1
|
He W, Yaning L, Shaohong Y. Effect of electrical stimulation in the treatment on patients with foot drop after stroke: a systematic review and network meta-analysis. J Stroke Cerebrovasc Dis 2025; 34:108279. [PMID: 40057253 DOI: 10.1016/j.jstrokecerebrovasdis.2025.108279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/05/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVE To systematically evaluate the efficacy of electrical stimulation (ES) in the treatment of patients with foot drop (FD) after stroke, and to compare the efficacy of different types of ES. DATA SOURCES We searched 5 English database (PubMed, Web of Science, Embase, Cochrane Library and Scopus) and 4 Chinese databases (China National Knowledge Infrastructure (CNKI), SinoMed (CBM), VIP and Wanfang Data) from inception to June, 2024. DATA SYNTHESIS Traditional meta-analysis and network meta-analysis were performed using RevMan5.4 software and Stata 14.0 software respectively. A total of 37 RCTs were included, involving 2309 patients. The results of the traditional meta-analysis showed that compared with CRT, ES combined with CRT was effective in improving the range of motion (ROM) of ankle dorsiflexion in patients with FD after stroke and significantly improved the fugl-meyer assessment of lower extremity (FMA-LE) scores. For patients with FD with different disease duration, the subgroup analysis results showed that the ES improved the ROM of ankle dorsiflexion of patients in recovery phases (1-6 months) better than those in the acute phases (≤ 1 month) and sequelae phases (≥ 6 months), but the overall results of the three groups were not significantly different. The ES improved the lower limb motor function of patients in the recovery phases better than those in the acute phases, and the efficacy was not significant in patients in the sequelae phases (P > 0.05). The results of network meta-analysis showed that the best probability of improving the dorsiflexion angle of the ankle was electroacupuncture (EA) > transcranial direct current stimulation (tDCS) > transcutaneous electrical nerve stimulation (TENS) > functional electrical stimulation (FES) > neuromuscular electrical stimulation (NMES) > electromyographic biofeedback therapy (EMGBFT) > conventional rehabilitation therapy (CRT); the best probability of improving the dorsiflexion angle of the ankle was EA > EMGBFT > tDCS > FES > TENS > NMES > CRT. CONCLUSIONS The current evidence showed that the ES combined with CRT can effectively improve the ROM of ankle dorsiflexion and lower limb motor function in patients with FD after stroke, especially the patients in recovery phases. Among the different types of ES, EA had the best effect than other types of ES.
Collapse
Affiliation(s)
- Wang He
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China.
| | - Li Yaning
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China.
| | - Yu Shaohong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, Shandong, PR China; Teaching and Research Section of Internal Medicine, Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China.
| |
Collapse
|
2
|
Hao X, Ding N, Zhang Y, Wu M, Tao Y, Li Z. Acupuncture Ameliorates Alzheimer's-Like Cognitive Impairment and Pathological Changes via Regulating the Intestinal Fungal Community in APP/PS1 Mice. Neuropsychiatr Dis Treat 2025; 21:799-813. [PMID: 40224521 PMCID: PMC11994108 DOI: 10.2147/ndt.s499224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
Background The disorder of the intestinal fungal community is closely associated with Alzheimer's disease (AD). Gut fungal dysbiosis exacerbates β-amyloid (Aβ) plaque burden through the brain-gut axis, thereby promoting the progression of AD. Previous research has demonstrated that acupuncture can ameliorate AD symptoms by modulating the gut bacterial community. However, the potential regulatory effects of acupuncture on the fungal microbiota have been largely overlooked. Methods APP/PS1 mice were used as AD animal model and randomly divided into the AD model (AD) group, the acupuncture (Ac) group, and the probiotics (Pr) group. Mice in the Ac group received acupuncture treatment. In the Pr group, mice were treated with probiotics. Morris water maze, ITS sequencing, immunofluorescence (IF) staining, enzyme-linked immunosorbent assay (ELISA), Hematoxylin and eosin analysis, and Nissl staining were employed to validate our hypothesis. Results Acupuncture and probiotics significantly improved the behavioral performance of APP/PS1 mice, reduced the level of Aβ in the brain, and alleviated neuronal damage. Moreover, acupuncture improved the Sobs, Chao and Ace indices, decreased the abundance of Ascomycota, Aspergilaceae, Trichocomaceae, Candida, and unclassified-penicillium, while simultaneously increasing the abundance of Basidiomycota, which differed from the fungal regulation observed with probiotics. Conclusion Acupuncture may improve the cognitive impairment of APP/PS1 mice, reduce Aβ plaque burden in the brain, protect neurons, and mitigate intestinal fungi dysbiosis. The beneficial effects of acupuncture on Aβ deposition and cognitive function in APP/PS1 mice may be achieved by regulating the intestinal fungal community.
Collapse
Affiliation(s)
- Xin Hao
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Ning Ding
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Yue Zhang
- Guangzhou University of Chinese Medicine Meizhou Hospital (Meizhou Hospital of Chinese Medicine), Guangzhou, 514000, People’s Republic of China
| | - Meng Wu
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yilin Tao
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Zhigang Li
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
3
|
Zhang L, Liu Y, Wang X, Wu H, Xie J, Liu Y. Treadmill exercise ameliorates hippocampal synaptic injury and recognition memory deficits by TREM2 in AD rat model. Brain Res Bull 2025; 223:111280. [PMID: 40015348 DOI: 10.1016/j.brainresbull.2025.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
OBJECTIVE The impairment of cognitive function has been associated with Alzheimer's disease (AD). Exercise exerts a positive modulatory effect on cognition by reducing synapse injury. However, limited in vivo evidence is available to validate the neuroprotective effect of TREM2 on synaptic function in this phenomenon. Here, we aim to explore whether physical exercise pretreatment alters Aβ-induced recognition memory impairment in structural synaptic plasticity within the hippocampus in AD rats. METHODS:: In study 1, fifty-two Sprague-Dawley (SD) rats were randomly divided into following four groups: control group (C group, n = 13), Alzheimer's disease group (AD group, n = 13), 4 weeks of physical exercise and Alzheimer's disease group (Exe+AD group, n = 13), 4 weeks of physical exercise and blank group (Exercise group, n = 13). Four weeks of treadmill exercise intervention was performed, and AD model were established by intra-cerebroventricular injection (ICV) injection of Aβ1-42 protein. After 3 weeks, we also conducted a novel object test to evaluate recognition memory in the behavior assessment. Golgi staining and transmission electron microscopy were used to evaluate the morphology and synaptic ultrastructure of neurons. Western blotting was used to measure the expression of hippocampal synaptic proteins. Extracellular neurotransmitters in the hippocampus were detected by microdialysis coupled with high-performance liquid chromatography. In study 2, 33 SD rats were randomly divided into three groups: 4 weeks of physical exercise and Alzheimer's disease group (Exe+AD group, n = 11), AAV-Control and physical exercise and Alzheimer's disease group (AAV-Control+Exe+AD group, n = 11), AAV-TREM2 and physical exercise and Alzheimer's disease group (AAV-TREM2 +Exe+AD group, n = 11). Stereotactic intracerebral injection in the bilateral hippocampus was performed to achieve microglial TREM2 down-expression by using adeno-associated virus (AAV) with CD68 promoter. After 4 weeks treadmill exercise and 3 weeks Aβ injection, all rats received behavior test and molecular experiment, which the same with experiment 2. RESULTS Novel recognition index in novel object recognition test significantly decreased, and western blot demonstrate that hippocampal TREM2 protein is significantly decreased (P < 0.001). But physical exercise reversed this phenomenon(P < 0.001). In addition, compared with Con group, the neuron from Exe+AD group exhibited a more complex branching pattern (P < 0.05). And impaired synaptic ultrastructure was observed in AD group. Hippocampal synaptic-related protein (SYX, SYP, GAP43, PSD95) and neurotransmitter (DA, Glu, GABA) was also significantly decreased (P < 0.01) in AD group. But the neuroprotection effect can be found in Exe+AD group, which are associated with the inhibition of synaptic injury by activate hippocampal TREM2 (P < 0.05). However, when blockade of hippocampal TREM2 reduced brain protective effect of exercise in AD rat model, including increased the damage of neuronal dendritic complexity, synaptic ultrastructure, and the decrease of hippocampal synapses-related protein, typical neurotransmitter. CONCLUSION Treadmill exercise facilitated recognition memory acquisition via TREM2-mediated structural synaptic plasticity of the hippocampus in an AD rat model.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of physical education, Henan normal university, Xinxiang 453007, China; Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Yanzhong Liu
- School of physical education and health, Henan University of China Medicine, Zhengzhou, China
| | - Xin Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Hao Wu
- Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Capital University of Physical Education and Sports, Beijing 100191, China
| | - Jiahui Xie
- Department of Physical Education and Research, Fuzhou University, Fuzhou 350108, China.
| | - Yiping Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
4
|
Liu J, Zhou J, You C, Xia H, Gao Y, Liu Y, Gong X. Research progress in the mechanism of acupuncture regulating microglia in the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1435082. [PMID: 39145293 PMCID: PMC11321967 DOI: 10.3389/fnins.2024.1435082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the central nervous system, characterized by memory and cognitive dysfunction. Acupuncture is an effective means to alleviate the symptoms of AD. Recent studies have shown that microglia play an important role in the occurrence and development of AD. Acupuncture can regulate the activity of microglia, inhibit neuroinflammation, regulate phagocytosis, and clear Aβ Pathological products such as plaque can protect nerve cells and improve cognitive function in AD patients. This article summarizes the relationship between microglia and AD, as well as the research progress in the mechanism of acupuncture regulating microglia in the treatment of AD. The mechanism of acupuncture regulating microglia in the treatment of AD is mainly reviewed from two aspects: inhibiting neuroinflammatory activity and regulating phagocytic function.
Collapse
Affiliation(s)
- Jia Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University College of Integrated Traditional Chinese and Western Medicine, Dalian, China
| | - Jiaqi Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chong You
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University College of Integrated Traditional Chinese and Western Medicine, Dalian, China
| | - Haonan Xia
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University College of Integrated Traditional Chinese and Western Medicine, Dalian, China
| | - Yuling Gao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yong Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoyang Gong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Ahmed S, Ma N, Kawanokuchi J, Matsuoka K, Oikawa S, Kobayashi H, Hiraku Y, Murata M. Taurine reduces microglia activation in the brain of aged senescence-accelerated mice by increasing the level of TREM2. Sci Rep 2024; 14:7427. [PMID: 38548872 PMCID: PMC10978912 DOI: 10.1038/s41598-024-57973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/23/2024] [Indexed: 04/01/2024] Open
Abstract
Alzheimer's disease (AD), a chronic neurodegenerative disorder, is the leading cause of dementia. Over-activated microglia is related to amyloid-beta (Aβ) and phosphorylated tau (phospho-tau) accumulation in the AD brain. Taurine is an amino acid with multiple physiological functions including anti-inflammatory effects, and has been reported to be neuroprotective in AD. However, the role of taurine in microglia-mediated AD remains unclear. Here, we examined the effects of taurine on the brains of senescence-accelerated mouse prone 8 (SAMP8) mice by comparing those administered 1% taurine water with those administered distilled water (DW). We observed increased levels of taurine and taurine transporter (TAUT) in the brains of the taurine-treated mice compared with those of control mice. Immunohistochemical and Western blot analyses revealed that taurine significantly reduced the number of activated microglia, levels of phospho-tau and Aβ deposit in the hippocampus and cortex. Triggering receptors expressed on myeloid cells-2 (TREM2) are known to protect against AD pathogenesis. Taurine upregulated TREM2 expression in the hippocampus and cortex. In conclusion, the present study suggests that taurine treatment may upregulate TREM2 to protect against microglia over-activation by decreasing the accumulation of phospho-tau and Aβ; providing an insight into a novel preventive strategy in AD.
Collapse
Affiliation(s)
- Sharif Ahmed
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
- Department of Environmental Health, University of Fukui School of Medical Sciences, Eiheiji, Fukui, Japan
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Department of Acupuncture and Moxibution Science, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Jun Kawanokuchi
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Keiya Matsuoka
- Department of Acupuncture and Moxibution Science, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yusuke Hiraku
- Department of Environmental Health, University of Fukui School of Medical Sciences, Eiheiji, Fukui, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
6
|
Li B, Deng S, Jiang H, Zhu W, Zhuo B, Du Y, Meng Z. The mechanistic effects of acupuncture in rodent neurodegenerative disease models: a literature review. Front Neurosci 2024; 18:1323555. [PMID: 38500484 PMCID: PMC10944972 DOI: 10.3389/fnins.2024.1323555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Neurodegenerative diseases refer to a battery of medical conditions that affect the survival and function of neurons in the brain, which are mainly presented with progressive loss of cognitive and/or motor function. Acupuncture showed benign effects in improving neurological deficits, especially on movement and cognitive function impairment. Here, we reviewed the therapeutic mechanisms of acupuncture at the neural circuit level in movement and cognition disorders, summarizing the influence of acupuncture in the dopaminergic system, glutamatergic system, γ-amino butyric acid-ergic (GABAergic) system, serotonergic system, cholinergic system, and glial cells at the circuit and synaptic levels. These findings can provide targets for clinical treatment and perspectives for further studies.
Collapse
Affiliation(s)
- Boxuan Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shizhe Deng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hailun Jiang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weiming Zhu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bifang Zhuo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuzheng Du
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihong Meng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Yan L, Li H, Qian Y, Liu Q, Cong S, Dou B, Wang Y, Wang M, Yu T. Acupuncture modulates the gut microbiota in Alzheimer's disease: current evidence, challenges, and future opportunities. Front Neurosci 2024; 18:1334735. [PMID: 38495110 PMCID: PMC10940355 DOI: 10.3389/fnins.2024.1334735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Alzheimer's disease, one of the most severe and common neurodegenerative diseases, has no effective cure. Therefore it is crucial to explore novel and effective therapeutic targets. The gut microbiota - brain axis has been found to play a role in Alzheimer's disease by regulating the neuro-immune and endocrine systems. At the same time, acupuncture can modulate the gut microbiota and may impact the course of Alzheimer's disease. In this Review, we discuss recent studies on the role of acupuncture on the gut microbiota as well current challenges and future opportunities of acupuncture as potential treatment for the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Long Yan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Hong Li
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Yulin Qian
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qidi Liu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Shan Cong
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Baomin Dou
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Yu Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Yu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Chen Z, Wang X, Du S, Liu Q, Xu Z, Guo Y, Lin X. A review on traditional Chinese medicine natural products and acupuncture intervention for Alzheimer's disease based on the neuroinflammatory. Chin Med 2024; 19:35. [PMID: 38419106 PMCID: PMC10900670 DOI: 10.1186/s13020-024-00900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with insidious onset and progressive development. It is clinically characterized by cognitive impairment, memory impairment and behavioral change. Chinese herbal medicine and acupuncture are important components of traditional Chinese medicine (TCM), and are commonly used in clinical treatment of AD. This paper systematically summarizes the research progress of traditional Chinese medicine natural products and acupuncture treatment of AD, which combined with existing clinical and preclinical evidence, based on a comprehensive review of neuroinflammation, and discusses the efficacy and potential mechanisms of traditional Chinese medicine natural products and acupuncture treatment of AD. Resveratrol, curcumin, kaempferol and other Chinese herbal medicine components can significantly inhibit the neuroinflammation of AD in vivo and in vitro, and are candidates for the treatment of AD. Acupuncture can alleviate the memory and cognitive impairment of AD by improving neuroinflammation, synaptic plasticity, nerve cell apoptosis and reducing the production and aggregation of amyloid β protein (Aβ) in the brain. It has the characteristics of early, safe, effective and benign bidirectional adjustment. The purpose of this paper is to provide a basis for improving the clinical strategies of TCM for the treatment of AD.
Collapse
Affiliation(s)
- Zhihan Chen
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Xinrui Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Simin Du
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Qi Liu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Zhifang Xu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, 301617, People's Republic of China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China.
| | - Xiaowei Lin
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
9
|
Wu L, Dong Y, Zhu C, Chen Y. Effect and mechanism of acupuncture on Alzheimer's disease: A review. Front Aging Neurosci 2023; 15:1035376. [PMID: 36936498 PMCID: PMC10020224 DOI: 10.3389/fnagi.2023.1035376] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
With the development trend of an aging society, Alzheimer's disease (AD) has become an urgent problem in the field of medicine worldwide. Cognitive impairment in AD patients leads to a decline in the ability to perform daily living and abnormalities in behavior and personality, causing abnormal psychiatric symptoms, which seriously affect the daily life of patients. Currently, mainly drug therapy is used for AD patients in the clinic, but a large proportion of patients will experience drug efficacy not working, and even some drugs bring severe sleep disorders. Acupuncture, with its unique concept and treatment method, has been validated through a large number of experiments and proved its reliability of acupuncture in the treatment of AD. Many advances have been made in the study of the neurobiological mechanisms of acupuncture in the treatment of AD, further demonstrating the good efficacy and unique advantages of acupuncture in the treatment of AD. This review first summarizes the pathogenesis of AD and then illustrates the research progress of acupuncture in the treatment of AD, which includes the effect of acupuncture on the changes of biochemical indicators in AD in vivo and the specific mechanism of action to exert the therapeutic effect. Changes in relevant indicators of AD similarly further validate the effectiveness of acupuncture treatment. The clinical and mechanistic studies of acupuncture in the treatment of AD are intensified to fit the need for social development. It is believed that acupuncture will achieve new achievements in the treatment of AD as research progresses.
Collapse
Affiliation(s)
- Liu Wu
- Department of Tuina, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Dong
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chengcheng Zhu
- Department of Galactophore, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Chen
- Department of Emergency, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Tang Y, Rubini P, Yin HY, Illes P. Acupuncture for Counteracting P2X4 and P2X7 Receptor Involvement in Neuroinflammation. PURINERGIC SIGNALING IN NEURODEVELOPMENT, NEUROINFLAMMATION AND NEURODEGENERATION 2023:359-374. [DOI: 10.1007/978-3-031-26945-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Jiang J, Wang Z, Yu R, Yang J, Tian H, Liu H, Wang S, Li Z, Zhu X. Effects of Electroacupuncture on the Correlation between Serum and Central Immunity in AD Model Animals. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3478847. [PMID: 36147643 PMCID: PMC9489346 DOI: 10.1155/2022/3478847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022]
Abstract
Objective The goal was to investigate the connection between neuroinflammation in the brain and serum inflammatory markers as Alzheimer's disease progressed. We also sought to determine whether electroacupuncture had an effect on inflammatory markers found in blood and other brain regions. Methods As an animal model for AD, we used senescence-accelerated mouse prone 8 (SAMP8) mice. To examine the effects and probable mechanism of electroacupuncture, we used HE staining, immunofluorescence staining, western blotting, and enzyme-linked immunosorbent assay. Results Electroacupuncture therapy protected neurons, significantly downregulated the Iba-1 level in the hippocampus (p value was 0.003), frontal lobe cortex (p value was 0.042), and temporal lobe cortex (p value was 0.013) of the AD animal model, all of which had significantly lower levels of IL-6 (p value was 0.001), IL-1β (p value was 0.001), and TNF-α (p value was 0.001) in their serum. Conclusion The amounts of IL-6, IL-1β, and TNF-α detected in the serum were strongly linked to the levels discovered in the hippocampus and the frontal lobes of the brain, respectively. A better understanding of the electroacupuncture process as well as the course of Alzheimer's disease and the therapeutic benefits of electroacupuncture may be gained by using biomarkers such as serum inflammatory marker biomarkers.
Collapse
Affiliation(s)
- Jing Jiang
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Zidong Wang
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Ruxia Yu
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Jiayi Yang
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Huiling Tian
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Hao Liu
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Shun Wang
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Zhigang Li
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Xiaoshu Zhu
- Western Sydney University, School of Health Sciences, Sydney, Australia
| |
Collapse
|
12
|
Jiang J, Liu H, Wang Z, Tian H, Wang S, Yang J, Li Z. Effects of electroacupuncture on DNA methylation of the TREM2 gene in senescence-accelerated mouse prone 8 mice. Acupunct Med 2022; 40:463-469. [PMID: 35232269 DOI: 10.1177/09645284221077103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the mechanism by which electroacupuncture (EA) upregulates triggering receptor expressed on myeloid cells 2 (TREM2) protein in the hippocampus of Alzheimer's disease (AD) model animals from the perspective of TREM2 DNA methylation. METHODS In total, 24 eight-month-old senescence-accelerated mouse prone 8 (SAMP8) mice were divided into an (untreated) AD group (n = 8), donepezil group (receiving donepezil treatment, n = 8) or EA group (receiving an EA intervention, n = 8). A healthy control group comprising 8-month-old senescence-accelerated mouse resistant 1 (SAMR1) mice (n = 8) was also included. Western blotting, bisulfite sequencing, and oxidative bisulfite sequencing were applied to test the relative expression of TREM2 protein and the methylation levels of the TREM2 gene. RESULTS EA significantly upregulated the relative expression of TREM2 protein (p < 0.01), downregulated the 5-methylcytosine level (p < 0.01) and upregulated the 5-hydroxymethylcytosine level (p < 0.05) in the hippocampus. CONCLUSION Downregulation of 5-methylcytosine levels and upregulation of 5-hydroxymethylcytosine levels in the TREM2 gene might be the mechanism by which EA promotes the expression of TREM2 protein.
Collapse
Affiliation(s)
- Jing Jiang
- Beijing University of Chinese Medicine, Beijing, China
| | - Hao Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Zidong Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Huiling Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Shun Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiayi Yang
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhigang Li
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Sun RQ, Wang ZD, Zhao J, Wang S, Liu YZ, Liu SY, Li ZG, Wang X. Improvement of electroacupuncture on APP/PS1 transgenic mice in behavioral probably due to reducing deposition of Aβ in hippocampus. Anat Rec (Hoboken) 2021; 304:2521-2530. [PMID: 34469051 DOI: 10.1002/ar.24737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disease for which currently no cure is available. Electroacupuncture (EA) has been widely used in China as an alternative therapeutic approach for neurological diseases. The cognitive decline in patients with AD has been reported to be closely related to the deposition of amyloid-β (Aβ) in the hippocampus of the brain, and the Morris water maze (MWM) test is a widely used method for assessing the behavior of animal models. In this study, the MWM test was performed to evaluate the effects of EA treatment on cognitive function and memory, and the micro-positron emission tomography scan was used to assess the hippocampal Aβ deposition. The results showed that the cognitive function of APP/PS1 mice was significantly improved and the rate of [18F]AV-45 uptake was reduced in the EA group, compared with the AD group. Our study suggested that EA can exert a therapeutic effect in AD by improving spatial learning and memory and inhibiting the hippocampal Aβ deposition.
Collapse
Affiliation(s)
- Run-Quan Sun
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zi-Dong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Zhao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Shuai Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yi-Zhi Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Si-Yuan Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi-Gang Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Wang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Lin X, Zhan J, Jiang J, Ren Y. Upregulation of Neuronal Cylindromatosis Expression is Essential for Electroacupuncture-Mediated Alleviation of Neuroinflammatory Injury by Regulating Microglial Polarization in Rats Subjected to Focal Cerebral Ischemia/Reperfusion. J Inflamm Res 2021; 14:2061-2078. [PMID: 34045881 PMCID: PMC8149215 DOI: 10.2147/jir.s307841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/17/2021] [Indexed: 01/03/2023] Open
Abstract
Background Activated microglia are polarized into the M1 or M2 phenotype. We previously reported that electroacupuncture (EA) effectively prevented nuclear factor-κB (NF-κB) nuclear translocation and improved neuronal C-X-C motif 3 chemokine ligand 1 (CX3CL1) expression, repressing microglial activation by upregulating neuronal cylindromatosis (CYLD) expression in the periischemic cortex. However, the potential mechanisms are unclear. Therefore, we explored whether EA improved CYLD protein expression to regulate microglial polarization-mediated neuroinflammation and the potential mechanisms in an ischemic stroke model. Methods A middle cerebral artery occlusion/reperfusion (MCAO/R) model was established in male Sprague-Dawley (SD) rats. The rats were treated with EA at the Baihui, Hegu and Taichong acupoints once daily beginning 2 h after focal cerebral ischemia. CYLD gene interference was used to investigate the role of CYLD in microglial polarization. We used neurobehavioral evaluations and TTC staining to examine the neuroprotective effect of EA via CYLD upregulation. Immunofluorescence and RT-qPCR were used to measure NLRP3 activation, M1/M2 microglial activation, pro-/anti-inflammatory gene mRNA expression and crosstalk (CX3CL1/CX3CR1 axis) between neurons and microglia. Western blotting was used to assess the underlying molecular mechanism. Results CYLD inhibited M1 microglial activation and improved M2 microglial activation after 72 h of reperfusion. CYLD overexpression decreased the NLRP3 mRNA level. CYLD suppressed microglial overactivation by inhibiting NLRP3 activation. CYLD gene silencing partially weakened EA improvement of neurological function deficits and reduction of infarct volumes after 72 h reperfusion. In addition, EA inhibited M1-like phenotypic microglial activation and promoted M2-like phenotypic microglia through upregulating CYLD expression. Finally, EA-mediated modulation of the CX3CL1/CX3CR1 axis and NLRP3 inflammasome was reversed by CYLD gene silencing in the periischemic cortex. Conclusion EA-induced upregulation of neuronal CYLD expression plays anti-inflammatory and neuroprotective roles and regulates the interaction between neurons and microglia, thereby suppressing M1 and improving M2 microglial activation in the periischemic cortex.
Collapse
Affiliation(s)
- Xing Lin
- Department of Biological Immunotherapy, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Jian Zhan
- Department of Neurology, The Second Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou Province, 563000, People's Republic of China
| | - Jin Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yikun Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| |
Collapse
|