1
|
Dehghan Y, Sarbaz Y. Cortical complexity alterations in motor subtypes of Parkinson's disease: A surface-based morphometry analysis of fractal dimension. Eur J Neurosci 2024; 60:7249-7262. [PMID: 39627178 DOI: 10.1111/ejn.16612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 12/17/2024]
Abstract
Based on motor symptoms, Parkinson's disease (PD) can be classified into tremor dominant (TD) and postural instability gait difficulty (PIGD) subtypes. Few studies have examined cortical complexity differences in PD motor subtypes. This study aimed to investigate differences in cortical complexity and grey matter volume (GMV) between TD and PIGD. We enrolled 36 TD patients, 27 PIGD patients and 66 healthy controls (HC) from the PPMI (Parkinson's Progression Markers Initiative) database. Voxel-based morphometry (VBM) and surface-based morphometry (SBM) were utilized to assess differences in GMV, cortical thickness and cortical complexity. The structural MRI data of participants was analysed using CAT12/SPM12 (p < 0.05, FDR corrected). Additionally, correlations between clinical data and structural changes were examined (p < 0.05, Holm-Bonferroni corrected). In comparison to both HC and TD groups, PIGD patients exhibited a significant fractal dimension (FD) decrease in many cortical regions. A significant negative correlation between age and FD was observed in the left insula for the PIGD patients and in the bilateral insula for the TD patients. However, no significant differences were found in GMV, cortical thickness or other complexity indices. Altered FD in the bilateral insula indicates that postural instability and gait disturbances may result from a failure to integrate information from various structures, whereas parkinsonian rest tremor is not associated with this integration. Also, widespread decreases in cortical FD demonstrate that FD is more sensitive than other complexity measures and can serve as a novel biomarker for identifying subtle changes in cortical morphology in the PIGD subtype.
Collapse
Affiliation(s)
- Yousef Dehghan
- Biological Systems Modeling Laboratory, Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Yashar Sarbaz
- Biological Systems Modeling Laboratory, Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Jao CW, Wu YT, Yeh JH, Tsai YF, Hsiao CY, Lau CI. Exploring cortical morphology biomarkers of amnesic mild cognitive impairment using novel fractal dimension-based structural MRI analysis. Eur J Neurosci 2024; 60:6254-6266. [PMID: 39353858 DOI: 10.1111/ejn.16557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Amnestic mild cognitive impairment (aMCI) is considered as an intermediate stage of Alzheimer's disease, but no MRI biomarkers currently distinguish aMCI from healthy individuals effectively. Fractal dimension, a quantitative parameter, provides superior morphological information compared to conventional cortical thickness methods. Few studies have used cortical fractal dimension values to differentiate aMCI from healthy controls. In this study, we aim to build an automated discriminator for accurately distinguishing aMCI using fractal dimension measures of the cerebral cortex. Thirty aMCI patients and 30 health controls underwent structural MRI of the brain. First, the atrophy of participants' cortical sub-regions of Desikan-Killiany cortical atlas was assessed using fractal dimension and cortical thickness. The fractal dimension is more sensitive than cortical thickness in reducing dimensional effects and may accurately reflect morphological changes of the cortex in aMCI. The aMCI group had significantly lower fractal dimension values in the bilateral temporal lobes, right limbic lobe and right parietal lobe, whereas they showed significantly lower cortical thickness values only in the bilateral temporal lobes. Fractal dimension analysis was able to depict most of the significantly different focal regions detected by cortical thickness, but additionally with more regions. Second, applying the measured fractal dimensions (and cortical thickness) of both cerebral hemispheres, an unsupervised discriminator was built for the aMCI and healthy controls. The proposed fractal dimension-based method achieves 80.54% accuracy in discriminating aMCI from healthy controls. The fractal dimension appears to be a promising biomarker for cortical morphology changes that can discriminate patients with aMCI from healthy controls.
Collapse
Affiliation(s)
- Chi-Wen Jao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiann-Horng Yeh
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yuh-Feng Tsai
- College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Diagnostic Radiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chen-Yu Hsiao
- Department of Diagnostic Radiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chi Ieong Lau
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Dementia Center, Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London, UK
- University Hospital, Taipa, Macau
| |
Collapse
|
3
|
Genç B, Aslan K, Şen S, İncesu L. Cortical morphological changes in multiple sclerosis patients: a study of cortical thickness, sulcal depth, and local gyrification index. Neuroradiology 2023; 65:1405-1413. [PMID: 37344675 DOI: 10.1007/s00234-023-03185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE Multiple sclerosis (MS) is a disease that progresses not only with demyelination but also with neurodegeneration. One of the goals of drug treatment in MS is to prevent neurodegeneration. Cortical thickness (CT), sulcal depth (SD), and local gyrification index (LGI) are indicators related to neurodegeneration. The aim of this study is to investigate changes in CT, SD, and LGI in patients with relapsing-remitting MS (RRMS). METHODS T1 images of 74 RRMS patients and 65 healthy controls were used. T1 hypointense areas in RRMS patients were corrected using fully automated methods. CT, SD, and LGI were calculated for each patient. RESULTS RRMS patients showed widespread cortical thinning, especially in bilateral temporoparietal areas, decreased SD in bilateral supramarginal gyrus, superior temporal gyrus, postcentral gyrus, and transverse temporal gyrus, and decreased LGI, especially in the left posterior cingulate gyrus and insula. The decrease in cortical thickness was associated with the number of attacks and lesion volume. EDSS was related to CT in the right lingual, inferior temporal, and fusiform gyrus. The LGI was correlated with T2 lesion volume in bilateral insula, with EDSS in the right insula and transverse and superior temporal gyri, and with the number of attacks in the right paracentral gyrus and pre-cuneus. However, SD did not show any correlation with EDSS, T2 lesion volume, or the number of attacks. CONCLUSION Our results demonstrate widespread cortical thinning, decreased sulcal depth in local areas, and decreased gyrification in folds in RRMS patients, which are related to clinical parameters.
Collapse
Affiliation(s)
- Barış Genç
- Department of Radiology, Samsun Education and Research Hospital, İlkadım, 55060, Samsun, Turkey.
| | - Kerim Aslan
- Department of Neuroradiology, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Sedat Şen
- Department of Neurology, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Lütfi İncesu
- Department of Neuroradiology, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| |
Collapse
|
4
|
Lau CI, Yeh JH, Tsai YF, Hsiao CY, Wu YT, Jao CW. Decreased Brain Structural Network Connectivity in Patients with Mild Cognitive Impairment: A Novel Fractal Dimension Analysis. Brain Sci 2023; 13:brainsci13010093. [PMID: 36672073 PMCID: PMC9856782 DOI: 10.3390/brainsci13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/18/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Mild cognitive impairment (MCI) is widely regarded to be the intermediate stage to Alzheimer's disease. Cerebral morphological alteration in cortical subregions can provide an accurate predictor for early recognition of MCI. Thirty patients with MCI and thirty healthy control subjects participated in this study. The Desikan-Killiany cortical atlas was applied to segment participants' cerebral cortex into 68 subregions. A complexity measure termed fractal dimension (FD) was applied to assess morphological changes in cortical subregions of participants. The MCI group revealed significantly decreased FD values in the bilateral temporal lobes, right parietal lobe including the medial temporal, fusiform, para hippocampal, and also the orbitofrontal lobes. We further proposed a novel FD-based brain structural network to compare network parameters, including intra- and inter-lobular connectivity between groups. The control group had five modules, and the MCI group had six modules in their brain networks. The MCI group demonstrated shrinkage of modular sizes with fewer components integrated, and significantly decreased global modularity in the brain network. The MCI group had lower intra- and inter-lobular connectivity in all lobes. Between cerebral lobes, the MCI patients may maintain nodal connections between both hemispheres to reduce connectivity loss in the lateral hemispheres. The method and results presented in this study could be a suitable tool for early detection of MCI.
Collapse
Affiliation(s)
- Chi Ieong Lau
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan
- Dementia Center, Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
- Department of Neurology, University Hospital, Taipa 999078, Macau
| | - Jiann-Horng Yeh
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Yuh-Feng Tsai
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan
- Department of Diagnostic Radiology, Shin Kong Wu Ho Su Memorial Hospital, Taipei 111, Taiwan
| | - Chen-Yu Hsiao
- Department of Diagnostic Radiology, Shin Kong Wu Ho Su Memorial Hospital, Taipei 111, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (Y.-T.W.); (C.-W.J.); Tel.: +886-02-28267169 (Y.-T.W.); +886-02-28267394 (C.-W.J.)
| | - Chi-Wen Jao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- Correspondence: (Y.-T.W.); (C.-W.J.); Tel.: +886-02-28267169 (Y.-T.W.); +886-02-28267394 (C.-W.J.)
| |
Collapse
|
5
|
Yuan H, Li H, Mu J, Gu W, Zhu X, Gao L, Zhang Y, Ma S. Reduced cortical complexity in patients with end-stage kidney disease prior to dialysis initiation. Front Neurosci 2022; 16:971010. [PMID: 36389216 PMCID: PMC9659747 DOI: 10.3389/fnins.2022.971010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
End-stage kidney disease (ESKD) is associated with cognitive impairment (CI) and affects different aspects of cortical morphometry, but where these changes converge remains unclear. Fractal dimension (FD) is used to represent cortical complexity (CC), which describes the structural complexity of the cerebral cortex by integrating different cortical morphological measures. This study aimed to investigate changes in CC in patients with ESKD prior to initiation of dialysis and to evaluate the relationship between changes in CC, cognitive performance, and uremic toxins. Forty-nine patients with ESKD naive to dialysis and 31 healthy controls (HCs) were assessed using structural magnetic resonance imaging (MRI) and cognitive tests, including evaluations of global cognitive function, memory, and executive function. Clinical laboratory blood tests were performed on all patients with ESKD, including measurement of nine uremic toxin-related indices. CC was measured using MRI data to determine regional FD values. We estimated the association between cognitive performance, uremic toxin levels, and CC changes. Compared to HCs, patients with ESKD showed significantly lower CC in the left precuneus (p = 0.006), left middle temporal cortex (p = 0.010), and left isthmus cingulate cortex (p = 0.018). Furthermore, lower CC in the left precuneus was associated with impaired long-term delayed memory (Pearson r = 0.394, p = 0.042) in patients with ESKD. Our study suggests that regional decreases in CC are an additional characteristic of patients with ESKD naive to dialysis, related to impaired long-term memory performance. These findings may help further understand the underlying neurobiological mechanisms between brain structural changes and CI in patients with ESKD.
Collapse
Affiliation(s)
- Huijie Yuan
- Department of Medical Imaging, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haining Li
- Department of Medical Imaging, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Junya Mu
- Department of Medical Imaging, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wen Gu
- Department of Medical Imaging, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinyi Zhu
- Department of Medical Imaging, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuchen Zhang
- Department of Nuclear Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Yuchen Zhang,
| | - Shaohui Ma
- Department of Medical Imaging, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Shaohui Ma,
| |
Collapse
|
6
|
Guo JR, Shi JY, Dong QY, Cao YB, Li D, Chen HJ. Altered dynamic spontaneous neural activity in minimal hepatic encephalopathy. Front Neurol 2022; 13:963551. [PMID: 36061995 PMCID: PMC9439282 DOI: 10.3389/fneur.2022.963551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background and aims: Abnormal regional neural activity has been identified by the analysis of the static amplitude of low-frequency fluctuation (ALFF) in the setting of minimal hepatic encephalopathy (MHE). Brain activity is highly dynamic. This work sought to evaluate the temporal variability of ALFF to reveal MHE-related alterations in the dynamics of spontaneous neural activity. Methods A total of 29 healthy controls and 49 patients with cirrhosis [including 20 patients with MHE and 29 patients without MHE (NHE)] who underwent resting-state functional magnetic resonance imaging and Psychometric Hepatic Encephalopathy Score (PHES) examination were enrolled in this investigation. Utilizing a sliding-window approach, we calculated the dynamic ALFF (dALFF) variability to reflect the temporal dynamics of regional neural activity. An analysis of the correlation between dALFF variability and PHES was performed, and receiver operating characteristic (ROC) curve analysis to determine the potential of the dALFF variability index in identifying MHE was completed. Results The dALFF variability in the bilateral precuneus/posterior cingulate gyrus and left middle frontal gyrus progressively decreased from NHE to MHE group. In cirrhotic patients, the value of dALFF variability in the bilateral precuneus/posterior cingulate gyrus was positively correlated with their neurocognitive performance (r = 0.383 and P = 0.007). The index of dALFF variability in the bilateral precuneus/posterior cingulate gyrus could be used to distinguish NHE and MHE patients, with moderate power (area under the ROC curve = 0.712 and P = 0.012). Conclusion Our findings highlight the existence of aberrant dynamic brain function in MHE, which could underlie the neural basis of cognitive impairments and could be associated with the development of the disease. Analyzing dALFF could facilitate new biomarker identification for MHE.
Collapse
Affiliation(s)
- Jie-Ru Guo
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jia-Yan Shi
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qiu-Yi Dong
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yun-Bin Cao
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dan Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China
- Dan Li
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Hua-Jun Chen
| |
Collapse
|
7
|
Zhou J, Chen W, Wu Q, Chen L, Chen HH, Liu H, Xu XQ, Wu FY, Hu H. Reduced cortical complexity in patients with thyroid-associated ophthalmopathy. Brain Imaging Behav 2022; 16:2133-2140. [PMID: 35821157 DOI: 10.1007/s11682-022-00683-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
Psychical and functional disturbances of thyroid-associated ophthalmopathy (TAO) patients are drawing increasingly attention, despite the characterized ophthalmic symptoms. We aimed to investigate the alterations of structural complexity using fractal dimension (FD) analysis in patients with TAO. Thirty-nine TAO patients and 25 healthy controls underwent high-resolution 3.0 T structural brain magnetic resonance imaging (MRI). FD values of brain regions were calculated by Computational Anatomy Toolbox (CAT12) and compared between groups. The associations between clinical variables and FD values were further estimated. We found that TAO patients exhibited significantly decreased FD values in right caudal anterior cingulate cortex, right lingual gyrus, right pars orbitalis and right cuneus cortex (FDR corrected p < 0.05). FD values of right cuneus cortex were positively correlated with visual acuity, and FD values of right caudal anterior cingulate cortex were also positively correlated with cognitive performance. Meanwhile, FD values of right lingual gyrus were found to be negatively correlated with emotional function. Our study indicated disturbed cortical complexity in brain regions corresponding to known functional deficits of vision, emotion and cognition in TAO. FD might be a potential marker for reflecting the underlying neurobiological basis of TAO.
Collapse
Affiliation(s)
- Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Wen Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Qian Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Lu Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China.
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd., Nanjing, 210029, China.
| |
Collapse
|
8
|
Meregalli V, Alberti F, Madan CR, Meneguzzo P, Miola A, Trevisan N, Sambataro F, Favaro A, Collantoni E. Cortical Complexity Estimation Using Fractal Dimension: A Systematic Review of the Literature on Clinical and Nonclinical Samples. Eur J Neurosci 2022; 55:1547-1583. [PMID: 35229388 PMCID: PMC9313853 DOI: 10.1111/ejn.15631] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/20/2022] [Indexed: 12/04/2022]
Abstract
Fractal geometry has recently been proposed as a useful tool for characterizing the complexity of the brain cortex, which is likely to derive from the recurrence of sulci–gyri convolution patterns. The index used to describe the cortical complexity is called fractal dimensional (FD) and was employed by different research exploring the neurobiological correlates of distinct pathological and nonpathological conditions. This review aims to describe the literature on the application of this index, summarize the heterogeneities between studies and inform future research on this topic. Sixty‐two studies were included in the systematic review. The main research lines concern neurodevelopment, aging and the neurobiology of specific psychiatric and neurological disorders. Overall, the included papers indicate that cortical complexity is likely to reduce during aging and in various pathological processes affecting the brain. Nevertheless, the high heterogeneity between studies strongly prevents the possibility of drawing conclusions. Further research considering this index besides other morphological values is needed to better clarify the role of FD in characterizing the cortical structure. Fractal dimension (FD) is a useful tool for the assessment of cortical complexity. In healthy controls, FD is associated with development, aging and cognition. Alterations in FD have been observed in different neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Valentina Meregalli
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | | | | | - Paolo Meneguzzo
- Department of Neurosciences, University of Padua, Padova, Italy
| | - Alessandro Miola
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Nicolò Trevisan
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Fabio Sambataro
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Angela Favaro
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | | |
Collapse
|
9
|
Li G, Xu Y, Jiang Y, Jiao W, Xu W, Zhang J. Mental Fatigue Has Great Impact on the Fractal Dimension of Brain Functional Network. Neural Plast 2020; 2020:8825547. [PMID: 33273905 PMCID: PMC7676960 DOI: 10.1155/2020/8825547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/16/2020] [Accepted: 10/25/2020] [Indexed: 11/30/2022] Open
Abstract
Mental fatigue has serious negative impacts on the brain cognitive functions and has been widely explored by the means of brain functional networks with the neuroimaging technique of electroencephalogram (EEG). Recently, several researchers reported that brain functional network constructed from EEG signals has fractal feature, raising an important question: what are the effects of mental fatigue on the fractal dimension of brain functional network? In the present study, the EEG data of alpha1 rhythm (8-10 Hz) at task state obtained by a mental fatigue model were chosen to construct brain functional networks. A modified greedy colouring algorithm was proposed for fractal dimension calculation in both binary and weighted brain functional networks. The results indicate that brain functional networks still maintain fractal structures even when the brain is at fatigue state; fractal dimension presented an increasing trend along with the deepening of mental fatigue fractal dimension of the weighted network was more sensitive to mental fatigue than that of binary network. Our current results suggested that mental fatigue has great regular impacts on the fractal dimension in both binary and weighted brain functional networks.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Provincial, Zhejiang Normal University, Zhejiang 321005, China
- College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Yanting Xu
- College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Yonghua Jiang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Provincial, Zhejiang Normal University, Zhejiang 321005, China
- College of Engineering, Zhejiang Normal University, Jinhua 321004, China
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China
| | - Weidong Jiao
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Provincial, Zhejiang Normal University, Zhejiang 321005, China
- College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Wanxiu Xu
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Provincial, Zhejiang Normal University, Zhejiang 321005, China
- College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Jianhua Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education of China, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
10
|
Alteration of the Intra- and Inter-Lobe Connectivity of the Brain Structural Network in Normal Aging. ENTROPY 2020; 22:e22080826. [PMID: 33286597 PMCID: PMC7517412 DOI: 10.3390/e22080826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/18/2023]
Abstract
The morphological changes in cortical parcellated regions during aging and whether these atrophies may cause brain structural network intra- and inter-lobe connectivity alterations are subjects that have been minimally explored. In this study, a novel fractal dimension-based structural network was proposed to measure atrophy of 68 parcellated cortical regions. Alterations of structural network parameters, including intra- and inter-lobe connectivity, were detected in a middle-aged group (30–45 years old) and an elderly group (50–65 years old). The elderly group exhibited significant lateralized atrophy in the left hemisphere, and most of these fractal dimension atrophied regions were included in the regions of the “last-in, first-out” model. Globally, the elderly group had lower modularity values, smaller component size modules, and fewer bilateral association fibers. They had lower intra-lobe connectivity in the frontal and parietal lobes, but higher intra-lobe connectivity in the temporal and occipital lobes. Both groups exhibited similar inter-lobe connecting pattern. The elderly group revealed separations, sparser long association fibers, commissural fibers, and lateral inter-lobe connectivity lost effect, mainly in the right hemisphere. New wiring and reconfiguring modules may have occurred within the brain structural network to compensate for connectivity, decreasing and preventing functional loss in cerebral intra- and inter-lobe connectivity.
Collapse
|