1
|
Zoccali C, Mallamaci F, Wagner CA, Unwin R, Nedergaard M, Hafez G, Malyszko J, Pepin M, Massy Z, Paolisso G, Remuzzi G, Capasso GB. Genetic and circulating biomarkers of cognitive dysfunction and dementia in CKD. Nephrol Dial Transplant 2025; 40:ii64-ii75. [PMID: 40080085 PMCID: PMC11905751 DOI: 10.1093/ndt/gfae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Indexed: 03/15/2025] Open
Abstract
Chronic kidney disease (CKD) is commonly accompanied by cognitive dysfunction and dementia, which, in turn, increase the risk of hospitalization, cardiovascular events and death. Over the last 30 years, only four studies focused on genetic markers of cognitive impairment in CKD and kidney failure (KF), indicating a significant gap in research. These studies suggest potential genetic predispositions to cognitive decline in CKD patients but also underscore the necessity for more comprehensive studies. Seventeen reports have established connections between cognitive function and kidney disease markers such as estimated glomerular filtration rate (eGFR), Cystatin C and albuminuria. A rapid eGFR decline has been associated with cognitive deterioration and vascular dementia, and mild to moderate eGFR reductions with diminished executive function in elderly men. Various biomarkers have been associated to Alzheimer's disease or dementia in CKD and KF. These include amyloid beta and phosphorylated tau proteins, uremic toxins, gut microbiota, metabolic indicators, hypertension, endothelial dysfunction, vitamins and inflammation. However, the causal relevance of these associations remains unclear. Overall, the available evidence points to a complex interplay between the different biomarkers and cognitive health in CKD patients, underscoring the need for more research to elucidate these relationships.
Collapse
Affiliation(s)
- Carmine Zoccali
- Renal Research Institute, NY, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit, Grande Ospedale Metropolitano
- CNR-IFC, Institute of Clinical Physiology, Research Unit of Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension of Reggio Calabria, Italy
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Robert Unwin
- UCL Department of Renal Medicine, Royal Free Hospital, London, UK
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gaye Hafez
- Department of Pharmacology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Jolanta Malyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marion Pepin
- Department of Nephrology, Ambroise Paré University Medical Center, APHP, Paris, France
- Department of Geriatrics, Ambroise Paré University Medical Center, APHP, Boulogne-Billancourt, France
| | - Ziad Massy
- Paris-Saclay University, UVSQ, Inserm, Clinical Epidemiology Team, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Villejuif, France
- Association pour l'Utilisation du Rein Artificiel (AURA), Paris and Department of Nephrology, Ambroise Paré University Medical Center, APHP, Paris, France
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo and Milan, Italy
| | - Giovambattista B Capasso
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
2
|
Meng K, Meng F, Wu Y, Lin L. Multi-omics analysis identified extracellular vesicles as biomarkers for cardiovascular diseases. Talanta 2024; 280:126710. [PMID: 39213888 DOI: 10.1016/j.talanta.2024.126710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cell-derived extracellular vesicles (EVs) have emerged as a promising non-invasive liquid biopsy technique due to their accessibility and their ability to encapsulate and transport diverse biomolecules. EVs have garnered substantial research interest, notably in cardiovascular diseases (CVDs), where their roles in pathophysiology and as diagnostic and prognostic biomarkers are increasingly recognized. This review provides a comprehensive overview of EVs, starting with their origins, followed by the techniques used for their isolation and characterization. We explore the diverse cargo of EVs, including nucleic acids, proteins, lipids, and metabolites, highlighting their roles in intercellular communication and as potential biomarkers. We then delve into the application of genomics, transcriptomics, proteomics, and metabolomics in the analysis of EVs, particularly within the context of CVDs. Finally, we discuss how integrated multi-omics approaches are unveiling novel biomarkers, offering fresh insights into the diagnosis and prognosis of CVDs. This review underscores the growing importance of EVs in clinical diagnostics and the potential of multi-omics to propel future advancements in CVD biomarker discovery.
Collapse
Affiliation(s)
- Ke Meng
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Fanqi Meng
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361004, Fujian, China
| | - Yuan Wu
- Department of Cardiac Surgery, Yuebei People's Hospital, Shaoguan, Guangdong, China.
| | - Ling Lin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Pastrnak M, Klirova M, Bares M, Novak T. Distinct connectivity patterns in bipolar and unipolar depression: a functional connectivity multivariate pattern analysis study. BMC Neurosci 2024; 25:46. [PMID: 39333843 PMCID: PMC11428473 DOI: 10.1186/s12868-024-00895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Patients with bipolar disorder (BD) and major depressive disorder (MDD) exhibit depressive episodes with similar symptoms despite having different and poorly understood underlying neurobiology, often leading to misdiagnosis and improper treatment. This exploratory study examined whole-brain functional connectivity (FC) using FC multivariate pattern analysis (fc-MVPA) to identify the FC patterns with the greatest ability to distinguish between currently depressed patients with BD type I (BD I) and those with MDD. METHODOLOGY In a cross-sectional design, 41 BD I, 40 MDD patients and 63 control participants completed resting state functional magnetic resonance imaging scans. Data-driven fc-MVPA, as implemented in the CONN toolbox, was used to identify clusters with differential FC patterns between BD patients and MDD patients. The identified cluster was used as a seed in a post hoc seed-based analysis (SBA) to reveal associated connectivity patterns, followed by a secondary ROI-to-ROI analysis to characterize differences in connectivity between these patterns among BD I patients, MDD patients and controls. RESULTS FC-MVPA identified one cluster located in the right frontal pole (RFP). The subsequent SBA revealed greater FC between the RFP and posterior cingulate cortex (PCC) and between the RFP and the left inferior/middle temporal gyrus (LI/MTG) and lower FC between the RFP and the left precentral gyrus (LPCG), left lingual gyrus/occipital cortex (LLG/OCC) and right occipital cortex (ROCC) in MDD patients than in BD patients. Compared with the controls, ROI-to-ROI analysis revealed lower FC between the RFP and the PCC and greater FC between the RFP and the LPCG, LLG/OCC and ROCC in BD patients; in MDD patients, the analysis revealed lower FC between the RFP and the LLG/OCC and ROCC and greater FC between the RFP and the LI/MTG. CONCLUSIONS Differences in the RFP FC patterns between currently depressed patients with BD and those with MDD suggest potential neuroimaging markers that should be further examined. Specifically, BD patients exhibit increased FC between the RFP and the motor and visual networks, which is associated with psychomotor symptoms and heightened compensatory frontoparietal FC to counter distractibility. In contrast, MDD patients exhibit increased FC between the RFP and the default mode network, corresponding to sustained self-focus and rumination.
Collapse
Grants
- Cooperatio Program, Neuroscience 3rd Faculty of Medicine, Charles University, Czech Republic
- Cooperatio Program, Neuroscience 3rd Faculty of Medicine, Charles University, Czech Republic
- Cooperatio Program, Neuroscience 3rd Faculty of Medicine, Charles University, Czech Republic
- Cooperatio Program, Neuroscience 3rd Faculty of Medicine, Charles University, Czech Republic
- NU22-04-00192 Agentura Pro Zdravotnický Výzkum České Republiky
- NU22-04-00192 Agentura Pro Zdravotnický Výzkum České Republiky
- NU22-04-00192 Agentura Pro Zdravotnický Výzkum České Republiky
Collapse
Affiliation(s)
- Martin Pastrnak
- National Institute of Mental Health, Clinic, Klecany, 250 67, Czech Republic.
- 3rd Faculty of Medicine, Charles University, Prague, 100 00, Czech Republic.
| | - Monika Klirova
- National Institute of Mental Health, Clinic, Klecany, 250 67, Czech Republic
- 3rd Faculty of Medicine, Charles University, Prague, 100 00, Czech Republic
| | - Martin Bares
- National Institute of Mental Health, Clinic, Klecany, 250 67, Czech Republic
- 3rd Faculty of Medicine, Charles University, Prague, 100 00, Czech Republic
| | - Tomas Novak
- National Institute of Mental Health, Clinic, Klecany, 250 67, Czech Republic
- 3rd Faculty of Medicine, Charles University, Prague, 100 00, Czech Republic
| |
Collapse
|
4
|
Sun F, Liu Z, Yang J, Fan Z, Wang F, Yang J. Aberrant brain dynamics in major depressive disorder during working memory task. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01854-4. [PMID: 38976050 DOI: 10.1007/s00406-024-01854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
Working memory (WM) is a distributed and dynamic process, and WM deficits are recognized as one of the top-ranked endophenotype candidates for major depressive disorders (MDD). However, there is a lack of knowledge of brain temporal-spatial profile of WM deficits in MDD. We used the dynamical degree centrality (dDC) to investigate the whole-brain temporal-spatial profile in 40 MDD and 40 controls during an n-back task with 2 conditions (i.e., '0back' and '2back'). We explored the dDC temporal variability and clustered meta-stable states in 2 groups during different WM conditions. Pearson's correlation analysis was used to evaluate the relationship between the altered dynamics with clinical symptoms and WM performance. Compared with controls, under '2back vs. 0back' contrast, patients showed an elevated dDC variability in wide range of brain regions, including the middle frontal gyrus, orbital part of inferior frontal gyrus (IFGorb), hippocampus, and middle temporal gyrus. Furthermore, the increased dDC variability in the hippocampus and IFGorb correlated with worse WM performance. However, there were no significant group-related differences in the meta-stable states were observed. This study demonstrated the increased WM-related instability (i.e., the elevated dDC variability) was represented in MDD, and enhancing stability may help patients achieve better WM performance.
Collapse
Affiliation(s)
- Fuping Sun
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhening Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jun Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zebin Fan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feiwen Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jie Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Wang JN, Wang M, Wu GW, Li WH, Lv ZL, Chen Q, Yang ZH, Li XH, Wang ZC, Li ZJ, Zhang P, Tang LR. Uncovering neural pathways underlying bulimia nervosa: resting-state neural connectivity disruptions correlate with maladaptive eating behaviors. Eat Weight Disord 2023; 28:91. [PMID: 37899387 PMCID: PMC10613592 DOI: 10.1007/s40519-023-01617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/18/2023] [Indexed: 10/31/2023] Open
Abstract
PURPOSE Bulimia nervosa (BN) is characterized by recurrent binge-eating episodes and inappropriate compensatory behaviors. This study investigated alterations in resting-state surface-based neural activity in BN patients and explored correlations between brain activity and eating behavior. METHODS A total of 26 BN patients and 28 healthy controls were enrolled. Indirect measurement of cerebral cortical activity and functional connectivity (FC) analyses were performed in Surfstat. A principal component analysis (PCA) model was used to capture the commonalities within the behavioral questionnaires from the BN group. RESULTS Compared with the healthy control group, the BN group showed decreased surface-based two-dimensional regional homogeneity in the right superior parietal lobule (SPL). Additionally, the BN group showed decreased FC between the right SPL and the bilateral lingual gyrus and increased FC between the right SPL and the left caudate nucleus and right putamen. In the FC-behavior association analysis, the second principal component (PC2) was negatively correlated with FC between the right SPL and the left caudate nucleus. The third principal component (PC3) was negatively correlated with FC between the right SPL and the left lingual gyrus and positively correlated with FC between the right SPL and the right lingual gyrus. CONCLUSION We revealed that the right SPL undergoes reorganization with respect to specific brain regions at the whole-brain level in BN. In addition, our results suggest a correlation between brain reorganization and maladaptive eating behavior. These findings may provide useful information to better understand the neural mechanisms of BN. LEVEL OF EVIDENCE V, descriptive study.
Collapse
Affiliation(s)
- Jia-Ni Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, Beijing, China
| | - Miao Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Guo-Wei Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Hua Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, Beijing, China
| | - Zi-Ling Lv
- Beijing Anding Hospital, Capital Medical University, Beijing, China
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, No. 5 Ankang Hutong, Xicheng District, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, Beijing, China
| | - Zheng-Han Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, Beijing, China
| | - Xiao-Hong Li
- Beijing Anding Hospital, Capital Medical University, Beijing, China
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, No. 5 Ankang Hutong, Xicheng District, Beijing, China
| | - Zhen-Chang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, Beijing, China
| | - Zhan-Jiang Li
- Beijing Anding Hospital, Capital Medical University, Beijing, China.
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, No. 5 Ankang Hutong, Xicheng District, Beijing, China.
| | - Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, Beijing, China.
| | - Li-Rong Tang
- Beijing Anding Hospital, Capital Medical University, Beijing, China.
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, No. 5 Ankang Hutong, Xicheng District, Beijing, China.
| |
Collapse
|
6
|
Yang W, Jiang Y, Ma L, Xiao M, Liu M, Ren Z, Hu L, Zhang Y. Cortical and subcortical morphological alterations in postpartum depression. Behav Brain Res 2023; 447:114414. [PMID: 37001820 DOI: 10.1016/j.bbr.2023.114414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Postpartum depression (PPD) is the most common postpartum psychiatric disorder, which can negatively affect both mothers and their offspring. Although the functional changes of PPD have been extensively studied, little is known about its structural abnormalities. This study aimed to examine the cortical and subcortical morphological abnormalities in PPD. High resolution T1 structural MRI data of 29 PPD women and 23 matched healthy postpartum women (HPW) were included in this study. Using surface-based morphometry, we examined the differences between the PPD and HPW group in the cortical thickness, local gyrification index and shape changes of deep gray matter nuclei. Compared with the HPW group, women with PPD showed significantly increased cortical thickness in the left superior frontal gyrus, cuneus and right lingual gyrus and fusiform gyrus, which correlated marginally with the EPDS scores of these subjects. In addition, women with PPD showed significant regional inflation in the right pallidum compared with the HPW group. These findings provided further evidence for the structural brain abnormalities in PPD.
Collapse
|
7
|
Joaquim VHA, Pereira NP, Fernandes T, Oliveira EM. Circular RNAs as a Diagnostic and Therapeutic Target in Cardiovascular Diseases. Int J Mol Sci 2023; 24:2125. [PMID: 36768449 PMCID: PMC9916891 DOI: 10.3390/ijms24032125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023] Open
Abstract
Circular RNAs (circRNAs) are a family of noncoding RNAs (ncRNAs) that are endogenous and widely distributed in different species, performing several functions, mainly their association with microRNAs (miRNAs) and RNA-binding proteins. CVDs remain the leading cause of death worldwide; therefore, the development of new therapies and strategies, such as gene therapies or nonpharmacological therapies, with low cost, such as physical exercise, to alleviate these diseases is of extreme importance for society. With increasing evidence of ncRNA participating in the progression of CVDs, several studies have reported these RNAs as promising targets for diagnosis and treatment. There are several studies of CVDs and the role of miRNAs and lncRNAs; however, little is known about the new class of RNAs, called circRNAs, and CVDs. In this mini review, we focus on the mechanisms of circRNAs and CVDs.
Collapse
Affiliation(s)
| | | | | | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology Applied to the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil
| |
Collapse
|
8
|
Ge X, Wang L, Wang M, Pan L, Ye H, Zhu X, Fan S, Feng Q, Du Q, Wenhua Y, Ding Z. Alteration of brain network centrality in CTN patients after a single triggering pain. Front Neurosci 2023; 17:1109684. [PMID: 36875648 PMCID: PMC9978223 DOI: 10.3389/fnins.2023.1109684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Objective The central nervous system may also be involved in the pathogenesis of classical trigeminal neuralgia (CTN). The present study aimed to explore the characteristics of static degree centrality (sDC) and dynamic degree centrality (dDC) at multiple time points after a single triggering pain in CTN patients. Materials and methods A total of 43 CTN patients underwent resting-state function magnetic resonance imaging (rs-fMRI) before triggering pain (baseline), within 5 s after triggering pain (triggering-5 s), and 30 min after triggering pain (triggering-30 min). Voxel-based degree centrality (DC) was used to assess the alteration of functional connection at different time points. Results The sDC values of the right caudate nucleus, fusiform gyrus, middle temporal gyrus, middle frontal gyrus, and orbital part were decreased in triggering-5 s and increased in triggering-30 min. The sDC value of the bilateral superior frontal gyrus were increased in triggering-5 s and decreased in triggering-30 min. The dDC value of the right lingual gyrus was gradually increased in triggering-5 s and triggering-30 min. Conclusion Both the sDC and dDC values were changed after triggering pain, and the brain regions were different between the two parameters, which supplemented each other. The brain regions which the sDC and dDC values were changing reflect the global brain function of CTN patients, and provides a basis for further exploration of the central mechanism of CTN.
Collapse
Affiliation(s)
- Xiuhong Ge
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengze Wang
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Pan
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China
| | - Haiqi Ye
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China
| | - Xiaofen Zhu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sandra Fan
- Department of Radiology, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Feng
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quan Du
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Wenhua
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Wang M, Tang X, Li B, Wan T, Zhu X, Zhu Y, Lai X, He Y, Xia G. Dynamic local metrics changes in patients with toothache: A resting-state functional magnetic resonance imaging study. Front Neurol 2022; 13:1077432. [PMID: 36578304 PMCID: PMC9790921 DOI: 10.3389/fneur.2022.1077432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Objective To study the dynamic changes of local metrics in patients with toothache (TA, Toothache) in the resting state, in order to further understand the changes of central neural mechanism in patients with dental pain and its effect on cognition and emotion. Methods Thirty patients with TA and thirty matched healthy (HC) control volunteers were recruited, and resting-state functional magnetic resonance (rs-MRI) scans were performed on all subjects, and data were analyzed to compare group differences in three dynamic local indices: dynamic regional homogeneity (dReHO), dynamic low-frequency fluctuation amplitude (dALFF) and dynamic fractional low-frequency fluctuation amplitude (dfALFF). In addition, the association between dynamic local metrics in different brain regions of TA patients and scores on the Visual Analog Scale (VAS) and the Hospital Anxiety and Depression Scale (HADS) was investigated by Pearson correlation analysis. Results In this study, we found that The local metrics of TA patients changed with time Compared with the HC group, TA patients showed increased dReHo values in the left superior temporal gyrus, middle frontal gyrus, precentral gyrus, precuneus, angular gyrus, right superior frontal gyrus, middle temporal gyrus, postcentral gyrus and middle frontal gyrus, increased dALFF values in the right superior frontal gyrus, and increased dfALFF values in the right middle temporal gyrus, middle frontal gyrus and right superior occipital gyrus (p < 0.01, cluster level P < 0.05). Pearson correlation analysis showed that dReHo values of left precuneus and left angular gyrus were positively correlated with VAS scores in TA group. dReHo value of right posterior central gyrus was positively correlated with HADS score (P < 0.05). Conclusion There are differences in the patterns of neural activity changes in resting-state brain areas of TA patients, and the brain areas that undergo abnormal changes are mainly pain processing brain areas, emotion processing brain areas and pain cognitive modulation brain areas, which help to reveal their underlying neuropathological mechanisms. In the hope of further understanding its effects on cognition and emotion.
Collapse
Affiliation(s)
- Mengting Wang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Tang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tianyi Wan
- Medical Imaging Center, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Xuechao Zhu
- Medical Imaging Center, Jiangxi Cancer Hospital, Nanchang, China
| | - Yuping Zhu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xunfu Lai
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yulin He
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Yulin He
| | - Guojin Xia
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China,Guojin Xia
| |
Collapse
|
10
|
Chen C, Shen J, Du Y, Shi X, Niu Y, Jin G, Liu Y, Shi Y, Lyu J, Lin L. Characteristics of gut microbiota in patients with gastric cancer by surgery, chemotherapy and lymph node metastasis. Clin Transl Oncol 2022; 24:2181-2190. [PMID: 35794453 DOI: 10.1007/s12094-022-02875-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Gastric cancer (GC) is a malignant gastrointestinal tumor that can result in high mortality. Surgery and chemotherapy are often used for the effective treatment of GC. In addition, lymph node metastasis is a significant factor affecting the therapy of GC. Current researches have revealed that gut microbiota has the potential as biomarkers to distinguish healthy people and GC patients. However, the relationship between surgery, chemotherapy, and lymph node metastasis is still unclear. METHODS In this study, 16S rRNA sequencing was used to investigate 157 GC fecal samples to identify the role of surgery, chemotherapy, and lymph node metastasis. Immunohistochemical analysis was used to value the expression of Ki67, HER2 in GC patient tissues. RESULTS There exist some gut microbiotas which can distinguish surgery from non-surgery GC patients, including Enterococcus, Megasphaera, Corynebacterium, Roseburia, and Lachnospira. Differences between lymph node metastasis and chemotherapy in GC patients are not significant. Moreover, we found the abundance of Blautia, Ruminococcus, Oscillospira were related to the expression of Ki67 and the abundance of Prevotella, Lachnospira, Eubacterium, Desulfovibiro were correlated with the expression of HER2. CONCLUSIONS The choice of treatment has a certain impact on the intestinal flora of patients with gastric cancer. Our research shows that surgery has a great effect on the intestinal flora of patients with gastric cancer. However, there were no significant differences in the characteristics of intestinal flora in patients with gastric cancer whether they received chemotherapy or whether they had lymph node metastasis. In addition, the association of gut microbiota with Ki67 and HER2 indicators is expected to provide the possibility of gut microbiota as a tumor prognostic marker.
Collapse
Affiliation(s)
- Changchang Chen
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jian Shen
- Department of Medical Administration, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yaoqiang Du
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Xinwei Shi
- The Eye Hospital of Wenzhou Medical University (Zhejiang Eye Hospital), Hangzhou, Zhejiang, China
| | - Yaofang Niu
- Hangzhou Guhe Information and Technology Company, Hangzhou, Zhejiang, China
| | - Gulei Jin
- Hangzhou Guhe Information and Technology Company, Hangzhou, Zhejiang, China
| | - Yanxin Liu
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yongkang Shi
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| | - Jianxin Lyu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| | - Lijun Lin
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Yang J, Shao Y, Li B, Yu QY, Ge QM, Li B, Pan YC, Liang RB, Wu SN, Li QY, He YL. Altered regional homogeneity of spontaneous brain activity in patients with toothache: A resting-state functional magnetic resonance imaging study. Front Neurosci 2022; 16:1019989. [PMID: 36248652 PMCID: PMC9554534 DOI: 10.3389/fnins.2022.1019989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Toothache (TA) is a common and severe pain, but its effects on the brain are somewhat unclear. In this study, functional magnetic resonance imaging (fMRI) was used to compare regional homogeneity (ReHo) between TA patients and a normal control group and to explore the brain activity changes during TA, establishing the theoretical basis for the mechanism of neuropathic pain. In total, 20 TA patients and 20 healthy controls (HCs) were recruited and underwent assessment of pain, and then resting-state fMRI (rs-fMRI). The ReHo method was used to analyze the original whole-brain images. Pearson’s correlation analysis was used to assess the relationship between mean ReHo values in each brain region and clinical symptoms, and the receiver operating characteristic (ROC) curve was used to conduct correlation analysis on the brain regions studied. The ReHo values of the right lingual gyrus (RLG), right superior occipital gyrus (RSOG), left middle occipital gyrus (LMOG) and right postcentral gyrus (RPG) in the TA group were significantly higher than in HCs. The mean ReHo values in the RLG were positively correlated with the anxiety score (AS) (r = 0.723, p < 0.001), depression score (DS) (r = 0.850, p < 0.001) and visual analogue score (VAS) (r = 0.837, p < 0.001). The mean ReHo values of RSOG were also positively correlated with AS (r = 0.687, p = 0.001), DS (r = 0.661, p = 0.002) and VAS (r = 0.712, p < 0.001). The areas under the ROC curve of specific brain area ReHo values were as follows: RLG, 0.975; RSOG, 0.959; LMOG, 0.975; RPG, 1.000. Various degrees of brain activity changes reflected by ReHo values in different areas of the brain indicate the impact of TA on brain function. These findings may reveal related neural mechanisms underlying TA.
Collapse
Affiliation(s)
- Jun Yang
- The Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiu-Yue Yu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi-Cong Pan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong-Bin Liang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shi-Nan Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiu-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu-Lin He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yu-Lin He,
| |
Collapse
|
12
|
Huang X, Zhao Y, Zhou H, Li Y. Circular RNAs in atherosclerosis. Clin Chim Acta 2022; 531:71-80. [PMID: 35339453 DOI: 10.1016/j.cca.2022.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory lesion of the arterial vessel wall caused by a variety of complex factors. Furthermore, it is a major cause of cardiovascular disease and a leading cause of death. Circular RNAs (circRNAs) are a new family of endogenous non-coding RNAs with unique covalently closed loops that have sparked interest due to their unique characteristics and potential diagnostic and therapeutic applications in various diseases. A growing number of studies have shown that circRNAs can be used as biomarkers for the diagnosis and treatment of AS. In this article, we review the biogenesis, classification as well as functions of circRNA and summarize the research on circRNA as a diagnostic biomarker for AS. Finally, we describe the regulatory capacity of circRNA in AS pathogenesis through its pathogenesis and demonstrate the potential therapeutic role of circRNA for AS.
Collapse
Affiliation(s)
- Xiaoni Huang
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China
| | - Yuwen Zhao
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China
| | - Huijiao Zhou
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China
| | - Yongqiang Li
- Department of General Practice, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China.
| |
Collapse
|
13
|
Tang Z, Zhou J, Long H, Gao Y, Wang Q, Li X, Wang Y, Lai W, Jian F. Molecular mechanism in trigeminal nerve and treatment methods related to orthodontic pain. J Oral Rehabil 2021; 49:125-137. [PMID: 34586644 DOI: 10.1111/joor.13263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Orthodontic treatment is the main treatment approach for malocclusion. Orthodontic pain is an inevitable undesirable adverse reaction during orthodontic treatment. It is reported orthodontic pain has become one of the most common reason that patients withdraw from orthodontic treatment. Therefore, understanding the underlying mechanism and finding treatment of orthodontic pain are in urgent need. AIMS This article aims to sort out the mechanisms and treatments of orthodontic pain, hoping to provide some ideas for future orthodontic pain relief. MATERIALS Tooth movement will cause local inflammation. Certain inflammatory factors and cytokines stimulating the trigeminal nerve and further generating pain perception, as well as drugs and molecular targeted therapy blocking nerve conduction pathways, will be reviewed in this article. METHOD We review and summaries current studies related to molecular mechanisms and treatment approaches in orthodontic pain control. RESULTS Orthodontics pain related influencing factors and molecular mechanisms has been introduced. Commonly used clinical methods in orthodontic pain control has been evaluated. DISCUSSION With the clarification of more molecular mechanisms, the direction of orthodontic pain treatment will shift to targeted drugs.
Collapse
Affiliation(s)
- Ziwei Tang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiawei Zhou
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanzi Gao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaolong Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Jian
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Palejwala AH, Dadario NB, Young IM, O'Connor K, Briggs RG, Conner AK, O'Donoghue DL, Sughrue ME. Anatomy and White Matter Connections of the Lingual Gyrus and Cuneus. World Neurosurg 2021; 151:e426-e437. [PMID: 33894399 DOI: 10.1016/j.wneu.2021.04.050] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND The medial occipital lobe, composed of the lingual gyrus and cuneus, is necessary for both basic and higher level visual processing. It is also known to facilitate cross-modal, nonvisual functions, such as linguistic processing and verbal memory, after the loss of the visual senses. A detailed cortical model elucidating the white matter connectivity associated with this area could improve our understanding of the interacting brain networks that underlie complex human processes and postoperative outcomes related to vision and language. METHODS Generalized q-sampling imaging tractography, validated by gross anatomic dissection for qualitative visual agreement, was performed on 10 healthy adult controls obtained from the Human Connectome Project. RESULTS Major white matter connections were identified by tractography and validated by gross dissection, which connected the medial occipital lobe with itself and the adjacent cortices, especially the temporal lobe. The short- and long-range connections identified consisted mainly of U-shaped association fibers, intracuneal fibers, and inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, middle longitudinal fasciculus, and lingual-fusiform connections. CONCLUSIONS The medial occipital lobe is an extremely interconnected system, supporting its ability to perform coordinated basic visual processing, but also serves as a center for many long-range association fibers, supporting its importance in nonvisual functions, such as language and memory. The presented data represent clinically actionable anatomic information that can be used in multimodal navigation of white matter lesions in the medial occipital lobe to prevent neurologic deficits and improve patients' quality of life after cerebral surgery.
Collapse
Affiliation(s)
- Ali H Palejwala
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Kyle O'Connor
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Daniel L O'Donoghue
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia.
| |
Collapse
|