1
|
Yan X, Hu Y, Zhao S, Zhou Q, Chen Q. Preclinical evidence and possible mechanisms of cardioprotective effects of resveratrol in diabetic cardiomyopathy: a systematic review and meta-analysis. Diabetol Metab Syndr 2024; 16:275. [PMID: 39551777 PMCID: PMC11572515 DOI: 10.1186/s13098-024-01512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024] Open
Abstract
INTRODUCTION Diabetic cardiomyopathy (DCM) is a significant complication of diabetes, characterized primarily by the development of heart failure in individuals with diabetes. Numerous animal studies have indicated that resveratrol enhances cardiac function in diabetic cardiomyopathy; however, its reliability and underlying mechanism remain unclear. This study aims to assess the cardioprotective effects of resveratrol on DCM and explore its potential mechanism. METHODS We searched PubMed, EMBASE, WOS, Cochrane Library, CNKI, CBM, Chinese VIP, and Wan Fang Database until March 31st, 2024, without language restrictions. Continuous outcome measures were analyzed using weighted mean difference or standardized mean difference, and heterogeneity was assessed with I2. The risk of bias in animal experiments was evaluated using the SYRCLE tool, and evidence reliability was determined with the GRADE tool. All data were analyzed using Review Manager 5.4.1 and Stata 17. This study has been registered on the PROSPERO (CRD42024523944). RESULTS A total of 18 studies meeting the criteria were identified. The analysis revealed that the resveratrol intervention group exhibited significant improvements in LVEF (WMD = 17.88), LVFS (WMD = 8.77), HW/BW (SMD=-2.92), SOD (SMD = 4.53), and MDA (SMD=-5.07) compared to the control group. The GRADE grading assessment indicated moderate certainty for LVEF, HW/BW, and MDA, while certainty for other factors was considered low. CONCLUSION Our research suggests that resveratrol may protect cardiac function in DCM through anti-inflammatory and anti-oxidative stress effects. However, these findings are based on preclinical data, and further extensive trials are needed to confirm their effectiveness and safety before clinical application.
Collapse
Affiliation(s)
- Xiaodan Yan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youjia Hu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuyuan Zhao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Hesari M, Mohammadi P, Moradi M, Shackebaei D, Yarmohammadi F. Molecular mechanisms involved in therapeutic effects of natural compounds against cisplatin-induced cardiotoxicity: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8367-8381. [PMID: 38850306 DOI: 10.1007/s00210-024-03207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Cisplatin is a widely used chemotherapeutic agent for the treatment of various cancers. However, the clinical use of cisplatin is limited by its cardiotoxic side effects. The primary mechanisms implicated in this cardiotoxicity include mitochondrial dysfunction, oxidative stress, inflammation, and apoptotic. Numerous natural compounds (NCs) have been introduced as promising protective factors against cisplatin-mediated cardiac damage. The current review summarized the potential of various NCs as cardioprotective agents at the molecular levels. These compounds exhibited potent antioxidant and anti-inflammatory effects by interaction with the PI3K/AKT, AMPK, Nrf2, NF-κB, and NLRP3/caspase-1/GSDMD pathways. Generally, the modulation of these signaling pathways by NCs represents a promising strategy for improving the therapeutic index of cisplatin by reducing its cardiac side effects.
Collapse
Affiliation(s)
- Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Moradi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Haș IM, Tit DM, Bungau SG, Pavel FM, Teleky BE, Vodnar DC, Vesa CM. Cardiometabolic Risk: Characteristics of the Intestinal Microbiome and the Role of Polyphenols. Int J Mol Sci 2023; 24:13757. [PMID: 37762062 PMCID: PMC10531333 DOI: 10.3390/ijms241813757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiometabolic diseases like hypertension, type 2 diabetes mellitus, atherosclerosis, and obesity have been associated with changes in the gut microbiota structure, or dysbiosis. The beneficial effect of polyphenols on reducing the incidence of this chronic disease has been confirmed by numerous studies. Polyphenols are primarily known for their anti-inflammatory and antioxidant properties, but they can also modify the gut microbiota. According to recent research, polyphenols positively influence the gut microbiota, which regulates metabolic responses and reduces systemic inflammation. This review emphasizes the prebiotic role of polyphenols and their impact on specific gut microbiota components in patients at cardiometabolic risk. It also analyzes the most recent research on the positive effects of polyphenols on cardiometabolic health. While numerous in vitro and in vivo studies have shown the interaction involving polyphenols and gut microbiota, additional clinical investigations are required to assess this effect in people.
Collapse
Affiliation(s)
- Ioana Mariana Haș
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Flavia Maria Pavel
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
| | - Bernadette-Emoke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.-E.T.); (D.C.V.)
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.-E.T.); (D.C.V.)
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Cosmin Mihai Vesa
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
4
|
Wu S, Lu D, Gajendran B, Hu Q, Zhang J, Wang S, Han M, Xu Y, Shen X. Tanshinone IIA ameliorates experimental diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress in cardiomyocytes via SIRT1. Phytother Res 2023; 37:3543-3558. [PMID: 37128721 DOI: 10.1002/ptr.7831] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a common complication in patients with diabetes, and ultimately leads to heart failure. Endoplasmic reticulum stress (ERS) induced by abnormal glycolipid metabolism is a critical factor that affects the occurrence and development of DCM. Additionally, the upregulation/activation of silent information regulation 2 homolog-1 (SIRT1) has been shown to protect against DCM. Tanshinone II A (Tan IIA), the main active component of Salviae miltiorrhizae radix et rhizome (a valuable Chinese medicine), has protective effects against cardiovascular disease and diabetes. However, its role and mechanisms in diabetes-induced cardiac dysfunction remain unclear. Therefore, we explored whether Tan IIA alleviates ERS-mediated DCM via SIRT1 and elucidated the underlying mechanism. The results suggested that Tan IIA alleviated the pathological changes in the hearts of diabetic mice, ameliorated the cytopathological morphology of cardiomyocytes, reduced the cell death rate, and inhibited the expression of ERS-related proteins and mRNA. The SIRT1 agonist inhibited the activities of glucose-regulated protein 78 (GRP78). Furthermore, the opposite results under the SIRT1 inhibitor. SIRT1 knockdown was induced by siRNA-SIRT1 transfection, and the degree of GRP78 acetylation was increased. Cumulatively, Tan IIA ameliorated DCM by inhibiting ERS and upregulating SIRT1 expression.
Collapse
Affiliation(s)
- Shun Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Dingchun Lu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology, College of Basic Medical Sciences of Guizhou Medical University, Guiyang, China
| | - Babu Gajendran
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Qilan Hu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jian Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Shengquan Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Minzhen Han
- The Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yini Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology, College of Basic Medical Sciences of Guizhou Medical University, Guiyang, China
- The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
Li J, Feng Z, Lu B, Fang X, Huang D, Wang B. Resveratrol alleviates high glucose-induced oxidative stress and apoptosis in rat cardiac microvascular endothelial cell through AMPK/Sirt1 activation. Biochem Biophys Rep 2023; 34:101444. [PMID: 36926277 PMCID: PMC10011188 DOI: 10.1016/j.bbrep.2023.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common complication of diabetes. DCM causes extensive lesions on cardiac microvasculature that is predominantly cardiac microvascular endothelial cells (CMECs). Reducing high glucose (HG)-induced damage such as oxidative damage and apoptosis could alleviate the development of DCM. The natural polyphenol resveratrol (RSV) is widely suggested as a cardioprotective agent that protect against DCM. However, limited evidence supports the protection of RSV against oxidative damage and apoptosis and study on the direct effects of RSV in CMEC is missing. Therefore, the current paper aimed to illustrate if RSV could attenuate oxidative stress and apoptosis in CMEC and to investigate the underlying mechanisms. Our data showed that HG elevated reactive oxygen species, malondialdehyde, decreased superoxide dismutase activity, increased apoptotic cell percentage in CMEC, which were reversed by RSV administration. In addition, RSV demonstrated antioxidative and anti-apoptotic effects in CMEC through AMPK/Sirt1 activation, further confirmed by AMPK inhibition or Sirt1 silencing. This study provides new evidence to support RSV as a potential cardioprotective alternative in treating DCM.
Collapse
Affiliation(s)
- Jinyu Li
- Institution of Drug Clinical Trial, The Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, China
| | - Zikai Feng
- Department of Clinical Pharmacy, Division of Pharmacy, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Binger Lu
- Department of Clinical Pharmacy, Division of Pharmacy, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Xinzhe Fang
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
- Corresponding author.
| |
Collapse
|
6
|
Liu S, Ren J, Liu S, Zhao X, Liu H, Zhou T, Wang X, Liu H, Tang L, Chen H. Resveratrol inhibits autophagy against myocardial ischemia-reperfusion injury through the DJ-1/MEKK1/JNK pathway. Eur J Pharmacol 2023; 951:175748. [PMID: 37149277 DOI: 10.1016/j.ejphar.2023.175748] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
Resveratrol (RES), a natural polyphenolic compound found in red wine and grape skins, has attracted significant attention due to its cardioprotective properties. DJ-1, a multifunctional protein that participated in transcription regulation and antioxidant defense, was shown to provide a significant protective impact in cardiac cells treated with ischemia-reperfusion. We created a myocardial ischemia-reperfusion (I/R) model in vivo and in vitro by ligating the left anterior descending branch of rats and subjecting H9c2 cells to anoxia/reoxygenation (A/R) to investigate whether RES reduces myocardial ischemia-reperfusion injury by upregulating DJ-1. We discovered that RES dramatically enhanced cardiac function in rats with I/R. Subsequently, we found that RES prevented the rise in autophagy (P62 degradation and LC3-II/LC3-I increase) induced by cardiac ischemia-reperfusion in vitro and in vivo. Notably, the autophagic agonist rapamycin (RAPA) eliminated RES-induced cardioprotective effects. In addition, Further data showed that RES significantly increased the expression of DJ-1 in the myocardium with the treatment of I/R. At the same time, pretreatment with RES reduced phosphorylation of MAPK/ERK kinase kinase 1 (MEKK1) and Jun N-terminal Kinase (JNK) stimulated by cardiac ischemia-reperfusion, and Beclin-1 mRNA and protein levels while decreasing lactate dehydrogenase (LDH) and improving cell viability. However, the lentiviral shDJ-1 and JNK agonist anisomycin disrupted the effects of RES. In summary, RES could inhibit autophagy against myocardial ischemia-reperfusion injury through DJ-1 modulation of the MEKK1/JNK pathway, providing a novel therapeutic strategy for cardiac homeostasis.
Collapse
Affiliation(s)
- Song Liu
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Jianmin Ren
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Shiyi Liu
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiaoyan Zhao
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Huiru Liu
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Tingting Zhou
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xueying Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Haoyue Liu
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Lei Tang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Heping Chen
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
7
|
Hashemi M, Zandieh MA, Ziaolhagh S, Mojtabavi S, Sadi FH, Koohpar ZK, Ghanbarirad M, Haghighatfard A, Behroozaghdam M, Khorrami R, Nabavi N, Ren J, Reiter RJ, Salimimoghadam S, Rashidi M, Hushmandi K, Taheriazam A, Entezari M. Nrf2 signaling in diabetic nephropathy, cardiomyopathy and neuropathy: Therapeutic targeting, challenges and future prospective. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166714. [PMID: 37028606 DOI: 10.1016/j.bbadis.2023.166714] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Western lifestyle contributes to an overt increase in the prevalence of metabolic anomalies including diabetes mellitus (DM) and obesity. Prevalence of DM is rapidly growing worldwide, affecting many individuals in both developing and developed countries. DM is correlated with the onset and development of complications with diabetic nephropathy (DN), diabetic cardiomyopathy (DC) and diabetic neuropathy being the most devastating pathological events. On the other hand, Nrf2 is a regulator for redox balance in cells and accounts for activation of antioxidant enzymes. Dysregulation of Nrf2 signaling has been shown in various human diseases such as DM. This review focuses on the role Nrf2 signaling in major diabetic complications and targeting Nrf2 for treatment of this disease. These three complications share similarities including the presence of oxidative stress, inflammation and fibrosis. Onset and development of fibrosis impairs organ function, while oxidative stress and inflammation can evoke damage to cells. Activation of Nrf2 signaling significantly dampens inflammation and oxidative damage, and is beneficial in retarding interstitial fibrosis in diabetic complications. SIRT1 and AMPK are among the predominant pathways to upregulate Nrf2 expression in the amelioration of DN, DC and diabetic neuropathy. Moreover, certain therapeutic agents such as resveratrol and curcumin, among others, have been employed in promoting Nrf2 expression to upregulate HO-1 and other antioxidant enzymes in the combat of oxidative stress in the face of DM.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Zeinab Khazaei Koohpar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Maryam Ghanbarirad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arvin Haghighatfard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 77030, United States
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Sasikumar S, Yuvraj S, Veilumuthu P, Godwin Christopher JS, Anandkumar P, Nagarajan T, Sureshkumar S, Selvam GS. Ascorbic acid attenuates cadmium-induced myocardial hypertrophy and cardiomyocyte injury through Nrf2 signaling pathways comparable to resveratrol. 3 Biotech 2023; 13:108. [PMID: 36875963 PMCID: PMC9978049 DOI: 10.1007/s13205-023-03527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Chronic cadmium (Cd) exposure severely affects the structural integrity of the heart, leading to cardiovascular disease. This study investigates the protective role of ascorbic acid (AA) and resveratrol (Res) in cellular defense against Cd-induced cardiomyocyte damage and myocardial hypertrophy in H9c2 cardiomyocytes. Experimental results showed that AA and Res treatment significantly increased cell viability, reduced ROS production, attenuated lipid peroxidation, and increased antioxidant enzyme activity in Cd-induced H9c2 cells. AA and Res decreased the mitochondrial membrane permeability and protected the cells from Cd induced cardiomyocyte damage. This also suppressed the pathological hypertrophic response triggered by Cd, which increased the cell size of cardiomyocytes. Gene expression studies revealed that cells treated with AA and Res decreased the expression of hypertrophic genes ANP (two-fold), BNP (one-fold) and β- MHC (two-fold) compared to Cd exposed cells. AA and Res promoted the nuclear translocation of Nrf2 and increased the expression of antioxidant genes (HO-1, NQO1, SOD and CAT) during Cd mediated myocardial hypertrophy. This study proves that AA and Res play a significant role in improving Nrf2 signaling, thereby reversing stress-induced injury, and facilitating the regression of myocardial hypertrophy.
Collapse
Affiliation(s)
- Sundaresan Sasikumar
- Department of Biochemistry, Molecular Cardiology Unit, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021 India
| | - Subramani Yuvraj
- Department of Biochemistry, Molecular Cardiology Unit, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021 India
| | | | | | | | | | - Selvaraj Sureshkumar
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu India
| | - Govindan Sadasivam Selvam
- Department of Biochemistry, Molecular Cardiology Unit, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021 India
| |
Collapse
|
9
|
Ding Y, Yang P, Li S, Zhang H, Ding X, Tan Q. Resveratrol accelerates wound healing by inducing M2 macrophage polarisation in diabetic mice. PHARMACEUTICAL BIOLOGY 2022; 60:2328-2337. [PMID: 36469602 PMCID: PMC9728132 DOI: 10.1080/13880209.2022.2149821] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT The reduction in M2 macrophage polarisation plays a major role during diabetic wound healing. Resveratrol (RSV) can promote the polarisation of M2 macrophages and accelerate diabetic wound healing. However, the specific mechanism by which RSV regulates M2 macrophage polarisation to promote diabetic wound healing is unclear. OBJECTIVE This study evaluated the effectiveness of RSV on diabetic wound healing and analysed the underlying mechanisms. MATERIALS AND METHODS STZ-induced C57/B6 mice were used as a diabetic mice model for a period of 15 days. RSV (10 μmol/L) was injected around the wound to evaluate the effect of RSV on the healing process of diabetic wounds. The human monocyte line THP-1 was used to evaluate the effects of RSV (10 μmol/L) on polarisation of M2 macrophages and the secretion of pro-inflammatory factors. RESULTS In vivo, RSV significantly increased diabetic wound healing (p < 0.05) and make the regenerated skin structure more complete. And it promoted the expression of α-SMA and Collagen I (p < 0.05). Moreover, RSV reduced the secretion of inflammatory factors (TNF-α, iNOS and IL-1β) (p < 0.05) and promoted M2 macrophage polarisation by increasing Arg-1 and CD206 expression (p < 0.01). In vitro, RSV promoted the polarisation of M2 macrophages (p < 0.001) and reduced the secretion of pro-inflammatory factors (TNF-α, IL-6 and IL-1β) (p < 0.05). The therapeutic effects of RSV were all significantly reversed with LY294002 (p < 0.01). DISCUSSION AND CONCLUSIONS RSV has the positive effects on promoting the acceleration and quality of skin wound healing, which provides a scientific basis for clinical treatment in diabetic wound.
Collapse
Affiliation(s)
- Youjun Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
- Department of Emergency Surgery, The Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Fourth People’s Hospital), Zhenjiang, China
| | - Ping Yang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shiyan Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao Zhang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaofeng Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of Burns and Plastic Surgery, Anqing Shihua Hospital of Nanjing Drum Tower Hospital Group, Anqing, China
- CONTACT Qian Tan Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Enayati A, Ghojoghnejad M, Roufogalis BD, Maollem SA, Sahebkar A. Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments. PPAR Res 2022; 2022:4714914. [PMID: 36092543 PMCID: PMC9453090 DOI: 10.1155/2022/4714914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the ligand-dependent nuclear receptor family. PPARs have attracted wide attention as pharmacologic mediators to manage multiple diseases and their underlying signaling targets. They mediate a broad range of specific biological activities and multiple organ toxicity, including cellular differentiation, metabolic syndrome, cancer, atherosclerosis, neurodegeneration, cardiovascular diseases, and inflammation related to their up/downstream signaling pathways. Consequently, several types of selective PPAR ligands, such as fibrates and thiazolidinediones (TZDs), have been approved as their pharmacological agonists. Despite these advances, the use of PPAR agonists is known to cause adverse effects in various systems. Conversely, some naturally occurring PPAR agonists, including polyunsaturated fatty acids and natural endogenous PPAR agonists curcumin and resveratrol, have been introduced as safe agonists as a result of their clinical evidence or preclinical experiments. This review focuses on research on plant-derived active ingredients (natural phytochemicals) as potential safe and promising PPAR agonists. Moreover, it provides a comprehensive review and critique of the role of phytochemicals in PPARs-related diseases and provides an understanding of phytochemical-mediated PPAR-dependent and -independent cascades. The findings of this research will help to define the functions of phytochemicals as potent PPAR pharmacological agonists in underlying disease mechanisms and their related complications.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mobina Ghojoghnejad
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Basil D. Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Seyed Adel Maollem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Yang Y, Lei T, Bi W, Xiao Z, Zhang X, Du H. The combined therapy of mesenchymal stem cell transplantation and resveratrol for diabetes: Future applications and challenges. Life Sci 2022; 301:120563. [PMID: 35460708 DOI: 10.1016/j.lfs.2022.120563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) is a worldwide chronic epidemic disease of impaired glucose metabolism. Transplantation of mesenchymal stem cells (MSCs) is considered a promising emerging treatment strategy for diabetes. However, the harsh internal environment of DM patients can inhibit the treatment effects of transplanted MSCs. Fortunately, this adverse effect can be reversed by resveratrol (Res). Therefore, we investigated and summarized relevant studies on the combined treatment of diabetes with MSCs and resveratrol. This review presents the therapeutic effects of this combination therapy strategy on DM in glycemic control, anti-inflammatory, anti-oxidative stress and anti-fibrotic. Moreover, this review explained the mechanisms of MSCs and resveratrol in diabetes treatment from 3 aspects, including promoting cell survival and inhibiting apoptosis, inhibiting histiocyte fibrosis, and improving glucose metabolism. These findings help to understand in-depth mechanisms of the treatment of DM and help to propose a potential treatment strategy for DM and its complications.
Collapse
Affiliation(s)
- Yanjie Yang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tong Lei
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wangyu Bi
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangzhuang Xiao
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoshuang Zhang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
12
|
Li XL, Yu F, Fu CL, Yu X, Xu M, Cheng M. Phosphoproteomics analysis of diabetic cardiomyopathy in aging-accelerated mice and effects of D-pinitol. Proteomics Clin Appl 2021; 16:e2100019. [PMID: 34510791 DOI: 10.1002/prca.202100019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE The molecular mechanisms of diabetic cardiomyopathy (DCM) development and D-pinitol (DP) in its treatment remain unclear. The present study is to explore the underlying mechanism of DCM in an elderly diabetic mouse model and to seek the protective targets of DP by phosphoproteomics. EXPERIMENTAL DESIGN We used streptozotocin to induce diabetes in SAMP8 and DP (150 mg/kg/day) intragastrically administrated to diabetic mice for 8 weeks. The heart tissues were harvested for label-free phosphoproteomic analysis from diabetic mice. Some differentially regulated phosphorylation sites were confirmed by parallel reaction monitoring. RESULTS Our results showed that 612 phosphorylation sites on 454 proteins had their phosphorylation levels significantly changed in the heart of untreated diabetic mice (DM). Of these phosphorylation sites, 216 phosphorylation sites on 182 proteins were normalized after DP treatment. We analyzed the functional signaling pathways in the heart of DP treated diabetic mice (DMT), including glucagon signaling pathway, insulin signaling pathway, mitophagy, apoptosis, and longevity regulating pathway. Two consensus motifs identified were targeted by Src and epidermal growth factor receptor between DMT and DM groups. CONCLUSIONS AND CLINICAL RELEVANCE Our study might help to better understand the mechanism of DCM, provide novel targets for estimating the protective effects of DP.
Collapse
Affiliation(s)
- Xiao-Li Li
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Fei Yu
- Department of Geriatric Medicine & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Chun-Li Fu
- Department of Geriatric Medicine & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Xin Yu
- Department of Geriatric Medicine & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Mei Xu
- Department of Geriatric Medicine & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Mei Cheng
- Department of Geriatric Medicine & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
13
|
Shen CY, Lu CH, Wu CH, Li KJ, Kuo YM, Hsieh SC, Yu CL. The Development of Maillard Reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling Inhibitors as Novel Therapeutic Strategies for Patients with AGE-Related Diseases. Molecules 2020; 25:molecules25235591. [PMID: 33261212 PMCID: PMC7729569 DOI: 10.3390/molecules25235591] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Advanced glycation end products (AGEs) are generated by nonenzymatic modifications of macromolecules (proteins, lipids, and nucleic acids) by saccharides (glucose, fructose, and pentose) via Maillard reaction. The formed AGE molecules can be catabolized and cleared by glyoxalase I and II in renal proximal tubular cells. AGE-related diseases include physiological aging, neurodegenerative/neuroinflammatory diseases, diabetes mellitus (DM) and its complications, autoimmune/rheumatic inflammatory diseases, bone-degenerative diseases, and chronic renal diseases. AGEs, by binding to receptors for AGE (RAGEs), alter innate and adaptive immune responses to induce inflammation and immunosuppression via the generation of proinflammatory cytokines, reactive oxygen species (ROS), and reactive nitrogen intermediates (RNI). These pathological molecules cause vascular endothelial/smooth muscular/connective tissue-cell and renal mesangial/endothelial/podocytic-cell damage in AGE-related diseases. In the present review, we first focus on the cellular and molecular bases of AGE–RAGE axis signaling pathways in AGE-related diseases. Then, we discuss in detail the modes of action of newly discovered novel biomolecules and phytochemical compounds, such as Maillard reaction and AGE–RAGE signaling inhibitors. These molecules are expected to become the new therapeutic strategies for patients with AGE-related diseases in addition to the traditional hypoglycemic and anti-hypertensive agents. We particularly emphasize the importance of “metabolic memory”, the “French paradox”, and the pharmacokinetics and therapeutic dosing of the effective natural compounds associated with pharmacogenetics in the treatment of AGE-related diseases. Lastly, we propose prospective investigations for solving the enigmas in AGE-mediated pathological effects.
Collapse
Affiliation(s)
- Chieh-Yu Shen
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Cheng-Hsun Lu
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Cheng-Han Wu
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Yu-Min Kuo
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
- Correspondence: (S.-C.H.); (C.-L.Y.)
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
- Department of Internal Medicine, Kaohsiung Medical University College of Medicine, Kaohsiung 80756, Taiwan
- Correspondence: (S.-C.H.); (C.-L.Y.)
| |
Collapse
|
14
|
Kaur N, Raja R, Ruiz-Velasco A, Liu W. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside. Front Cardiovasc Med 2020; 7:585309. [PMID: 33195472 PMCID: PMC7593653 DOI: 10.3389/fcvm.2020.585309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure is a serious comorbidity and the most common cause of mortality in diabetes patients. Diabetic cardiomyopathy (DCM) features impaired cellular structure and function, culminating in heart failure; however, there is a dearth of specific clinical therapy for treating DCM. Protein homeostasis is pivotal for the maintenance of cellular viability under physiological and pathological conditions, particularly in the irreplaceable cardiomyocytes; therefore, it is tightly regulated by a protein quality control (PQC) system. Three evolutionarily conserved molecular processes, the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and autophagy, enhance protein turnover and preserve protein homeostasis by suppressing protein translation, degrading misfolded or unfolded proteins in cytosol or organelles, disposing of damaged and toxic proteins, recycling essential amino acids, and eliminating insoluble protein aggregates. In response to increased cellular protein demand under pathological insults, including the diabetic condition, a coordinated PQC system retains cardiac protein homeostasis and heart performance, on the contrary, inappropriate PQC function exaggerates cardiac proteotoxicity with subsequent heart dysfunction. Further investigation of the PQC mechanisms in diabetes propels a more comprehensive understanding of the molecular pathogenesis of DCM and opens new prospective treatment strategies for heart disease and heart failure in diabetes patients. In this review, the function and regulation of cardiac PQC machinery in diabetes mellitus, and the therapeutic potential for the diabetic heart are discussed.
Collapse
Affiliation(s)
- Namrita Kaur
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Rida Raja
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrea Ruiz-Velasco
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Song YJ, Zhong CB, Wu W. Cardioprotective effects of melatonin: Focusing on its roles against diabetic cardiomyopathy. Biomed Pharmacother 2020; 128:110260. [PMID: 32447213 DOI: 10.1016/j.biopha.2020.110260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023] Open
Abstract
Melatonin is a pineal-produced indole known for its anti-aging, antiapoptotic and antioxidant properties. In past decades, the protective potentials of melatonin for cardiovascular diseases, such as atherosclerosis and myocardial infarction, have been widely revealed, triggering more investigations focused on other cardioprotective effects of melatonin. Recently, the roles of melatonin in diabetic cardiomyopathy (DCM) have attracted increased attention. In this regard, researchers found that melatonin attenuated cardiac fibrosis and hypertrophy, thus interrupting the development of DCM. Retinoid-related orphan receptor α is a key melatonin receptor that contributed to the cardioprotective effect of melatonin in hearts with DCM. For the downstream mechanisms, the inhibition of mammalian STE20-like kinase 1 plays a pivotal role, which exerts antiapoptotic and proautophagic effects, thus enhancing cardiac tolerance in high-glucose conditions. In addition, other signalling mechanisms, such as sirtuin-1/peroxisome proliferator-activated receptor gamma-coactivator alpha and endoplasmic reticulum-related signalling, are also involved in the protective effects of melatonin on cardiomyocytes under diabetic conditions. This review will focus on the protective signalling mechanisms regulated by melatonin and provide a better understanding of the therapeutic applications of melatonin signalling in DCM.
Collapse
Affiliation(s)
- Yan-Jun Song
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, 1 Shuai Fu Yuan, Beijing, 100730, PR China.
| | - Chong-Bin Zhong
- Department of Cardiology, Heart Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, PR China.
| | - Wei Wu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, 1 Shuai Fu Yuan, Beijing, 100730, PR China.
| |
Collapse
|