1
|
Xie X, Huang M, Ma S, Xin Q, Wang Y, Hu L, Zhao H, Li P, Liu M, Yuan R, Miao Y, Zhu Y, Cong W. The role of long non-coding RNAs in cardiovascular diseases: A comprehensive review. Noncoding RNA Res 2025; 11:158-187. [PMID: 39896344 PMCID: PMC11783329 DOI: 10.1016/j.ncrna.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide, posing significant challenges to healthcare systems. Despite advances in medical interventions, the molecular mechanisms underlying CVDs are not yet fully understood. For decades, protein-coding genes have been the focus of CVD research. However, recent advances in genomics have highlighted the importance of long non-coding RNAs (lncRNAs) in cardiovascular health and disease. Changes in lncRNA expression specific to tissues may result from various internal or external factors, leading to tissue damage, organ dysfunction, and disease. In this review, we provide a comprehensive discussion of the regulatory mechanisms underlying lncRNAs and their roles in the pathogenesis and progression of CVDs, such as coronary heart disease, atherosclerosis, heart failure, arrhythmias, cardiomyopathies, and diabetic cardiomyopathy, to explore their potential as therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Xuena Xie
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiwen Huang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shudong Ma
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yuying Wang
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lantian Hu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Pengqi Li
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mei Liu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Weihong Cong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
2
|
Yuan Y, Han X, Zhao X, Zhang H, Vinograd A, Bi X, Duan X, Cao Y, Gao Q, Song J, Sheng L, Li Y. Circulating exosome long non-coding RNAs are associated with atrial structural remodeling by increasing systemic inflammation in atrial fibrillation patients. J Transl Int Med 2024; 12:106-118. [PMID: 38525437 PMCID: PMC10956728 DOI: 10.2478/jtim-2023-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Background Atrial fibrillation (AF) is the most common cardiac arrhythmia with severe clinical sequelae, but its genetic characteristic implicated in pathogenesis has not been completely clarified. Accumulating evidence has indicated that circulating exosomes and their carried cargoes, such as long non-coding RNAs (lncRNAs), involve in the progress of multiple cardiovascular diseases. However, their potential role as clinical biomarkers in AF diagnosis and prognosis remains unknown. Methods Herein, we conducted the sequence and bioinformatic analysis of circulating exosomes harvested from AF and sinus rhythm patients. Results A total of 53 differentially expressed lncRNAs were identified, and a total of 6 significantly changed lncRNAs (fold change > 2.0), including NR0046235, NR003045, NONHSAT167247.1, NONHSAT202361.1, NONHSAT205820.1 and NONHSAT200958.1, were verified by qRT-PCR in 215 participants. Moreover, these circulating exosome lncRNA levels were different between paroxysmal and persistent AF patients, which were dramatically associated with abnormal hemodynamics and atrial diameter. Furthermore, we observed that the area under ROC curve (AUC) of six lncRNAs combination for diagnosis of persistent AF was 80.34%. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment pathway analysis indicated these exosome lncRNAs mainly concerning response to chemokine-chemokine receptor interaction, which induced activated inflammation and structural remodeling. In addition, increased plasma levels of CXCR3 ligands, including CXCL4, CXCL9, CXCL10 and CXCL11, were accumulated in AF patient tissues. Conclusion Our study provides the transcriptome profile revealing pattern of circulating exosome lncRNAs in atrial structural remodeling, which bring valuable insights into improving prognosis and therapeutic targets for AF.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Xuejie Han
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Xinbo Zhao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Haiyu Zhang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Asiia Vinograd
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
- Bashkir State Medical University, UFA, Republic Bashkortostan, Russia
| | - Xin Bi
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Xiaoxu Duan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Yukai Cao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Qiang Gao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Jia Song
- Department of Medicine, Division of Atherosclerosis and Vascular Medicine, Baylor College of Medicine, Houston77054, USA
| | - Li Sheng
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Yue Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin150001, Heilongjiang Province, China
- Key Laboratory of Hepatosplenic Surgery, Harbin Medical University, Ministry of Education, Harbin150001, Heilongjiang Province, China
- Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Harbin150081, Heilongjiang Province, China
- Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| |
Collapse
|
3
|
Dai F, He Y, Lei T, Jiang Y, Zhang Q, Qing Y. Identification and functional prediction of long non-coding RNA and mRNA related to connective tissue disease-associated interstitial lung diseases. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:204-215. [PMID: 38125642 PMCID: PMC10729597 DOI: 10.2478/rir-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/23/2023] [Indexed: 12/23/2023]
Abstract
Objective Recently, the role of long non-coding RNA (lncRNA) in rheumatic immune diseases has attracted widespread attention. However, knowledge of lncRNA in connective tissue disease-associated interstitial lung disease (CTD-ILD) is limited. This study explored the expression profile and possible mechanisms of lncRNA and mRNA in peripheral blood mononuclear cells (PBMCs) of CTD-ILD patients, especially systemic sclerosis (SSc)-ILD and rheumatoid arthritis (RA)-ILD. Methods LncRNA microarray analysis identified 240 diferentially expressed lncRNAs and 218 diferentially expressed mRNA in the CTD-ILD group and the connective tissue disease without associated interstitial lung disease (CTD-NILD) group. The bioinformatics analysis of diferential genes has identified several important biological processes and signal pathways, including nuclear factor kappa B (NF-kappa B) signaling pathway, interleukin 17 (IL-17) signaling pathway, B cell receptor signaling pathway. Relative expression levels of five diferentially expressed lncRNAs and one mRNA in 120 SSc and RA patients with or without ILD were detected by quantitative reverse-transcription (PCR). Results The ENST00000604692 expression level was significantly higher in the ILD than the without interstitial lung disease (NILD) group; T311354 and arginase-1 were significantly higher in SSc than RA group. Conclusion These data suggest that the specific profile of lncRNA in PBMCs of CTD-ILD patients and the potential signal pathways related to the pathogenesis of CTD-ILD, which may provide newfound insights for the diagnosis and treatment of CTD-ILD patients.
Collapse
Affiliation(s)
- Fei Dai
- Research Center of Hyperuricemia and Gout, the Afiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Rheumatology and Immunology, the Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yixi He
- Research Center of Hyperuricemia and Gout, the Afiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Rheumatology and Immunology, the Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Tianyi Lei
- Research Center of Hyperuricemia and Gout, the Afiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Rheumatology and Immunology, the Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yi Jiang
- Research Center of Hyperuricemia and Gout, the Afiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Rheumatology and Immunology, the Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Quanbo Zhang
- Research Center of Hyperuricemia and Gout, the Afiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Geriatrics, the Afiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yufeng Qing
- Research Center of Hyperuricemia and Gout, the Afiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Rheumatology and Immunology, the Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
4
|
Long non-coding RNA and circular RNA: new perspectives for molecular pathophysiology of atrial fibrillation. Mol Biol Rep 2023; 50:2835-2845. [PMID: 36596997 DOI: 10.1007/s11033-022-08216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
Many studies have demonstrated the association of atrial fibrillation (AF) with endogenous genetic regulatory mechanisms. These interactions could advance the understanding of the AF pathophysiological process, supporting the search for early biomarkers to improve diagnosis and disease monitoring. Among the endogenous genetic regulatory mechanisms, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained special attention, and studies have demonstrated their involvement in AF development and other AF-related diseases such as coronary artery disease and cardiomyopathy. This review describes the main experimental results reported by studies that analyzed the expression of lncRNAs and circRNAs in AF associated with miRNA or mRNA. The search was conducted in PubMed public database using the terms "lncRNA and atrial fibrillation" or "long ncRNA and atrial fibrillation" or "long non-coding RNA and atrial fibrillation" or "circular RNA and atrial fibrillation" or "circRNA and atrial fibrillation". There was no overlapping of lncRNA or circRNA among the studies, attributed to the different sample types, methods, species, and patient classification evaluated in these studies. Although the regulatory mechanisms in which these molecules are involved are not yet well understood, the studies analyzed show their importance in the pathophysiological process of AF, supporting the idea that lncRNAs and circRNAs are involved in miRNA or mRNA regulation in the molecular mechanism of this disease.
Collapse
|
5
|
Emami Meybodi SM, Soleimani N, Yari A, Javadifar A, Tollabi M, Karimi B, Emami Meybodi M, Seyedhossaini S, Brouki Milan P, Dehghani Firoozabadi A. Circulatory long noncoding RNAs (circulatory-LNC-RNAs) as novel biomarkers and therapeutic targets in cardiovascular diseases: Implications for cardiovascular diseases complications. Int J Biol Macromol 2023; 225:1049-1071. [PMID: 36414082 DOI: 10.1016/j.ijbiomac.2022.11.167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Cardiovascular diseases (CVDs) are a group of disorders with major global health consequences. The prevalence of CVDs continues to grow due to population-aging and lifestyle modifications. Non-coding RNAs (ncRNAs) as key regulators of cell signaling pathways have gained attention in the occurrence and development of CVDs. Exosomal-lncRNAs (exos-lncRNAs) are emerging biomarkers due to their high sensitivity and specificity, stability, accuracy and accessibility in the biological fluids. Recently, circulatory and exos-based-lncRNAs are emerging and novel bio-tools in various pathogenic conditions. It is worth mentioning that dysregulation of these molecules has been found in different types of CVDs. In this regard, we aimed to discuss the knowledge gaps and suggest research priorities regarding circulatory and exos-lncRNAs as novel bio-tools and therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Seyed Mahdi Emami Meybodi
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Nafiseh Soleimani
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Abolfazl Yari
- Cellular and Molecular Research Center, Birjand University of Medical Mciences, Birjand, Iran.
| | - Amin Javadifar
- Immunology Research Center, Inflammation and Inflammatory Disease Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Tollabi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Bahareh Karimi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mahmoud Emami Meybodi
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Seyedmostafa Seyedhossaini
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Peiman Brouki Milan
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Dehghani Firoozabadi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Chen X, He XY, Dan Q, Li Y. FAM201A, a long noncoding RNA potentially associated with atrial fibrillation identified by ceRNA network analyses and WGCNA. BMC Med Genomics 2022; 15:80. [PMID: 35410298 PMCID: PMC8996407 DOI: 10.1186/s12920-022-01232-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Being the most common arrhythmia in clinic, atrial fibrillation (AF) causes various comorbidities to patients such as heart failure and stroke. LncRNAs were reported involved in pathogenesis of AF, yet, little is known about AF-associated lncRNAs. The present study aims to explore lncRNAs associated with AF susceptibility based on competing endogenous RNA (ceRNA) network analysis and weighted gene co-expression network analysis (WGCNA). Methods GSE41177 and GSE79768 datasets were obtained from the Gene Expression Omnibus (GEO) database. Competing endogenous RNA (ceRNA) network analysis was performed using GSE41177. Differentially expressed lncRNAs (DElncRNAs), mRNAs (DEmRNAs) between AF patients and patients with sinus rhythm (SR) were identified from GSE41177 using R software. Then, the ceRNA network was constructed based on DElncRNAs, the predicted target miRNAs and DEmRNAs. Weighted gene co-expression network analysis (WGCNA) was performed using GSE79768 to validate the AF-related lncRNAs identified from GSE41177. LncRNA modules and crucial lncRNAs relevant to AF and were identified. Results In summary, 18 DElncRNAs and 350 DEmRNAs were found between AF patients and SR patients. A total of 5 lncRNAs, 10 miRNAs, and 21 mRNAs were contained in the final ceRNA network. Taking into consideration both the ceRNA theory and inference scores from the comparative toxicogenomics database (CTD) database, the ceRNA axis FAM201A-miR-33a-3p-RAC3 was identified as mostly relevant to AF susceptibility. FAM201A (Gene significance, GS = − 0.62; Module membership, MM = 0.75) was also proved in the blue module, which was identified most highly relevant with AF by WGCNA. Conclusions These results demonstrated that decreased expression of FAM201A might be associated with susceptibility of AF. Working as the ceRNA to regulate RAC3 might be one function of FAM201A in AF susceptibility, which requires further exploration in future research. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01232-w.
Collapse
Affiliation(s)
- Xi Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang-Yu He
- Department of Ophthalmology, The 958th Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qing Dan
- Department of Cardiology, General Hospital of Chinese People's Liberation Army, No. 28 Fu Xing Road, Beijing, 100853, China
| | - Yang Li
- Department of Cardiology, General Hospital of Chinese People's Liberation Army, No. 28 Fu Xing Road, Beijing, 100853, China.
| |
Collapse
|
7
|
Cao M, Luo H, Li D, Wang S, Xuan L, Sun L. Research advances on circulating Long noncoding RNAs as biomarkers of cardiovascular diseases. Int J Cardiol 2022; 353:109-117. [PMID: 35143876 DOI: 10.1016/j.ijcard.2022.01.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVD) such as myocardial ischemia, myocardial infarction, heart failure, atherosclerosis, hypertension, arrhythmia, and their complications diseases are associated with increased morbidity and mortality, it is necessary to develop new diagnostic markers for CVD. LncRNAs have become a new class of biomarkers in CVD with good development prospects. Numerous studies have confirmed lncRNAs feasibility as diagnostic, prognostic and predictive tools for different types of CVD. In this review, we summarized the available knowledge regarding the clinical application value and pathophysiological mechanism of circulating lncRNA as potential biomarkers of cardiovascular disease. We reviewed the scope of application and changes of circulating lncRNAs such as ZFAS1, CDR1AS, CHAST, UCA1, HOTAIR, MIAT, NEAT1, LIPCAR, H19, NRF, NRON, MHRT, PVT1, Heat2, CASC7, GAS5, MALAT1, APPAT, HIF1A-AS1, KCNQ1OT1, NEXN in different kinds of CVD and discussed their clinical application potential as biomarker, which can help us better understand the mechanism of CVD.
Collapse
Affiliation(s)
- Mingyi Cao
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Huishan Luo
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Danning Li
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shengjie Wang
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lina Xuan
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lihua Sun
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
8
|
Xie L, Huang G, Gao M, Huang J, Li H, Xia H, Xiang X, Wu S, Ruan Y. Identification of Atrial Fibrillation-Related lncRNA Based on Bioinformatic Analysis. DISEASE MARKERS 2022; 2022:8307975. [PMID: 35154514 PMCID: PMC8837454 DOI: 10.1155/2022/8307975] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common arrhythmia in the world. Long noncoding RNA (lncRNA) has been found to play an important role in cardiovascular diseases including heart failure, myocardial infarction, and atherosclerosis. However, the role of lncRNA in AF has rarely been studied. The purpose of this study is to identify the expression profile of lncRNA in AF patients, explore the function of lncRNA in AF, and provide a potential scientific basis for the treatment of AF in the future. METHODS The lncRNA and mRNA expression profiles were obtained from the atrial appendage samples of GSE31821, GSE411774, GSE79768, and GSE115574 in the Gene Expression Omnibus (GEO) database. Functional analysis was performed via Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Variation Analysis (GSVA). The "CIBERSORT" R kit was used to analyze 22 immune cell infiltrates in AF and sinus rhythm (SR) patients. The "CORRPLOT" R package was used to analyze the immune correlation between lncRNA and immune cells. RESULTS A total of 6 differentially expressed lncRNAs and 45 differentially expressed mRNAs were identified in the AF and SR groups. GO, KEGG, and GSVA results showed that abnormally expressed lncRNAs were involved in signaling pathways related to the atrium, including the Toll-like receptor signaling pathway and calcium signaling pathway. Immune cell infiltration analysis revealed that native B cells, follicular helper T cells, and resting dendritic cells may be involved in the AF process. In addition, LINC00844 was negatively correlated with resting dendritic cells. CONCLUSION The expression profile of lncRNA in AF patients was different from that in normal controls. The physiological functions of these differentially expressed lncRNAs may be related to the pathogenesis of AF, which provide a scientific basis for the prognosis and treatment of patients with AF.
Collapse
Affiliation(s)
- Liangzhen Xie
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - GuanShen Huang
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Mingjian Gao
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianming Huang
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hai Li
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hao Xia
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiuting Xiang
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Saizhu Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunjun Ruan
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
9
|
Wang W, Tian B, Ning Z, Li X. Research Progress of LncRNAs in Atrial Fibrillation. Mol Biotechnol 2022; 64:758-772. [PMID: 35107751 DOI: 10.1007/s12033-022-00449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/02/2022] [Indexed: 10/19/2022]
Abstract
Atrial fibrillation (AF) is one of the most common arrhythmias in adults, with high morbidity and increased mortality risk. In recent years, the clinical diagnosis, treatment, and mechanistic research of AF have increased exponentially, and regulation based on the potential molecular mechanism of AF is a research hotspot. Long noncoding RNAs (LncRNAs), usually refer to noncoding RNA transcripts greater than 200 nucleotides in length, have been shown to play a role in cardiovascular diseases such as coronary artery disease, heart failure, and myocardial fibrosis through various regulatory methods. An increasing number of researchers have begun to pay attention to the identification and function of LncRNAs in AF. This article reviews changes in the expression of related LncRNAs detected in AF and describes the LncRNAs that play a regulatory role in AF-related processes, to explore the potential of LncRNAs as new biomarkers and therapeutic targets in AF.
Collapse
Affiliation(s)
- Wenhui Wang
- Tongji University School of Medicine, Shanghai, 200082, China
| | - Bei Tian
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 of Zhouyuan Road, Pudong New District, Shanghai, 201318, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 of Zhouyuan Road, Pudong New District, Shanghai, 201318, China
| | - Xinming Li
- Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, 200136, China.
| |
Collapse
|
10
|
Ke X, Zhang J, Huang X, Li S, Leng M, Ye Z, Li G. Construction and Analysis of the lncRNA-miRNA-mRNA Network Based on Competing Endogenous RNA in Atrial Fibrillation. Front Cardiovasc Med 2022; 9:791156. [PMID: 35141302 PMCID: PMC8818759 DOI: 10.3389/fcvm.2022.791156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Background Accumulated studies have revealed that long non-coding RNAs (lncRNAs) play critical roles in human diseases by acting as competing endogenous RNAs (ceRNAs). However, functional roles and regulatory mechanisms of lncRNA-mediated ceRNA in atrial fibrillation (AF) remain unknown. In the present study, we aimed to construct the lncRNA-miRNA-mRNA network based on ceRNA theory in AF by using bioinformatic analyses of public datasets. Methods Microarray data sets of GSE115574 and GSE79768 from the Gene Expression Omnibus database were downloaded. Twenty-one AF right atrial appendage (RAA) samples and 22 sinus rhythm (SR) subjects RAA samples were selected for subsequent analyses. After merging all microarray data and adjusting for batch effect, differentially expressed genes were identified. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out. A ceRNA network was constructed. Result A total of 8 lncRNAs and 43 mRNAs were significantly differentially expressed with fold change >1.5 (p < 0.05) in RAA samples of AF patients when compared with SR. GO and KEGG pathway analysis showed that cardiac muscle contraction pathway were involved in AF development. The ceRNA was predicted by co-expressing LOC101928304/ LRRC2 from the constructional network analysis, which was competitively combined with miR-490-3p. The expression of LOC101928304 and LRRC were up-regulated in myocardial tissue of patients with AF, while miR-490-3p was down-regulated. Conclusion We constructed the LOC101928304/miR-490-3p/LRRC2 network based on ceRNA theory in AF in the bioinformatic analyses of public datasets. The ceRNA network found from this study may help improve our understanding of lncRNA-mediated ceRNA regulatory mechanisms in the pathogenesis of AF.
Collapse
Affiliation(s)
- Xiangyu Ke
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junguo Zhang
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xin Huang
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shuai Li
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Meifang Leng
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zebing Ye
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Zebing Ye
| | - Guowei Li
- Centre for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University, Hamilton, ON, Canada
- Guowei Li
| |
Collapse
|
11
|
Ren DY, Yuan XR, Tu CX, Shen JL, Li YW, Yan AH, Ru Y, Han HY, Yang YM, Liu Y, Li HY. Long Noncoding RNA 00472: A Novel Biomarker in Human Diseases. Front Pharmacol 2021; 12:726908. [PMID: 34987381 PMCID: PMC8722734 DOI: 10.3389/fphar.2021.726908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in human diseases. They control gene expression levels and influence various biological processes through multiple mechanisms. Functional abnormalities in lncRNAs are strongly associated with occurrence and development of various diseases. LINC00472, which is located on chromosome 6q13, is involved in several human diseases, particularly cancers of the breast, lung, liver, osteosarcoma, bladder, colorectal, ovarian, pancreatic and stomach. Importantly, LINC00472 can be used as a biomarker for breast cancer cell sensitivity to chemotherapeutic regimens, including doxorubicin. LINC00472 is regulated by microRNAs and several signaling pathways. However, the significance of LINC00472 in human diseases has not been clearly established. In this review, we elucidate on the significance of LINC00472 in various human diseases, indicating that LINC00472 may be a diagnostic, prognostic as well as therapeutic target for these diseases.
Collapse
Affiliation(s)
- Dan-yang Ren
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Xin-rong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-xia Tu
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Jian-ling Shen
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Yun-wei Li
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Ai-hua Yan
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Yi Ru
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Hui-yun Han
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Yan-ming Yang
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Yan Liu
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Hui-ying Li
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Cheng Y, Cao X, Zhang J, Chen D, Zhu J, Xu L, Qin L. Dysregulated lncRNAs are Involved in the Progress of Sepsis by Constructing Regulatory Networks in Whole Blood Cells. Front Pharmacol 2021; 12:678256. [PMID: 34483898 PMCID: PMC8416166 DOI: 10.3389/fphar.2021.678256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a highly heterogeneous syndrome that is caused by an unbalanced host response to an infection. Long noncoding RNAs (lncRNAs) have been reported to exert regulatory roles in a variety of biological processes, and became potential biomarkers and therapeutic targets for diverse diseases. However, current understanding on the roles of lncRNAs in sepsis is extremely limited. Herein, to decipher the underlying functions of lncRNAs, we reexplored the 83 transcriptome datasets from specimens with sepsis, no_sepsis by final diagnosis, and control. The results of differentially expressed genes (DEGs), differentially expressed lncRNA (DElncRNA) analysis, and co-expression analysis of lncRNA–mRNA pairs were obtained. We found that the expression pattern of lncRNAs was significantly activated in sepsis specimens, which was clearly distinguished in sepsis from no_sepsis and control specimens. By performing co-expression analysis, we found DElncRNAs were closely related to T-cell activation and immune response–related terms in sepsis by regulating mRNA expression in the trans manner. The lncRNA–mRNA network and the qRT-PCR test revealed that lncRNAs LINC00861, RP11-284N8.3, and CTB-61M7.2 were significantly correlated with the pathogenesis of sepsis. In addition, weighted gene co-expression analysis (WGCNA) and cis-regulation analysis also revealed sepsis-specific lncRNAs were highly associated with important biological processes correlated with sepsis. In summary, the systematic dysregulation of lncRNAs is tightly involved in the remodeling of gene expression regulatory network in sepsis, and the lncRNA–mRNA expression network may be used to refine biomarker predictions for developing novel therapeutic approaches in sepsis.
Collapse
Affiliation(s)
- Yanwei Cheng
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Xue Cao
- Department of Rheumatology and Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Jiange Zhang
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Dong Chen
- ABLife BioBigData Institute, Wuhan, China
| | - Juan Zhu
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Lijun Xu
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Lijie Qin
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
13
|
HNRNPU-AS1 regulates cell proliferation and apoptosis via miR-205-5p/AXIN2 axis and Wnt/β-catenin signaling pathway in cervical cancer. Mol Cell Biol 2021; 41:e0011521. [PMID: 34309414 DOI: 10.1128/mcb.00115-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have key functions in modulating cervical cancer (CC) genesis and progression. This work focused on exploring lncRNA HNRNPU-AS1's function in CC and the underlying mechanism. HNRNPU-AS1, AXIN2 and miR-205-5p levels in CC cases were measured through RT-qPCR. Relationship between miR-205-5p and AXIN2 or HNRNPU-AS1 was validated through dual-luciferase assay. Cell proliferation was examined by CCK-8, while cell apoptosis by colony formation and flow cytometry analysis. HNRNPU-AS1 expression loss could be observed in CC patients and cell lines, which predicted the dismal prognosis of CC cases. Moreover, it was identified that the miR-205-5p level was up-regulated, which acted as an inhibitory target of HNRNPU-AS1 and AXIN2. HNRNPU-AS1 inhibited cell proliferation and promoted apoptosis. As revealed by Kaplan-Meier curve, CC cases showing low HNRNPU-AS1, high miR-205-5p, and low AXIN2 levels had the poorest prognosis. AXIN2 reversed the CC cell proliferation-promoting, apoptosis-inhibiting and Wnt/β-catenin signaling-activating mediated by miR-205-5p or HNRNPU-AS1 knockout. In conclusion, the overexpression of lncRNA HNRNPU-AS1 suppressed CC progression by inhibiting Wnt/β-catenin pathway through miR-205-5p/AXIN2 axis.
Collapse
|
14
|
Li J, Zhang Y, Zhang D, Li Y. The Role of Long Non-coding RNAs in Sepsis-Induced Cardiac Dysfunction. Front Cardiovasc Med 2021; 8:684348. [PMID: 34041287 PMCID: PMC8141560 DOI: 10.3389/fcvm.2021.684348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Sepsis is a syndrome with life-threatening organ dysfunction induced by a dysregulated host response to infection. The heart is one of the most commonly involved organs during sepsis, and cardiac dysfunction, which is usually indicative of an extremely poor clinical outcome, is a leading cause of death in septic cases. Despite substantial improvements in the understanding of the mechanisms that contribute to the origin and responses to sepsis, the prognosis of sepsis-induced cardiac dysfunction (SICD) remains poor and its molecular pathophysiological changes are not well-characterized. The recently discovered group of mediators known as long non-coding RNAs (lncRNAs) have presented novel insights and opportunities to explore the mechanisms and development of SICD and may provide new targets for diagnosis and therapeutic strategies. LncRNAs are RNA transcripts of more than 200 nucleotides with limited or no protein-coding potential. Evidence has rapidly accumulated from numerous studies on how lncRNAs function in associated regulatory circuits during SICD. This review outlines the direct evidence of the effect of lncRNAs on SICD based on clinical trials and animal studies. Furthermore, potential functional lncRNAs in SICD that have been identified in sepsis studies are summarized with a proven biological function in research on other cardiovascular diseases.
Collapse
Affiliation(s)
- Jiawen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yulin Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|