1
|
Chen Y, Feng G, Guo G, Urasaki K, Kubota K, Li YY. Improved Properties and Enhancement Strategies of Hydroxyapatite-Based Functional Granular Sludge for a High-Rate Partial Nitritation/Anammox System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7624-7633. [PMID: 37141566 DOI: 10.1021/acs.est.3c00491] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Retaining sufficient anammox bacteria (AnAOB) while keeping the anammox-based process stable is the focus of the study of anammox technology, especially in a one-stage partial nitritation/anammox (PNA) process. The use of hydroxyapatite (HAP) granules in an anammox-based process is innovative for its potential to improve the nitrogen removal rate and achieve simultaneous removal of phosphorus. In this study, the HAP-based granular sludge was employed using enhancement strategies for an excellent nitrogen removal performance in a one-stage PNA process. Compared to those of other granular sludge PNA systems, a remarkable sludge volume index of 7.8 mL/g and an extremely high mixed liquor volatile suspended solids of 15 g/L were achieved under a low hydraulic retention time of 2 h. Consequently, an unprecedented nitrogen removal rate as high as 4.8 kg N/m3/d at 25 °C was obtained under a nitrogen loading rate of 6 kg N/m3/d. After a long-term operation of 870 days, the enhancement strategies underlying the superior performance of the granular sludge were identified. These findings clearly demonstrate that the enhancement strategies are crucial for the superior operating performance of the PNA process, and they can promote the application of the anammox-based process.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Gaoxuefeng Feng
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Guangze Guo
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Kampachiro Urasaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
2
|
Chen H, Yang E, Tu Z, Wang H, Liu K, Chen J, Wu S, Kong Z, Hendrik Sanjaya E, Yang M. Dual inner circulation and multi-partition driving single-stage autotrophic nitrogen removal in a bioreactor. BIORESOURCE TECHNOLOGY 2022; 355:127261. [PMID: 35526709 DOI: 10.1016/j.biortech.2022.127261] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The single-stage autotrophic nitrogen removal (ANR) process is impeded by a long start-up cycle and unstable operation performance. In this study, an airlift inner-circulation partition bioreactor (AIPBR) was operated continuously for 215 days to explore methods of strengthening the performance and stable operation of the single-stage ANR system. AIPBR start-up period took around 38 days, the total nitrogen removal efficiency was > 85% on day 35. With the decrease of hydraulic retention time and the increase of aeration rate, the nitrogen removal rate increased to 0.85 ± 0.02 kg-N/m3/day. The sludge morphology gradually changed into dark-red floc-coupled granular sludge. Nitrosomonas (9.95%) and Candidatus Brocadia (6.41%) were dominant in the sludge. During long-term operation, AIPBR achieved the dual inner circulation of sewage and sludge and then formed effective dissolved oxygen and sludge partitions to provide a suitable growth environment for various functional bacteria, promote synergy between them, and strengthen the ANR performance.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085, China
| | - Enzhe Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085, China
| | - Zhi Tu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Ke Liu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Jing Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Sha Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | | | - Min Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085, China.
| |
Collapse
|
3
|
Ahmar Siddiqui M, Kumar Biswal B, Siriweera B, Chen G, Wu D. Integrated self-forming dynamic membrane (SFDM) and membrane-aerated biofilm reactor (MABR) system enhanced single-stage autotrophic nitrogen removal. BIORESOURCE TECHNOLOGY 2022; 345:126554. [PMID: 34906703 DOI: 10.1016/j.biortech.2021.126554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The membrane aerated biofilm reactor (MABR) is a novel bioreactor technology, facilitating single-stage autotrophic nitrogen removal. Two laboratory-scale MABRs equipped with non-woven fabrics were operated simultaneously without and with a self-forming dynamic membrane (SFDM) filtration module. After 87 days of operation (system start-up), the reactor incorporated with SFDM filtration showed better performance in terms of total nitrogen removal (>80%) and effluent suspended solid (less than1 mg/L) than the MABR in the up flow anaerobic sludge blanket (UASB) configuration (i.e., without SFDM). The incorporation of SFDM has the ability to retain more slow growing biomass (anammox) inside the reactor. Microbial characterization by 16S rRNA-based amplicon sequencing shows that the abundance and composition of microbial communities in two MABR systems were different, i.e., the genusRhodanobacterwas abundant in UASB-MABR, while Calorithrixwas dominant in SFDM-MABR. PCA-based statistical analysis demonstrated a positive association between reactor performance, membrane characteristics and microbial communities.
Collapse
Affiliation(s)
- Muhammad Ahmar Siddiqui
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | - Buddhima Siriweera
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | - Di Wu
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, PR China; Center for Environment and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Li J, Tao Y, Li G, Feng C, Chen R, Hua M. Biological Processes for Pollution Control: Current Research and Emerging Technologies 2020. ARCHAEA (VANCOUVER, B.C.) 2021; 2021:9852531. [PMID: 34776792 PMCID: PMC8589500 DOI: 10.1155/2021/9852531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022]
Affiliation(s)
- Jin Li
- Qingdao University, Qingdao, China
| | - Yu Tao
- Chinese Academy of Sciences, Beijing, China
| | | | - Cuijie Feng
- Polytechnic University of Milan Piazza Leonardo da Vinci, Milan, Italy
| | - Rong Chen
- Xi'an University of Architecture and Technology, Xi'an, China
| | - Ming Hua
- Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Zhang S, Zhang Z, Xia S, Ding N, Liao X, Yang R, Chen M, Chen S. The potential contributions to organic carbon utilization in a stable acetate-fed Anammox process under low nitrogen-loading rates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147150. [PMID: 33894611 DOI: 10.1016/j.scitotenv.2021.147150] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
The unique ability of Anammox bacteria to metabolize short-chain fatty acids have been demonstrated. However, the potential contributions of active Anammox species to carbon utilization in a mixotrophic Anammox-denitrification process are less well understood. In this study, we combined genome-resolved metagenomics and DNA stable isotope probing (DNA-SIP) to characterize an Anammox process fed with acetate under COD/TN ratios of around 0.30-0.40 and low nitrogen-loading rates. A draft genome of "Candidatus Jettenia caeni" and a novel species that was phylogenetically close to "Candidatus Brocadia sinica" were recovered. Essential genes encoding the key enzymes for acetate metabolism and dissimilatory nitrate reduction to ammonium were identified in the two Anammox draft genomes. The DNA-SIP revealed that Ignavibacterium, "Candidatus Jettenia caeni," Thauera, Denitratisoma, and Calorithrix predominantly contributed to organic carbon utilization in the acetate-fed Anammox process. In particular, the "Candidatus Jettenia caeni" accounted for a higher proportion of 13C-DNA communities than "Candidatus Brocadia sinica." This result well confirmed the theory of maintenance energy between the interspecies competition of the two Anammox species under low nitrogen-loading rates. Our study revealed its potential important role of the Anammox genus "Candidatus Jettenia" in the treatment of wastewater containing low organic matter and ammonia.
Collapse
Affiliation(s)
- Shici Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhaoji Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Ningning Ding
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xinrui Liao
- School of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Ruili Yang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Minquan Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shaohua Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|