1
|
Gao Y, Zhang S, Sheng S, Li H. A Colletotrichum fructicola dual specificity phosphatase CfMsg5 is regulated by the CfAp1 transcription factor during oxidative stress and promotes virulence on Camellia oleifera. Virulence 2024; 15:2413851. [PMID: 39423133 PMCID: PMC11492636 DOI: 10.1080/21505594.2024.2413851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/29/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
Anthracnose, caused by Colletotrichum species, induces significant economic damages to crop plants annually, especially for Camellia oleifera. During infection, the counter-defence mechanisms of plant pathogens against ROS-mediated resistance, however, remain poorly understood. By employing Weighted Gene Co-expression Network Analysis (WGCNA), we identified ACTIVATOR PROTEIN-1 (AP-1), a bZIP transcription factor, as significant to infection. And deletion of CfAP1 inhibited aerial hyphae formation and growth under oxidative stress. Furthermore, RNA-seq analysis post H2O2 treatment revealed 33 significantly down-regulated genes in the AP-1 deficient strain, including A12032, a dual specificity phosphatase (DSP) homologous to MSG5 from Saccharomyces cerevisiae. This ΔCfmsg5 strain showed enhanced oxidative tolerance, reduced ROS scavenging, and negative regulation of the CWI MAPK cascade under oxygen stress, suggesting its involvement in oxidative signal transduction. Importantly, we provide evidence that CfMsg5 regulates growth, endoplasmic reticulum stress, and several unfolded protein response genes upregulated in ΔCfmsg5. Collectively, this study identified core components during C. fructicola infection and highlights a potential regulatory module involving CfAp1 and CfMsg5 in response to host ROS bursts. It provides new insights into fungal infection mechanisms and potential targets like CfAP1 and CfMSG5 for managing anthracnose diseases.
Collapse
Affiliation(s)
- Yalan Gao
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
| | - Shengpei Zhang
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
| | - Song Sheng
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Yuelushan Laboratory Non-wood Forests Variety Innovation Center, Changsha, China
| | - He Li
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Yuelushan Laboratory Non-wood Forests Variety Innovation Center, Changsha, China
| |
Collapse
|
2
|
Liu S, He Z, Yin H, Zhang Y, He Z, Zou X, Yin Y, Chen F, Guo X. ABA and MeJA Induced Catechin and Epicatechin Biosynthesis and Accumulation in Camellia oleifera Fruit Shells. PLANTS (BASEL, SWITZERLAND) 2024; 13:2211. [PMID: 39204647 PMCID: PMC11359535 DOI: 10.3390/plants13162211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Camellia oleifera Abel, one of the most valuable woody oil plants, has been widely cultivated for extracting edible oil. The shell of C. oleifera is a by-product generated in the processing of edible oil extraction. However, there is still limited research on the maturity and high-value resource utilization of shell by-products. We found that the C. oleifera 'Huashuo' (HS) fruit shells contained a high content of catechins. Abscisic acid (ABA) and methyl jasmonate (MeJA) enhanced the accumulation of catechins in C. oleifera fruit shells, providing a basis for production and application of the catechins in fruit shells of C. oleifera. We further found that 500 μM ABA and 900 μM MeJA significantly promoted the accumulation of catechin (C) and epicatechin (EC) in fruit shells. Following treatment with 900 μM MeJA, the expressions of CoPAL1, CoC4H1, CoC4H2, CoC4H3, Co4CL1, Co4CL2, CoF3'H1, CoLAR1, CoLAR2, CoLAR3, CoANR2, and CoANRL2 were significantly upregulated, while after 500 μM ABA treatment the expressions of CoPAL3, CoCHS1, CoCHS4, CoF3'H1, CoDFR, CoLAR1, CoLAR2, CoLAR3, CoANS1, CoANR1, and CoANR2 increased dramatically. These results indicate that appropriate concentrations of ABA and MeJA activate C and EC biosynthesis and promote their accumulation in fruit shells. Our results provide new ideas and guidance for promoting the resource utilization of C. oleifera fruit shells.
Collapse
Grants
- 2023NK2022 Key Research & Development Project of Hunan Provincial De-partment of Science and Technology
- 2021M701160, 2022M721101, 2023M731065 the China Postdoctoral Science Foundation
- 2022JJ40051, 2023JJ40132, 2023JJ40199 Natural Science Foundation of Hunan Province
- 32372124, 32300456, 82304652 National Natural Science Foundation of China
- kq2202149 the Changsha Natural Science Foundation
- CSTB2022NSCQ-MSX0517, CSTB2022NSCQMSX1138, CSTB2023NSCQ-MSX0542, CSTB2023NSCQ-MSX1031 the Natural Science Foundation of Chongqing, China
Collapse
Affiliation(s)
- Shucan Liu
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
- Chongqing Research Institute, Hunan University, Chongqing 401120, China
| | - Zhaotong He
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
| | - Huangping Yin
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
| | - Yue Zhang
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
| | - Zexuan He
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
| | - Yan Yin
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
| | - Fenglin Chen
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
- Chongqing Research Institute, Hunan University, Chongqing 401120, China
| |
Collapse
|
3
|
Xing K, Zhang J, Xie H, Zhang L, Zhang H, Feng L, Zhou J, Zhao Y, Rong J. Identification and analysis of MAPK cascade gene families of Camellia oleifera and their roles in response to cold stress. Mol Biol Rep 2024; 51:602. [PMID: 38698158 DOI: 10.1007/s11033-024-09551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Low-temperature severely limits the growth and development of Camellia oleifera (C. oleifera). The mitogen-activated protein kinase (MAPK) cascade plays a key role in the response to cold stress. METHODS AND RESULTS Our study aims to identify MAPK cascade genes in C. oleifera and reveal their roles in response to cold stress. In our study, we systematically identified and analyzed the MAPK cascade gene families of C. oleifera, including their physical and chemical properties, conserved motifs, and multiple sequence alignments. In addition, we characterized the interacting networks of MAPKK kinase (MAPKKK)-MAPK kinase (MAPKK)-MAPK in C. oleifera. The molecular mechanism of cold stress resistance of MAPK cascade genes in wild C. oleifera was analyzed by differential gene expression and real-time quantitative reverse transcription-PCR (qRT-PCR). CONCLUSION In this study, 21 MAPKs, 4 MAPKKs and 55 MAPKKKs genes were identified in the leaf transcriptome of C. oleifera. According to the phylogenetic results, MAPKs were divided into 4 groups (A, B, C and D), MAPKKs were divided into 3 groups (A, B and D), and MAPKKKs were divided into 2 groups (MEKK and Raf). Motif analysis showed that the motifs in each subfamily were conserved, and most of the motifs in the same subfamily were basically the same. The protein interaction network based on Arabidopsis thaliana (A. thaliana) homologs revealed that MAPK, MAPKK, and MAPKKK genes were widely involved in C. oleifera growth and development and in responses to biotic and abiotic stresses. Gene expression analysis revealed that the CoMAPKKK5/CoMAPKKK43/CoMAPKKK49-CoMAPKK4-CoMAPK8 module may play a key role in the cold stress resistance of wild C. oleifera at a high-elevation site in Lu Mountain (LSG). This study can facilitate the mining and utilization of genetic resources of C. oleifera with low-temperature tolerance.
Collapse
Affiliation(s)
- Kaifeng Xing
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Jian Zhang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| | - Haoxing Xie
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Lidong Zhang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Huaxuan Zhang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Liyun Feng
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Jun Zhou
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Yao Zhao
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
4
|
Wei L, Yang C, John Martin JJ, Li R, Zhou L, Cheng S, Cao H, Liu X. Metabonomics and Transcriptomic Analysis of Free Fatty Acid Synthesis in Seedless and Tenera Oil Palm. Int J Mol Sci 2024; 25:1686. [PMID: 38338979 PMCID: PMC10855455 DOI: 10.3390/ijms25031686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Oil palm, a tropical woody oil crop, is widely used in food, cosmetics, and pharmaceuticals due to its high production efficiency and economic value. Palm oil is rich in free fatty acids, polyphenols, vitamin E, and other nutrients, which are beneficial for human health when consumed appropriately. Therefore, investigating the dynamic changes in free fatty acid content at different stages of development and hypothesizing the influence of regulatory genes on free fatty acid metabolism is crucial for improving palm oil quality and accelerating industry growth. LC-MS/MS is used to analyze the composition and content of free fatty acids in the flesh after 95 days (MS1 and MT1), 125 days (MS2 and MT2), and 185 days (MS3 and MT3) of Seedless (MS) and Tenera (MT) oil palm species fruit pollination. RNA-Seq was used to analyze the expression of genes regulating free fatty acid synthesis and accumulation, with differences in genes and metabolites mapped to the KEGG pathway map using the KEGG (Kyoto encyclopedia of genes and genomes) enrichment analysis method. A metabolomics study identified 17 types of saturated and 13 types of unsaturated free fatty acids during the development of MS and MT. Transcriptomic research revealed that 10,804 significantly different expression genes were acquired in the set differential gene threshold between MS and MT. The results showed that FabB was positively correlated with the contents of three main free fatty acids (stearic acid, myristate acid, and palmitic acid) and negatively correlated with the contents of free palmitic acid in the flesh of MS and MT. ACSL and FATB were positively correlated with the contents of three main free fatty acids and negatively correlated with free myristate acid. The study reveals that the expression of key enzyme genes, FabB and FabF, may improve the synthesis of free myristate in oil palm flesh, while FabF, ACSL, and FATB genes may facilitate the production of free palmitoleic acid. These genes may also promote the synthesis of free stearic acid and palmitoleic acid in oil palm flesh. However, the FabB gene may inhibit stearic acid synthesis, while ACSL and FATB genes may hinder myristate acid production. This study provides a theoretical basis for improving palm oil quality.
Collapse
Affiliation(s)
- Lu Wei
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.W.); (C.Y.); (J.J.J.M.); (R.L.); (L.Z.)
- National Key Laboratory for Tropical Crop Breeding, Haikou 571101, China
- School of Horticulture, Hainan University, Haikou 570228, China
| | - Cheng Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.W.); (C.Y.); (J.J.J.M.); (R.L.); (L.Z.)
- National Key Laboratory for Tropical Crop Breeding, Haikou 571101, China
| | - Jerome Jeyakumar John Martin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.W.); (C.Y.); (J.J.J.M.); (R.L.); (L.Z.)
- National Key Laboratory for Tropical Crop Breeding, Haikou 571101, China
| | - Rui Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.W.); (C.Y.); (J.J.J.M.); (R.L.); (L.Z.)
- National Key Laboratory for Tropical Crop Breeding, Haikou 571101, China
| | - Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.W.); (C.Y.); (J.J.J.M.); (R.L.); (L.Z.)
- National Key Laboratory for Tropical Crop Breeding, Haikou 571101, China
| | - Shuanghong Cheng
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, China;
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.W.); (C.Y.); (J.J.J.M.); (R.L.); (L.Z.)
- National Key Laboratory for Tropical Crop Breeding, Haikou 571101, China
| | - Xiaoyu Liu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.W.); (C.Y.); (J.J.J.M.); (R.L.); (L.Z.)
- National Key Laboratory for Tropical Crop Breeding, Haikou 571101, China
| |
Collapse
|
5
|
Wang Y, Li J, Guo P, Liu Q, Ren S, Juan L, He J, Tan X, Yan J. Ectopic expression of Camellia oleifera Abel. gibberellin 20-oxidase gene increased plant height and promoted secondary cell walls deposition in Arabidopsis. PLANTA 2023; 258:65. [PMID: 37566145 DOI: 10.1007/s00425-023-04222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
MAIN CONCLUSION Ectopic expression of Camellia oleifera Abel. gibberellin 20-oxidase 1 caused a taller phenotype, promoted secondary cell wall deposition, leaf enlargement, and early flowering, and reduced chlorophyll and anthocyanin accumulation and seed enlargement phenotype in Arabidopsis. Plant height and secondary cell wall (SCW) deposition are important plant traits. Gibberellins (GAs) play important roles in regulating plant height and SCWs deposition. Gibberellin 20-oxidase (GA20ox) is an important enzyme involved in GA biosynthesis. In the present study, we identified a GA synthesis gene in Camellia oleifera. The total length of the CoGA20ox1 gene sequence was 1146 bp, encoding 381 amino acids. Transgenic plants with CoGA20ox1 had a taller phenotype; a seed enlargement phenotype; promoted SCWs deposition, leaf enlargement, and early flowering; and reduced chlorophyll and anthocyanin accumulation. Genetic analysis showed that the mutant ga20ox1-3 Arabidopsis partially rescued the phenotype of CoGA20ox1 overexpression plants. The results showed that CoGA20ox1 participates in the growth and development of C. oleifera. The morphological changes in CoGA20ox1 overexpressed plants provide a theoretical basis for further exploration of GA biosynthesis and analysis of the molecular mechanism in C. oleifera.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Jian'an Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China.
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China.
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China.
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China.
| | - Purui Guo
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Qian Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Shuangshuang Ren
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Lemei Juan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Jiacheng He
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China.
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China.
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China.
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China.
| | - Jindong Yan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China.
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, 410004, China.
- Yuelu Mountain Laboratory Non-Wood Forests Variety Innovation Center, Changsha, 410004, China.
- Key Laboratory of Breeding and Cultivation of Economic Forest, State Forestry and Grassland Administration, Changsha, 410004, China.
| |
Collapse
|
6
|
Yan H, Zheng W, Ye Z, Yu J, Wu Y. Comparison of the Main Metabolites in Different Maturation Stages of Camelliavietnamensis Huang Seeds. Molecules 2022; 27:molecules27206817. [PMID: 36296410 PMCID: PMC9608468 DOI: 10.3390/molecules27206817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/17/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Camellia vietnamensis Huang is an important woody oil crop in China, which has attracted much attention because of its abundant nutritional components and pharmaceutical value. Its seeds undergo a complex series of physiological and biochemical changes during maturation, with consequent alterations in metabolites. In order to investigate the endogenous metabolism of C. vietnamensis on Hainan Island during seed development, in this study, ultra-high-performance liquid tandem chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) and multivariate statistical analysis (MSA) were used to analyze the differences in the chemical compounds of C. vietnamensis seeds among the four maturation stages. A total of 293 metabolites were identified from the methanol extract of the seeds of C. vietnamensis. Five metabolites, belonging to benzene and substituted derivatives, 5′-deoxyribonucleosides and linear 1,3-diarylpropanoids, were found in all three comparison groups, with consistently down-regulated trends. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that phloretin and 5′-methylthioadenosine were the differentially expressed metabolites when seeds were in the growth periods of S2 and S3, and indole and L-tryptophan were the differentially expressed metabolites when seeds were in the growth periods of S3 and S4. In addition, 34 flavonoid metabolites were detected, of which 4 were differentially expressed. It was indicated that flavonoids dynamically change during all the oil-tea camellia seed development stages. The findings provide data for the better understanding of endogenous metabolic pathways during C. vietnamensis seed development.
Collapse
Affiliation(s)
- Heqin Yan
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
| | - Wei Zheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
| | - Zhouchen Ye
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
| | - Jing Yu
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
- Correspondence: (J.Y.); (Y.W.); Tel.: +86-0898-66279014 (J.Y.)
| | - Yougen Wu
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Correspondence: (J.Y.); (Y.W.); Tel.: +86-0898-66279014 (J.Y.)
| |
Collapse
|
7
|
Transcriptomic and Metabolomic Analysis Unravels the Molecular Regulatory Mechanism of Fatty Acid Biosynthesis in Styrax tonkinensis Seeds under Methyl Jasmonate Treatment. Int J Mol Sci 2022; 23:ijms23116190. [PMID: 35682867 PMCID: PMC9181076 DOI: 10.3390/ijms23116190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
As the germ of a highly productive oil tree species, Styrax tonkinensis seeds have great potential to produce biodiesel and they have marvelous fatty acid (FA) composition. In order to explore the molecular regulatory mechanism of FA biosynthesis in S. tonkinensis seeds after methyl jasmonate (MJ) application, transcriptomic and metabolomic techniques were adopted so as to dissect the genes that are related to FA biosynthesis and their expression levels, as well as to discover the major FA concentration and composition. The results revealed that 200 μmol/L of MJ (MJ200) increased the crude fat (CF) mass fraction and generated the greatest impact on CF accumulation at 70 days after flowering. Twenty FAs were identified, among which palmitic acid, oleic acid, linoleic acid and linolenic acid were the major FAs, and the presence of MJ200 affected their concentrations variously. MJ200 could enhance FA accumulation through elevating the activity of enzymes that are related to FA synthesis. The number of differentially expressed genes increased with the seeds’ development in general. Fatty acid biosynthesis, the biosynthesis of unsaturated fatty acid, fatty acid elongation and glycerolipid metabolism were the main lipid metabolism pathways that were found to be involved. The changes in the expression levels of EAR, KAR, accA, accB and SAD2 were consistent with the changes in the CF mass fraction, indicating that they are important genes in the FA biosynthesis of S. tonkinensis seeds and that MJ200 promoted their expression levels. In addition, bZIP (which was screened by weighted correlation network analysis) also created significant impacts on FA biosynthesis. Our research has provided a basis for further studies on FA biosynthesis that is regulated by MJ200 at the molecular level and has helped to clarify the functions of key genes in the FA metabolic pathway in S. tonkinensis seeds.
Collapse
|
8
|
Zhang F, Li Z, Zhou J, Gu Y, Tan X. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera. BMC PLANT BIOLOGY 2021; 21:348. [PMID: 34301189 PMCID: PMC8299657 DOI: 10.1186/s12870-021-03114-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The oil-tea tree (Camellia oleifera Abel.) is a woody tree species that produces edible oil in the seed. C. oleifera oil has high nutritional value and is also an important raw material for medicine and cosmetics. In China, due to the uncertainty on maturity period and oil synthesis mechanism of many C. oleifera cultivars, growers may harvest fruits prematurely, which could not maximize fruit and oil yields. In this study, our objective was to explore the mechanism and differences of oil synthesis between two Camellia oleifera cultivars for a precise definition of the fruit ripening period and the selection of appropriate cultivars. RESULTS The results showed that 'Huashuo' had smaller fruits and seeds, lower dry seed weight and lower expression levels of fatty acid biosynthesis genes in July. We could not detect the presence of oil and oil bodies in 'Huashuo' seeds until August, and oil and oil bodies were detected in 'Huajin' seeds in July. Moreover, 'Huashuo' seeds were not completely blackened in October with up to 60.38% of water and approximately 37.98% of oil in seed kernels whose oil content was much lower than normal mature seed kernels. The oil bodies in seed endosperm cells of 'Huajin' were always higher than those of 'Huashuo' from July to October. CONCLUSION Our results confirmed that C. oleifera 'Huashuo' fruits matured at a lower rate compared to 'Huajin' fruits and that 'Huajin' seeds entered the oil synthesis period earlier than 'Huashuo' seeds. Moreover, 'Huashuo' fruits did not mature during the Frost's Descent period (October 23-24 each year).
Collapse
Affiliation(s)
- Fanhang Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Ze Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forestry Industry of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forestry Industry of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
| | - Yiyang Gu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forestry Industry of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forestry Industry of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
| |
Collapse
|