1
|
Ruan Y, Lv W, Li S, Cheng Y, Wang D, Zhang C, Shimizu K. Identification of telomere-related genes associated with aging-related molecular clusters and the construction of a diagnostic model in Alzheimer's disease based on a bioinformatic analysis. Comput Biol Med 2023; 159:106922. [PMID: 37094463 DOI: 10.1016/j.compbiomed.2023.106922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease that is strongly associated with aging. Telomeres are DNA sequences that protect chromosomes from damage and shorten with age. Telomere-related genes (TRGs) may play a role in AD's pathogenesis. OBJECTIVES To identify TRGs related to aging clusters in AD patients, explore their immunological characteristics, and build a TRG-based prediction model for AD and AD subtypes. METHODS We analyzed the gene expression profiles of 97 AD samples from the GSE132903 dataset, using aging-related genes (ARGs) as clustering variables. We also assessed immune-cell infiltration in each cluster. We performed a weighted gene co-expression network analysis to identify cluster-specific differentially expressed TRGs. We compared four machine-learning models (random forest, generalized linear model [GLM], gradient boosting model, and support vector machine) for predicting AD and AD subtypes based on TRGs and validated TRGs by conducting an artificial neural network (ANN) analysis and a nomogram model. RESULTS We identified two aging clusters in AD patients with distinct immunological features: Cluster A had higher immune scores than Cluster B. Cluster A and the immune system are intimately associated, and this association could affect immunological function and result in AD via the digestive system. The GLM predicted AD and AD subtypes most accurately and was validated by the ANN analysis and nomogram model. CONCLUSION Our analyses revealed novel TRGs associated with aging clusters in AD patients and their immunological characteristics. We also developed a promising prediction model based on TRGs for assessing AD risk.
Collapse
Affiliation(s)
- Yang Ruan
- Laboratory of Systematic Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Weichao Lv
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuaiyu Li
- Saigo Laboratory, School of Information Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yuzhong Cheng
- Joint Graduate School of Mathematics for Innovation, Kyushu University, Fukuoka, 819-0395, Japan
| | - Duanyang Wang
- Laboratory of Systematic Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kuniyoshi Shimizu
- Laboratory of Systematic Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
2
|
Mou J, Huang M, Wang F, Xu X, Xie H, Lu H, Li M, Li Y, Kong W, Chen J, Xiao Y, Chen Y, Wang C, Ren J. HMGN5 Escorts Oncogenic STAT3 Signaling by Regulating the Chromatin Landscape in Breast Cancer Tumorigenesis. Mol Cancer Res 2022; 20:1724-1738. [PMID: 36066963 DOI: 10.1158/1541-7786.mcr-22-0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 01/15/2023]
Abstract
Cancer progression is highly dependent on the ability of cancer cell tumor formation, in which epigenetic modulation plays an essential role. However, the epigenetic factors promoting breast tumor formation are less known. Screened from three-dimensional (3D)-sphere tumor formation model, HMGN5 that regulates chromatin structures became the candidate therapeutic target in breast cancer, though its role is obscure. HMGN5 is highly expressed in 3D-spheres of breast cancer cells and clinical tumors, also an unfavorable prognostic marker in patients. Furthermore, HMGN5 controls tumor formation and metastasis of breast cancer cells in vitro and in vivo. Mechanistically, HMGN5 is governed by active STAT3 transcriptionally and further escorts STAT3 to shape the oncogenic chromatin landscape and transcriptional program. More importantly, interference of HMGN5 by nanovehicle-packaged siRNA effectively inhibits tumor growth in breast cancer cell-derived xenograft mice model. IMPLICATIONS Our findings reveal a novel feed-forward circuit between HMGN5 and STAT3 in promoting breast cancer tumorigenesis and suggest HMGN5 as a novel epigenetic therapeutic target in STAT3-hyperactive breast cancer.
Collapse
Affiliation(s)
- Jiahui Mou
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meijun Huang
- ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Feifei Wang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoding Xu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hanqi Xie
- ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Henglei Lu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingyang Li
- ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China.,Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Weiwen Kong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Xiao
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiding Chen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chaochen Wang
- ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China.,Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
HMGN4 plays a key role in STAT3-mediate oncogenesis of triple-negative breast cancer. Carcinogenesis 2022; 43:874-884. [DOI: 10.1093/carcin/bgac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/09/2022] [Accepted: 06/28/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
High-mobility group nucleosome-binding domain 4 (HMGN4) exerts biological functions by regulating gene transcription through binding with nucleosome. As a new epigenetic regulator discovered in 2001, its biological functions have not been clarified. HMGN4 belongs to HMGNs family, in which HMGN1, 2, and 5 have been reported to play roles in oncogenesis of various cancers. However, it is reported that HMGN4 was associated with thyroid and liver cancer. In this study, we discovered for the first time that HMGN4 was highly expressed in human triple-negative breast cancer (TNBC), based on the analysis of the TCGA database. Moreover, we found that HMGN4 controlled the proliferation of human TNBC cells both in vitro and in vivo. Mechanistically, the positive correlation occurred between HMGN4 and STAT3 downstream genes while HMGN4 played an indispensable role in constitutively active STAT3 (STAT3C) induced colony formation. Interestingly, we reported that STAT3 regulated HMGN4 transcription as its transcriptional factor by ChIP and HMGN4 promoter-luc assays. That is to say, there is a feed-forward signaling circuit between HMGN4 and STAT3, which might control TNBC cell growth. Finally, we proved that the interference of HMGN4 by nanovehicle-packaged siRNA may be a potentially effective approach in TNBC treatment. In summary, our findings not only identified a novel regulator in TNBC cell proliferation but also revealed the mechanism by which HMGN4 acted as a downstream gene of STAT3 to participate in the STAT3 pathway, which indicated that HMGN4 was likely to be a potential novel target for anti-TNBC therapy.
Collapse
|
4
|
Molecular Mechanism Investigation on Monomer Kaempferol of the Traditional Medicine Dingqing Tablet in Promoting Apoptosis of Acute Myeloid Leukemia HL-60 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8383315. [PMID: 35251215 PMCID: PMC8894007 DOI: 10.1155/2022/8383315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022]
Abstract
The traditional medicine Dingqing Tablet produces effective efficacy in treating acute myeloid leukemia, but its specific mechanism remains to be investigated. Dingqing Tablet consists of Codonopsis, Indigo Naturalis, Cortex Moutan, Radix Notoginseng, Citrus Reticulata, and Eolite. The active components of Dingqing Tablets were screened by the TCMSP database. Meanwhile, the SwissTargetPrediction database was utilized to predict the corresponding targets. Relevant disease targets of acute myeloid leukemia were obtained from GeneCards. The obtained targets of Dingqing Tablets and genes of acute myeloid leukemia were used, and the overlapped genes were presented in the Venn diagram. A drug-component-target network was constructed via Cytoscape 3.6.0 software. Molecular docking methodology was also used with AutoDock Vina 1.1.2. Furthermore, the effects of kaempferol on the proliferation and apoptosis of HL-60 cells were identified using 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT), 5-Ethynyl-2′-deoxyuridine (EDU), flow cytometry, and TdT-mediated dUTP nick-end labeling (TUNEL) assays. The combination of kaempferol and AKT1 was verified using an immunoprecipitation (IP) experiment and the effects of Kaempferol on HL-60 cell apoptosis by western blot (WB) and qPCR. The key component kaempferol and the core target gene AKT1 were sorted out using a drug-component target network diagram. Molecular docking results revealed that the binding energy between kaempferol and AKT1 was lower than -5 kcal/mol. MTT and EDU assays indicated that kaempferol markedly inhibited the proliferation of HL-60 cells. Flow cytometry and TUNEL assays suggested that kaempferol substantially promoted HL-60 cell apoptosis. IP assay results testified that kaempferol could bind to AKT1, thereby reducing the level of P-AKT and promoting HL-60 cell apoptosis. The monomer kaempferol of Dingqing Tablet could promote apoptosis of HL-60 cells, and the mechanism might correlate with the combination of kaempferol and AKT1, reducing the level of P-AKT and promoting the expression of the apoptotic signaling pathway.
Collapse
|