metabolic Diseases, Ministry of Education, Guangzhou, Guangdong Province, China; Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Weixuan Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China; Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou, Guangdong Province, China; Key Laboratory of Glucolipid Metabolic Diseases, Ministry of Education, Guangzhou, Guangdong Province, China; Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
17
|
Al-Ishaq RK, Samuel SM, Büsselberg D. The Influence of Gut Microbial Species on Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24098118. [PMID: 37175825 PMCID: PMC10179351 DOI: 10.3390/ijms24098118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with an alarming incidence rate and a considerable burden on the patient's life and health care providers. An increase in blood glucose level and insulin resistance characterizes it. Internal and external factors such as urbanization, obesity, and genetic mutations could increase the risk of DM. Microbes in the gut influence overall health through immunity and nutrition. Recently, more studies have been conducted to evaluate and estimate the role of the gut microbiome in diabetes development, progression, and management. This review summarizes the current knowledge addressing three main bacterial species: Bifidobacterium adolescentis, Bifidobacterium bifidum, and Lactobacillus rhamnosus and their influence on diabetes and its underlying molecular mechanisms. Most studies illustrate that using those bacterial species positively reduces blood glucose levels and activates inflammatory markers. Additionally, we reported the relationship between those bacterial species and metformin, one of the commonly used antidiabetic drugs. Overall, more research is needed to understand the influence of the gut microbiome on the development of diabetes. Furthermore, more efforts are required to standardize the model used, concentration ranges, and interpretation tools to advance the field further.
Collapse
Affiliation(s)
- Raghad Khalid Al-Ishaq
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
18
|
Imtiaz F, Islam M, Saeed H, Ahmed A, Rathore HA. Assessment of the antidiabetic potential of extract and novel phytoniosomes formulation of Tradescantia pallida leaves in the alloxan-induced diabetic mouse model. FASEB J 2023; 37:e22818. [PMID: 36856606 PMCID: PMC11977607 DOI: 10.1096/fj.202201395rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/30/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023]
Abstract
Diabetes inflicts health and economic burdens on communities and the present antidiabetic therapies have several drawbacks. Tradescantia pallida leaves have been used as a food colorant and food preservative; however, to our knowledge antidiabetic potential of the leaves of T. pallida has not been explored yet. The current study aimed to investigate the antidiabetic potential of T. pallida leaves extract and its comparison with the novel nisosome formulation of the extract. The leaves extract and phytoniosomes of T. pallida in doses of 15, 25 and 50 mg/kg were used to assess the oral glucose loaded, and alloxan-induced diabetic mice models. The biological parameters evaluated were; change in body weight, blood biochemistry, relative organ to body weight ratio and histopathology of the liver, pancreas and kidney. Results revealed that the extract 50 mg/kg and phytoniosomes 25 and 50 mg/kg remarkably reduced the blood glucose level in all hyperglycemic mice by possibly inhibiting α-amylase and α-glucosidase production. Body weight and blood biochemical parameters were considerably improved in phytoniosomes 50 mg/kg treated group. The relative body weight was similar to those of healthy mice in extract 50 mg/kg, phytoniosomes 25 mg/kg, and phytoniosomes 50 mg/kg treated groups. Histopathology showed the regeneration of cells in the CHN50 treated group. Hyphenated chromatographic analysis revealed potent metabolites, which confirmed the antidiabetic potential of the extract by inhibiting α-amylase and α-glucosidase using in silico analysis. The present data suggested that phytoniosomes have shown better antidiabetic potential than crude extract of these leaves.
Collapse
Affiliation(s)
- Fariha Imtiaz
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, Allama Iqbal CampusUniversity of the PunjabLahorePakistan
| | - Muhammad Islam
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, Allama Iqbal CampusUniversity of the PunjabLahorePakistan
| | - Hamid Saeed
- Section of Pharmaceutics, Punjab University College of Pharmacy, Allama Iqbal CampusUniversity of the PunjabLahorePakistan
| | - Abrar Ahmed
- Section of Pharmacognosy, Punjab University College of Pharmacy, Allama Iqbal CampusUniversity of the PunjabLahorePakistan
| | - Hassaan Anwer Rathore
- Department of Pharmaceutical Sciences, College of PharmacyQU Health, Qatar UniversityDohaQatar
| |
Collapse
|
19
|
Sharmen F, Rahman MA, Ahmed AMA, Siddique TA, Rafi MKJ, Tangpong J. Upregulation of Antioxidative Gene Expression by Lasia spinosa Organic Extract Improves the Predisposing Biomarkers and Tissue Architectures in Streptozotocin-Induced Diabetic Models of Long Evans Rats. Antioxidants (Basel) 2022; 11:antiox11122398. [PMID: 36552606 PMCID: PMC9774390 DOI: 10.3390/antiox11122398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Plants are an entity essential to the function of the biosphere as well as human health. In the context of human health, this research investigated the effect of Lasia spinosa (Lour) leaf methanolic extracts (LSML) on antioxidative enzymes and gene expression as well as biochemical and histological markers in a streptozotocin (STZ)-induced diabetes model. Fructose-fed streptozotocin (STZ)-induced diabetic animals were subjected to a four-week intervention followed by the assessment of the animal’s blood and tissues for enzymatic, biochemical, histological, and genetic changes. LSML-treated groups were shown to decrease plasma glucose levels and improve body and organ weights compared to the untreated group in a dose-dependent manner. At the doses of 125 and 250 mg/kg b.w., LSML were able to normalize serum, hepatic, and renal biochemical parameters and restore the pancreas, kidney, liver, and spleen tissue architectures to their native state. A considerable increase (p < 0.01) of liver antioxidant enzymes CAT, SOD, GSH, and a decrease of MDA level in LSML-treated groups were found at higher doses. The improved mRNA expression level of antioxidant genes CAT, SOD2, PON1, and PFK1 was also found at the doses of 125 mg/kg and 250 mg/kg BW when compared to untreated control groups. The results demonstrate that LSML impacts the upregulation of antioxidative gene expressions, thus improving the diabetic complications in animal models which need to be affirmed by compound-based antioxidative actions for therapeutic development.
Collapse
Affiliation(s)
- Farjana Sharmen
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong 4331, Bangladesh
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md. Atiar Rahman
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Correspondence: ; Tel.: +880-31-2606001-10 (ext. 4334); Fax: +880-31-726310
| | - A. M. Abu Ahmed
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Tanvir Ahmed Siddique
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md. Khalid Juhani Rafi
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
20
|
Faccinetto-Beltrán P, Aguirre-López LO, Bañuelos-Pineda J, Reza-Zaldívar EE, Santacruz A, Hernández-Brenes C, Pérez-Carrillo E, Jacobo-Velázquez DA. Fish oil and probiotics supplementation through milk chocolate improves spatial learning and memory in male Wistar rats. Front Nutr 2022; 9:1023653. [DOI: 10.3389/fnut.2022.1023653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
BackgroundCognition and brain function is critical through childhood and should be improved with balanced diets. Incorporating bioactive ingredients such as omega-3 polyunsaturated fatty acids (ω3 PUFAs) and probiotics into food formulations could be used as an approach to improve cognitive function. This study evaluated the effects on cognitive capacity of complementing rodent diets with chocolate, by itself and in combination with ω3 PUFAs from fish oil and probiotics.MethodsSpatial learning and memory in the rats were determined by the Barnes maze test in short- and long-term memory. Samples from the cecum were obtained to assess microbial counts (Lactobacillus, Bifidobacterium, Enterobacteriaceae, and total bacteria), and brains were recovered to analyze the neural morphology of the tissues. Also, glucose, brain weights, and epididymal tissue were analyzed.ResultsThe combination of chocolate with fish oil and probiotics improved the memory of rats compared to the result of each bioactive compound when evaluated separately. Treatments did not affect sugar level, epididymal adipose tissue, or brain weight. On the other hand, consuming probiotics alone or in combination with chocolate decreased Enterobacteria counts, while Lactobacillus and Bifidobacteria counts were not affected. Neural morphological analysis showed that combining chocolate with probiotics and ω3 PUFAs increased the number of neurons in the hippocampal CA1 and CA3 regions.ConclusionChocolate added with probiotics and ω3 PUFAs improved spatial memory and learning in the studied model.
Collapse
|
21
|
Zarezadeh M, Musazadeh V, Faghfouri AH, Sarmadi B, Jamilian P, Jamilian P, Tutunchi H, Dehghan P. Probiotic therapy, a novel and efficient adjuvant approach to improve glycemic status: An umbrella meta-analysis. Pharmacol Res 2022; 183:106397. [PMID: 35981707 DOI: 10.1016/j.phrs.2022.106397] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/16/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Probiotics exert several promoting effects on the glycemic status, however, the results of meta-analyses are inconsistent. we conducted an umbrella meta-analysis, across existing systematic reviews and meta-analyses of clinical trials to determine the definite effects of supplementation with probiotics on glycemic indices. METHODS A comprehensive systematic search of PubMed/Medline, Scopus, EMBASE, and Web of Science was carried out till August 2021. The random-effects model was employed to conduct meta-analysis. Meta-analysis studies of randomized clinical trials examining the impacts of probiotics supplementation on glycemic indices were qualified in the current umbrella meta-analysis. RESULTS 48 articles out of 693 in the literature search qualified for inclusion in the umbrella meta-analysis. Pooled effects of probiotics on fasting plasma glucose (FPG), hemoglobin A1C (HbA1c), homeostatic model assessment for insulin resistance (HOMA-IR), and insulin levels were reported in articles 45, 21, 35, and 33, respectively. The analysis indicated a significant decrease of FPG (ES= -0.51 mg/dL; 95% CI: -0.63, -0.38, p < 0.001), HbA1c (ES = -0.32 mg/dL; 95% CI: -0.44, -0.20, p < 0.001), HOMA-IR (ES= -0.56; 95% CI: -0.66, -0.47, p < 0.001), and insulin levels (ES= -1.09 IU/mL; 95% CI: -1.37, -0.81, p = 0.006) by probiotics supplementation. CONCLUSION Probiotics have amending effects on FPG, HbA1c, HOMA-IR, and insulin levels. A < 8-week period of probiotic supplementation in the moderate dosages (108 or 109 CFU) is an efficacious approach in improving glycemic parameters. Overall, probiotics could be recommended as an adjuvant anti-hyperglycemic agent.
Collapse
Affiliation(s)
- Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahareh Sarmadi
- Department of Nutrition sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Parsa Jamilian
- Keele University School of Medicine, Keele University, Staffordshire, UK
| | - Parmida Jamilian
- School of Pharmacy and Bio Engineering, Keele University, Staffordshire, UK
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Pintarič M, Langerholc T. Probiotic Mechanisms Affecting Glucose Homeostasis: A Scoping Review. Life (Basel) 2022; 12:1187. [PMID: 36013366 PMCID: PMC9409775 DOI: 10.3390/life12081187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023] Open
Abstract
The maintenance of a healthy status depends on the coexistence between the host organism and the microbiota. Early studies have already focused on the nutritional properties of probiotics, which may also contribute to the structural changes in the gut microbiota, thereby affecting host metabolism and homeostasis. Maintaining homeostasis in the body is therefore crucial and is reflected at all levels, including that of glucose, a simple sugar molecule that is an essential fuel for normal cellular function. Despite numerous clinical studies that have shown the effect of various probiotics on glucose and its homeostasis, knowledge about the exact function of their mechanism is still scarce. The aim of our review was to select in vivo and in vitro studies in English published in the last eleven years dealing with the effects of probiotics on glucose metabolism and its homeostasis. In this context, diverse probiotic effects at different organ levels were highlighted, summarizing their potential mechanisms to influence glucose metabolism and its homeostasis. Variations in results due to different methodological approaches were discussed, as well as limitations, especially in in vivo studies. Further studies on the interactions between probiotics, host microorganisms and their immunity are needed.
Collapse
Affiliation(s)
- Maša Pintarič
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia;
| | | |
Collapse
|
23
|
Kim JE, Lee JY, Kang CH. Limosilactobacillus fermentum MG4295 Improves Hyperglycemia in High-Fat Diet-Induced Mice. Foods 2022; 11:foods11020231. [PMID: 35053962 PMCID: PMC8774940 DOI: 10.3390/foods11020231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Hyperglycemia due to uncontrolled glucose regulation is widely known as cause of diabetes, non-alcoholic fatty liver disease (NAFLD), and other complications. NAFLD refers to a condition in which fat is excessively accumulated, whether inflamed or not, and has caused serious medical problems in recent years. The aim of this study was to explore the antihyperglycemia effects of Limosilactobacillus fermentum MG4295 (L. fermentum MG4295) in high-fat diet (HFD)-induced in vivo. We demonstrated the suitability of L. fermentum MG4295 as a probiotic by observing its stability, survivability, and proliferation under simulated gastrointestinal conditions, and safety, antibiotic susceptibility, hemolysis, and enzyme activity. The potential antihyperglycemic activity of L. fermentum MG4295 was investigated in an HFD and sugar-water-induced mouse model. Administration of this strain for 12 weeks showed an improved trend in glucose tolerance, insulin, alanine amino transferase, total cholesterol, low-density lipoprotein cholesterol, and glucagon-like peptide-1. Histopathological analysis revealed that L. fermentum MG4295 significantly reduced the histopathological scores of hepatic steatosis, inflammation, and hepatocellular hypertrophy in liver tissues and lipid content in adipose tissues. Administration of L. fermentum MG4295 upregulated IRS-1, AKT, and GLUT4 and downregulated G6Pc and PEPCK expression in liver and/or muscle tissues. Our results suggest that L. fermentum MG4295 can improve hyperglycemia. Furthermore, it can be used as a dietary functional supplement to manage blood glucose.
Collapse
|
24
|
Knowledge, awareness, and socio-demographic assessment of probiotics, obesity and diabetes. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
25
|
Trikha SRJ, Lee DM, Ecton KE, Wrigley SD, Vazquez AR, Litwin NS, Thomas KN, Wei Y, Battson ML, Johnson SA, Kuhn KA, Colgan SP, Gentile CL, Weir TL. Transplantation of an obesity-associated human gut microbiota to mice induces vascular dysfunction and glucose intolerance. Gut Microbes 2021; 13:1940791. [PMID: 34313540 PMCID: PMC8317959 DOI: 10.1080/19490976.2021.1940791] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent preclinical data suggest that alterations in the gut microbiota may be an important factor linking obesity to vascular dysfunction, an early sign of cardiovascular disease. The purpose of this study was to begin translation of these preclinical data by examining whether vascular phenotypes in humans are transmissible through the gut microbiota. We hypothesized that germ-free mice colonized with gut microbiota from obese individuals would display diminished vascular function compared to germ-free mice receiving microbiota from lean individuals.We transplanted fecal material from obese and lean age-and sex-matched participants with disparate vascular function to germ-free mice. Using Principle Component Analysis, the microbiota of colonized mice separated by donor group along the first principle component, accounting for between 70-93% of the total variability in the dataset. The microbiota of mice receiving transplants from lean individuals was also characterized by increased alpha diversity, as well as increased relative abundance of potentially beneficial bacteria, including Bifidobacterium, Lactobacillus, and Bacteroides ovatis. Endothelium-dependent dilation, aortic pulse wave velocity and glucose tolerance were significantly altered in mice receiving microbiota from the obese donor relative to those receiving microbiota from the lean donor or those remaining germ-free.These data indicate that the obesity-associated human gut microbiota is sufficient to alter the vascular phenotype in germ-free mice in the absence of differences in body weight or dietary manipulation, and provide justification for future clinical trials to test the efficacy of microbiota-targeted therapies in the prevention or treatment of cardiovascular disease.
Collapse
Affiliation(s)
- S. Raj J. Trikha
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Dustin M. Lee
- Department of Nutritional Medicine, Brooke Army Medical Center, San Antonio, TX, USA
| | - Kayl E. Ecton
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Scott D. Wrigley
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Allegra R. Vazquez
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Nicole S. Litwin
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Keely N. Thomas
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Yuren Wei
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Micah L. Battson
- Department of Nutrition, Metropolitan State University, Denver, CO, USA
| | - Sarah A. Johnson
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Kristine A. Kuhn
- School of Medicine in the Division of Rheumatology and Gnotobiotic Core Director, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sean P. Colgan
- School of Medicine in the Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Christopher L. Gentile
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA,CONTACT Christopher L. Gentile 208 Gifford Bldg, 1571 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1571, USA
| | - Tiffany L. Weir
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO, USA,Tiffany L. Weir 210 Gifford Bldg, 1571 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1571, USA
| |
Collapse
|
26
|
Bacillus toyonensis SAU-19 Ameliorates Hepatic Insulin Resistance in High-Fat Diet/Streptozocin-Induced Diabetic Mice. Nutrients 2021; 13:nu13124512. [PMID: 34960064 PMCID: PMC8703646 DOI: 10.3390/nu13124512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance (IR) is a hallmark of type 2 diabetes mellitus (T2DM). This study was performed to investigate the antidiabetic effect of Bacillus toyonensis SAU-19 and its possible mechanisms of action in mice with type 2 diabetes mellitus (T2DM). Thirty SPFKM mice were randomly assigned to three groups: control, diabetic model, and diabetes + Bacillus toyonensis SAU-19 group. After 35 days, blood was collected for biochemical analysis and liver tissue samples for histopathological analysis using H&E staining, qPCR, and ELISA. The results showed that the administration of B. toyonensis SAU-19 significantly improved the blood glucose, hepatic insulin resistance, and morphological changes of the liver characterized by significant improvement of dyslipidemia, glycogen synthesis, and antioxidant status (p < 0.05), indicating the strains’ ameliorating effects on hepatic insulin resistance in T2DM. In conclusion, the probiotic strain (B. toyonensis SAU-19) inhibits T2DM by reducing insulin resistance, improving antioxidant status, and downregulating genes related to glucose synthesis; hence, it may be used in treating diabetes and other metabolic disorders. This study provides the basis for further studies into the molecular mechanisms of B. toyonensis SAU-19 in treating T2DM.
Collapse
|
27
|
Chen MJ, Chen CC, Huang YC, Tseng CC, Hsu JT, Lin YF, Fang YJ, Wu MS, Liou JM. The efficacy of Lactobacillus acidophilus and rhamnosus in the reduction of bacterial load of Helicobacter pylori and modification of gut microbiota-a double-blind, placebo-controlled, randomized trial. Helicobacter 2021; 26:e12857. [PMID: 34708471 DOI: 10.1111/hel.12857] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Probiotics may alter the gut microbiota and may reduce antibiotic-related dysbiosis after H. pylori eradication. However, whether probiotics are effective in reducing the bacterial load of H. pylori and modifying the gut microbiota remains unknown. We aimed to assess the efficacy of Lactobacillus acidophilus and Lactobacillus rhamnosus in reducing the bacterial load of H. pylori and modifying the gut microbiota. MATERIALS AND METHODS In this double-blind, randomized, placebo-controlled trial, we recruited 40 adult subjects with moderate to high bacterial loads of H. pylori, defined as a mean delta over baseline (DOB) value of the 13 C-urea breath test (13 C-UBT) of 10 or greater every 4 days 6 times. Eligible subjects were randomized in a 1:1 ratio to receive either probiotics containing Lactobacillus acidophilus and Lactobacillus rhamnosus or placebo twice daily for 4 weeks. 13 C-UBT was measured weekly from the beginning of treatment to 2 weeks after treatment. Amplification of the V3 and V4 hypervariable regions of the 16S rRNA was performed for fecal microbiota. RESULTS A total of 40 subjects were randomized to receive probiotics or placebo. The DOB value was significantly lower in the probiotic group than in the placebo group after 4 weeks of treatment (26.0 vs. 18.5, p = .045). The DOB value was significantly reduced compared to that at baseline in the probiotic group (18.5 vs. 26.7, p = .001) but not in the placebo group (26.0 vs. 25.0, p = .648). However, the eradication rate for H. pylori was 0% in both groups. There was no significant difference in the DOB values between the two groups 1 and 2 weeks after discontinuation of the probiotics. There were also no significant changes observed in the α-diversity and β-diversity at week 4 compared to baseline in the probiotic group (p = .77 and 0.91) and the placebo group (p = .26 and 0.67). CONCLUSIONS Although the use of Lactobacillus acidophilus and Lactobacillus rhamnosus may reduce the bacterial load of H. pylori, there were no significant changes in the composition of gut microbiota. This trial is registered with ClinicalTrials.gov, NCT02725138.
Collapse
Affiliation(s)
- Mei-Jyh Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chieh-Chang Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chun Huang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Clinical Trial Center, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chieh-Chih Tseng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jing-Ting Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Fen Lin
- Taiwan Sugar Corporation Biotechnology Business R&D Division, Chia-Yi, Taiwan
| | - Yu-Jen Fang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
| | - Ming-Shiang Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jyh-Ming Liou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | | |
Collapse
|
28
|
Kadja L, Dib AL, Lakhdara N, Bouaziz A, Espigares E, Gagaoua M. Influence of Three Probiotics Strains, Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. Lactis BB-12 and Saccharomyces boulardii CNCM I-745 on the Biochemical and Haematological Profiles and Body Weight of Healthy Rabbits. BIOLOGY 2021; 10:biology10111194. [PMID: 34827188 PMCID: PMC8615081 DOI: 10.3390/biology10111194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Currently, probiotics are used as growth promoters on a large scale to improve the productivity of several animals’ species within the aim of reducing the presence of antibiotic residues in animal products consumed by humans. Several reports evidenced the positive effect of probiotic supplementation on the growth performances and health of rabbits, mainly through the balance of the intestinal microbiota of the host animal. Therefore, certain probiotics, including Lactobacilli, Bifidobacteria, Saccharomyces, can improve the biochemical and haematological profiles, especially in production animals. In this context, this study was performed on rabbits for the economic importance they play as a source of meat proteins in developing countries and their use as experimental models in research and biomedicine. This study then aimed to evaluate the effect of three strains of probiotics: Lactobacillus rhamnosus GG Bifidobacterium animalis subsp. Lactis BB-12 and Saccharomyces boulardii CNCM I-745, on the biochemical and haematological parameters and their influence on the rabbit’s weight of the ITELV2006 strain. The findings evidenced that the probiotic strain affected the biochemical and haematological parameters. Further, the strains showed a positive effect on the weight gain of the rabbits. Abstract This study aimed to investigate the effects of three strains of probiotics, these being Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. Lactis BB-12 and Saccharomyces boulardii CNCM I-745, on the body weight, animal performances and blood parameters of rabbits (male and female) of the ITELV2006 strain. The supplementation of the feed of the rabbits with the three probiotic strains allowed observing positive effects on most of the biochemical and haematological parameters investigated during a period of 60 days (30 days of supplementation and 30 days without treatment). Further, there was a significant improvement in the body weight of the rabbits at the end of the experiment. The effect of the three probiotics investigated in this trial was found to be related to the sex of the rabbits and to the intake period (duration). Ultimately, these findings raise the possibility of using probiotics to investigate in an in-depth and specific manner based on fixed factors such as the strain, the gender and age of the animals, the main underlying mechanisms and effects, which would allow achieving optimal and adapted health benefits and sustainable production. In the context of animal production, it is worth investigating in a targeted study the effect of the three strains on muscle growth and development and finding evidence of the possible consequences on meat quality traits of the rabbits supplemented with probiotics.
Collapse
Affiliation(s)
- Louiza Kadja
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Amira Leila Dib
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Nedjoua Lakhdara
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Assia Bouaziz
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Elena Espigares
- Department of Preventive Medicine and Public Health, Faculty of pharmacy, University of Granada, 18071 Granada, Spain;
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland
- Correspondence: or
| |
Collapse
|
29
|
Alleviation of Neuronal Cell Death and Memory Deficit with Chungkookjang Made with Bacillus amyloliquefaciens and Bacillus subtilis Potentially through Promoting Gut-Brain Axis in Artery-Occluded Gerbils. Foods 2021; 10:foods10112697. [PMID: 34828975 PMCID: PMC8619225 DOI: 10.3390/foods10112697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/21/2022] Open
Abstract
Short-term fermented soybeans (chungkookjang) with specific Bacillus (B.) spp. have anti-obesity, antidiabetic, and anti-stroke functions. We examined the hypothesis that the long-term consumption of B. amyloliquefaciens SCGB 1 fermented (CKJ1) and B. subtilis SCDB 291 (CKJ291) chungkookjang can alleviate clinical symptoms and hyperglycemia after ischemic stroke by promoting the gut microbiota-brain axis. We examined this hypothesis in Mongolian male gerbils with stroke symptoms induced by carotid artery occlusion. The artery-occluded gerbils were divided into five groups: no supplementation (Control, Normal-control), 4% cooked soybeans (CSB), CKJ1, or CKJ291 in a high-fat diet for 3 weeks. The carotid arteries of gerbils in the Control, CSB, CKJ1, and CKJ291 groups were occluded for 8 min and they then continued on their assigned diets for an additional 3 weeks. Normal-control gerbils had no artery occlusion. The diets in all groups contained an identical macronutrient composition using starch, casein, soybean oil, and dietary fiber. The CSB, CKJ1, and CKJ291 groups exhibited less neuronal cell death than the Control group, while the CKJ1 group produced the most significant reduction among all groups, as much as 85% of the Normal-control group. CKJ1 and CKJ291 increased the blood flow and removal of blood clots, as determined by Doppler, more than the Control. They also showed more improvement in neurological disorders from ischemic stroke. Their improvement showed a similar tendency as neuronal cell death. CKJ1 treatment improved memory impairment, measured with Y maze and passive avoidance tests, similar to the Normal-control. The gerbils in the Control group had post-stroke hyperglycemia due to decreased insulin sensitivity and β-cell function and mass; the CKJ291, CSB, and CKJ1 treatments protected against glucose disturbance after artery occlusion and were similar to the Normal-control. CKJ1 and CKJ291 also reduced serum tumor necrosis factor-α concentrations and hippocampal interleukin-1β expression levels, compared to the Control. CKJ1 and CKJ291 increased the contents of Lactobacillus, Bacillus, and Akkermansia in the cecum feces, similar to the Normal-control. Picrust2 analysis showed that CKJ1 and CKJ291 increased the propionate and butyrate metabolism and the starch and glucose metabolism but reduced the lipopolysaccharide biosynthesis and fatty acid metabolism compared to the Control. In conclusion, daily CKJ1 and CKJ291 intake prevented neuronal cell death and memory dysfunction from the artery occlusion by increasing blood flow and β-cell survival and reducing post-stroke-hyperglycemia through modulating the gut microbiome composition and metabolites to influence the host metabolism, especially inflammation and insulin resistance, protecting against neuronal cell death and brain dysfunction. CKJ1 had better effects than CKJ291.
Collapse
|
30
|
Kim S, Choi S, Dutta M, Asubonteng JO, Polunas M, Goedken M, Gonzalez FJ, Cui JY, Gyamfi MA. Pregnane X receptor exacerbates nonalcoholic fatty liver disease accompanied by obesity- and inflammation-prone gut microbiome signature. Biochem Pharmacol 2021; 193:114698. [PMID: 34303710 PMCID: PMC9135326 DOI: 10.1016/j.bcp.2021.114698] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease due to the current epidemics of obesity and diabetes. The pregnane X receptor (PXR) is a xenobiotic-sensing nuclear receptor known for trans-activating liver genes involved in drug metabolism and transport, and more recently implicated in energy metabolism. The gut microbiota can modulate the host xenobiotic biotransformation and contribute to the development of obesity. While the male sex confers a higher risk for NAFLD than women before menopause, the mechanism remains unknown. We hypothesized that the presence of PXR promotes obesity by modifying the gut-liver axis in a sex-specific manner. Male and female C57BL/6 (wild-type/WT) and PXR-knockout (PXR-KO) mice were fed control or high-fat diet (HFD) for 16-weeks. Serum parameters, liver histopathology, transcriptomic profiling, 16S-rDNA sequencing, and bile acid (BA) metabolomics were performed. PXR enhanced HFD-induced weight gain, hepatic steatosis and inflammation especially in males, accompanied by PXR-dependent up-regulation in hepatic genes involved in microbial response, inflammation, oxidative stress, and cancer; PXR-dependent increase in intestinal Firmicutes/Bacteroides ratio (hallmark of obesity) and the pro-inflammatory Lactobacillus, as well as a decrease in the anti-obese Allobaculum and the anti-inflammatory Bifidobacterum, with a PXR-dependent reduction of beneficial BAs in liver. The resistance to NAFLD in females may be explained by PXR-dependent decrease in pro-inflammatory bacteria (Ruminococcus gnavus and Peptococcaceae). In conclusion, PXR exacerbates hepatic steatosis and inflammation accompanied by obesity- and inflammation-prone gut microbiome signature, suggesting that gut microbiome may contribute to PXR-mediated exacerbation of NAFLD.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sora Choi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jeffrey O Asubonteng
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Marianne Polunas
- Office of Research and Economic Development, Research Pathology Services, Rutgers University, Piscataway, NJ, USA
| | - Michael Goedken
- Office of Research and Economic Development, Research Pathology Services, Rutgers University, Piscataway, NJ, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Maxwell A Gyamfi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.
| |
Collapse
|
31
|
Bati VV, Meleshko TV, Pallah O, Zayachuk IP, Boyko NV. Personalised diet improve intestine microbiota and metabolism of obese rats. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.04.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Maintaining Digestive Health in Diabetes: The Role of the Gut Microbiome and the Challenge of Functional Foods. Microorganisms 2021; 9:microorganisms9030516. [PMID: 33802371 PMCID: PMC8001283 DOI: 10.3390/microorganisms9030516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Over the last decades, the incidence of diabetes has increased in developed countries and beyond the genetic impact, environmental factors, which can trigger the activation of the gut immune system, seem to affect the induction of the disease process. Since the composition of the gut microbiome might disturb the normal interaction with the immune system and contribute to altered immune responses, the restoration of normal microbiota composition constitutes a new target for the prevention and treatment of diabetes. Thus, the interaction of gut microbiome and diabetes, focusing on mechanisms connecting gut microbiota with the occurrence of the disorder, is discussed in the present review. Finally, the challenge of functional food diet on maintaining intestinal health and microbial flora diversity and functionality, as a potential tool for the onset inhibition and management of the disease, is highlighted by reporting key animal studies and clinical trials. Early onset of the disease in the oral cavity is an important factor for the incorporation of a functional food diet in daily routine.
Collapse
|
33
|
Liu W, Zhou Y, Sun H, Li R, Qin Y, Yu L, Chen Y, Li Y, Tan Y, Zhao R, Zhang W, Jiang S, Xu Y. Goat Milk Improves Glucose Homeostasis via Enhancement of Hepatic and Skeletal Muscle AMP-Activated Protein Kinase Activation and Modulation of Gut Microbiota in Streptozocin-Induced Diabetic Rats. Mol Nutr Food Res 2021; 65:e2000888. [PMID: 33555137 DOI: 10.1002/mnfr.202000888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/21/2020] [Indexed: 11/12/2022]
Abstract
SCOPE Previously, the metabolic benefits of goat milk consumption in high-fat diet-fed rats are demonstrated. However, the effects are only reported in one animal model and the involvement of gut microbiota is not investigated. The aim of this study is to investigate the effects of goat milk consumption on glucose homeostasis and gut microbiota in streptozocin (STZ)-induced diabetic rats. METHODS AND RESULTS STZ-induced diabetic rats are fed with three dosages of goat milk: 2.5, 5, and 10 g kg-1 . Parameters related to glucose homeostasis, hepatic and skeletal muscle AMP-activated protein kinase (AMPK) activation, and gut microbiota are investigated. The dose of 10 g kg-1 exerts more metabolic benefits. Goat milk consumption improves fasting glucose levels, glucose tolerance, insulin sensitivity, and promotes hepatic and skeletal muscle AMPK activation in STZ-injected diabetic rats. Goat milk modulates gut microbiota, increases the relative abundance of Lactobacillus, and augments levels of propionic and butyric acids. CONCLUSION This study demonstrates the metabolic benefits of goat milk consumption in STZ-induced diabetic rats, which is consistent with the previous observations in high-fat diet-induced diabetic rats. Furthermore, this study elucidates the modulation of gut microbiota by goat milk, which likely mediates the metabolic effects of goat milk.
Collapse
Affiliation(s)
- Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Han Sun
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing, 100015, China
| | - Ruijun Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Yong Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Lanlan Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Yuhan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Yuwei Tan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Runlong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Wei Zhang
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing, 100015, China
| | - Shilong Jiang
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing, 100015, China
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| |
Collapse
|