1
|
Jin Y, Liu J, Wang M, Jiang Y. Thioketal-Based Electrochemical Sensor Reveals Biphasic Effects of l-DOPA on Neuroinflammation. ACS Sens 2024; 9:2364-2371. [PMID: 38642367 DOI: 10.1021/acssensors.3c02420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Neuroinflammation is linked closely to neurodegenerative diseases, with reactive oxygen species (ROS) exacerbating neuronal damage. Traditional electrochemical sensors show promise in targeting cellular ROS to understand their role in neuropathogenesis and assess therapies. Nevertheless, these sensors face challenges in mitigating the ROS oxidation overpotential. We herein introduce an ROS oxidation-independent nucleic acid sensor for in situ ROS analysis and therapeutic assessment. The sensor comprises ionizable and thioketal (TK)-based lipids with methylene blue-tagged nucleic acids on a glass carbon electrode. ROS exposure triggers cleavage within the sensor's thioketal moiety, detaching the nucleic acid from the electrode and yielding quantifiable results via square-wave voltammetry. Importantly, the sensor's low potential window minimizes interference, ensuring precise ROS measurements with high selectivity. Using this sensor, we unveil levodopa's dose-dependent biphasic effect on neuroinflammation: low doses alleviate oxidative stress, while high doses exacerbate it. The TK-based sensor offers a promising methodology for investigating neuroinflammation's pathogenesis and screening potential treatments, advancing neurodegenerative disease research.
Collapse
Affiliation(s)
- Ying Jin
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
2
|
Hart M, Kern F, Fecher-Trost C, Krammes L, Aparicio E, Engel A, Hirsch P, Wagner V, Keller V, Schmartz GP, Rheinheimer S, Diener C, Fischer U, Mayer J, Meyer MR, Flockerzi V, Keller A, Meese E. Experimental capture of miRNA targetomes: disease-specific 3'UTR library-based miRNA targetomics for Parkinson's disease. Exp Mol Med 2024; 56:935-945. [PMID: 38556547 PMCID: PMC11059366 DOI: 10.1038/s12276-024-01202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 04/02/2024] Open
Abstract
The identification of targetomes remains a challenge given the pleiotropic effect of miRNAs, the limited effects of miRNAs on individual targets, and the sheer number of estimated miRNA-target gene interactions (MTIs), which is around 44,571,700. Currently, targetome identification for single miRNAs relies on computational evidence and functional studies covering smaller numbers of targets. To ensure that the targetome analysis could be experimentally verified by functional assays, we employed a systematic approach and explored the targetomes of four miRNAs (miR-129-5p, miR-129-1-3p, miR-133b, and miR-873-5p) by analyzing 410 predicted target genes, both of which were previously associated with Parkinson's disease (PD). After performing 13,536 transfections, we validated 442 of the 705 putative MTIs (62,7%) through dual luciferase reporter assays. These analyses increased the number of validated MTIs by at least 2.1-fold for miR-133b and by a maximum of 24.3-fold for miR-873-5p. Our study contributes to the experimental capture of miRNA targetomes by addressing i) the ratio of experimentally verified MTIs to predicted MTIs, ii) the sizes of disease-related miRNA targetomes, and iii) the density of MTI networks. A web service to support the analyses on the MTI level is available online ( https://ccb-web.cs.uni-saarland.de/utr-seremato ), and all the data have been added to the miRATBase database ( https://ccb-web.cs.uni-saarland.de/miratbase ).
Collapse
Affiliation(s)
- Martin Hart
- Human Genetics, Saarland University, 66421, Homburg, Germany.
| | - Fabian Kern
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Germany
| | - Claudia Fecher-Trost
- Department of Experimental and Clinical Pharmacology & Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421, Homburg, Germany
| | - Lena Krammes
- Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Ernesto Aparicio
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Annika Engel
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Pascal Hirsch
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Viktoria Wagner
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Verena Keller
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Department for Internal Medicine II, Saarland University Hospital, 66421, Homburg, Germany
| | | | | | - Caroline Diener
- Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Ulrike Fischer
- Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Jens Mayer
- Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Pharmacology & Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421, Homburg, Germany
| | - Veit Flockerzi
- Department of Experimental and Clinical Pharmacology & Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421, Homburg, Germany
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Germany
| | - Eckart Meese
- Human Genetics, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
3
|
Khan MA, Haider N, Singh T, Bandopadhyay R, Ghoneim MM, Alshehri S, Taha M, Ahmad J, Mishra A. Promising biomarkers and therapeutic targets for the management of Parkinson's disease: recent advancements and contemporary research. Metab Brain Dis 2023; 38:873-919. [PMID: 36807081 DOI: 10.1007/s11011-023-01180-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Parkinson's disease (PD) is one of the progressive neurological diseases which affect around 10 million population worldwide. The clinical manifestation of motor symptoms in PD patients appears later when most dopaminergic neurons have degenerated. Thus, for better management of PD, the development of accurate biomarkers for the early prognosis of PD is imperative. The present work will discuss the potential biomarkers from various attributes covering biochemical, microRNA, and neuroimaging aspects (α-synuclein, DJ-1, UCH-L1, β-glucocerebrosidase, BDNF, etc.) for diagnosis, recent development in PD management, and major limitations with current and conventional anti-Parkinson therapy. This manuscript summarizes potential biomarkers and therapeutic targets, based on available preclinical and clinical evidence, for better management of PD.
Collapse
Affiliation(s)
- Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murtada Taha
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Sila Katamur (Halugurisuk), Kamrup, Changsari, Assam, 781101, India.
| |
Collapse
|
4
|
Wu J, Shi Y, Xing M, Deng M, Cao W, Guo Q, Zou W. CircRalgapa1 facilitates morphine tolerance via miR-873a-5p/A20 axis in mice. Neuropharmacology 2023; 224:109353. [PMID: 36455645 DOI: 10.1016/j.neuropharm.2022.109353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Morphine tolerance (MT) caused by long-term use of morphine is a major medical problem. The underlying molecular mechanisms of morphine tolerance remain unclear. Here, we establish the morphine tolerance model in mice and verify whether a novel circRNA, circRalgapa1 is involved in morphine tolerance and its specific molecular mechanism. We show that the expression of circRalgapa1 in the spinal cord is significantly down-expressed in the spinal cord of morphine-tolerant mice. CircRalgapa1 is mainly located in the neuronal cytoplasm and co-localizes with miR-873a-5p. Mechanically, circRalgapa1 acts as competing endogenous RNAs (ceRNAs) to regulate the inhibitory of miR-873a-5p on A20 (also known as tumor necrosis factor α-induced protein 3, TNFAIP3). Functionally, overexpression of circRalgapa1 by intrathecal injection of adeno-associated virus (AAV- circRalgapa1) attenuated the formation of morphine tolerance and partially reversed the development of morphine tolerance. Moreover, overexpression of miR-873a-5p blocked the effect of AAV-circRalgapa1 on alleviating morphine tolerance in mice. In conclusion, chronic morphine administration-mediated down-regulation of circRalgapa1 in the spinal cord contributes to morphine tolerance via miR-873a-5p/A20 axis in mice. Overexpression of circRalgapa1 may be a promising RNA-based therapy for morphine tolerance.
Collapse
Affiliation(s)
- Jing Wu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yufei Shi
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manyu Xing
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meiling Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Cao
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Asadi MR, Abed S, Kouchakali G, Fattahi F, Sabaie H, Moslehian MS, Sharifi-Bonab M, Hussen BM, Taheri M, Ghafouri-Fard S, Rezazadeh M. Competing endogenous RNA (ceRNA) networks in Parkinson's disease: A systematic review. Front Cell Neurosci 2023; 17:1044634. [PMID: 36761351 PMCID: PMC9902725 DOI: 10.3389/fncel.2023.1044634] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Parkinson's disease (PD) is a distinctive clinical syndrome with several causes and clinical manifestations. Aside from an infectious cause, PD is a rapidly developing neurological disorder with a global rise in frequency. Notably, improved knowledge of molecular pathways and the developing novel diagnostic methods may result in better therapy for PD patients. In this regard, the amount of research on ceRNA axes is rising, highlighting the importance of these axes in PD. CeRNAs are transcripts that cross-regulate one another via competition for shared microRNAs (miRNAs). These transcripts may be either coding RNAs (mRNAs) or non-coding RNAs (ncRNAs). This research used a systematic review to assess validated loops of ceRNA in PD. The Prisma guideline was used to conduct this systematic review, which entailed systematically examining the articles of seven databases. Out of 309 entries, forty articles met all criteria for inclusion and were summarized in the appropriate table. CeRNA axes have been described through one of the shared vital components of the axes, including lncRNAs such as NEAT1, SNHG family, HOTAIR, MALAT1, XIST, circRNAs, and lincRNAs. Understanding the multiple aspects of this regulatory structure may aid in elucidating the unknown causal causes of PD and providing innovative molecular therapeutic targets and medical fields.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Abed
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghazal Kouchakali
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fateme Fattahi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Iraq
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Zhang H, Liu X, Liu Y, Liu J, Gong X, Li G, Tang M. Crosstalk between regulatory non-coding RNAs and oxidative stress in Parkinson’s disease. Front Aging Neurosci 2022; 14:975248. [PMID: 36016854 PMCID: PMC9396353 DOI: 10.3389/fnagi.2022.975248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disease after Alzheimer’s disease, which imposes an ever-increasing burden on society. Many studies have indicated that oxidative stress may play an important role in Parkinson’s disease through multiple processes related to dysfunction or loss of neurons. Besides, several subtypes of non-coding RNAs are found to be involved in this neurodegenerative disorder. However, the interplay between oxidative stress and regulatory non-coding RNAs in Parkinson’s disease remains to be clarified. In this article, we comprehensively survey and overview the role of regulatory ncRNAs in combination with oxidative stress in Parkinson’s disease. The interaction between them is also summarized. We aim to provide readers with a relatively novel insight into the pathogenesis of Parkinson’s disease, which would contribute to the development of pre-clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- *Correspondence: Gang Li Min Tang
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Gang Li Min Tang
| |
Collapse
|