1
|
Zhang T, Li L, Huang S, Starodubtseva MN, Liu J. Anti-endothelial cell antibodies in pathogenesis of vasculitis. Front Immunol 2025; 16:1567293. [PMID: 40370444 PMCID: PMC12075250 DOI: 10.3389/fimmu.2025.1567293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025] Open
Abstract
Vasculitis is a group of syndromes characterized by inflammation, presence of autoantibodies and endothelial cells (ECs) damage, which lead to stenosis or occlusion of the vascular lumen. Anti-endothelial cell antibodies (AECAs) are a heterogeneous group of autoantibodies in vasculitis. AECAs bind to antigens and membrane-bound proteins of ECs, inducing inflammation, coagulation, and apoptosis. In this review, we discuss the pathological role of AECAs in different types of vasculitis. In addition, AECAs potentially induce alterations of ECs mechanical properties, and subsequently promotes angiogenic phenotypes in the occurrence of vasculitis.
Collapse
Affiliation(s)
- Tian Zhang
- Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Laboraotry for Future Industry in Gene Editing in Vascular Endothelial Cells of Universities of Shandong Province, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Liqun Li
- Department of Clinical Laboratory, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Shengshi Huang
- Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Laboraotry for Future Industry in Gene Editing in Vascular Endothelial Cells of Universities of Shandong Province, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Maria N. Starodubtseva
- Gomel State Medical University, Gomel, Belarus
- Institute of Radiobiology of NAS of Belarus, Gomel, Belarus
| | - Ju Liu
- Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Laboraotry for Future Industry in Gene Editing in Vascular Endothelial Cells of Universities of Shandong Province, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
2
|
Guo F, Han J, Jin M, Xie Y, Jiang L. Effects of sucrose and 1-MCP on enzymatic and nonenzymatic antioxidants in postharvest Gynura bicolor DC. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109319. [PMID: 39626525 DOI: 10.1016/j.plaphy.2024.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 02/05/2025]
Abstract
After harvesting, Gynura bicolor DC (G. bicolor) undergoes rapid quality deterioration, including decay, nutrient loss, and reactive oxygen species (ROS) burst, greatly limiting its shelf life. This study was performed to evaluate the effects of treatment with sucrose and 1-methylcyclopropene (1-MCP) on indices of quality deterioration, ROS metabolism, and phenylpropanoid metabolism, with the goals of resisting oxidative stress and improving the postharvest quality of G. bicolor. Sucrose treatment activated phenylpropanoid metabolism, increased phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), and 4-coumarate:CoA ligase (4CL) activities, and promoted the accumulation of phenolics. The increases in nonenzymatic antioxidants decreased O2·-, ·OH, and H2O2 contents. Conversely, 1-MCP treatment increased NADPH oxidase (NOX) activity and induced transient oxidative stress, which significantly activated enzymatic antioxidants, including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), thus maintaining a lower ROS level. Treatment with both sucrose and 1-MCP exhibited a synergistic effect on alleviating oxidative stress, downregulating GbSAG101 and GbATG expression. Compared with sucrose treatment, 1-MCP treatment showed a greater inhibitory effect on ROS burst. Phenolic substance contents were similar in plants treated with sucrose and 1-MCP at the end of the storage period. Therefore, we speculated that higher levels of antioxidant enzyme activity may decrease the consumption of nonenzymatic antioxidants. Our experimental results indicated the involvement of different pathways in the effects of sucrose treatment, 1-MCP treatment, and combined treatment on delaying ROS burst, and suggested potential alternative methods for the preservation of vegetables with stems during the postharvest storage.
Collapse
Affiliation(s)
- Fuzheng Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiayuan Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yitong Xie
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR, China
| | - Li Jiang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Luo M, Zheng Y, Tang S, Gu L, Zhu Y, Ying R, Liu Y, Ma J, Guo R, Gao P, Zhang C. Radical oxygen species: an important breakthrough point for botanical drugs to regulate oxidative stress and treat the disorder of glycolipid metabolism. Front Pharmacol 2023; 14:1166178. [PMID: 37251336 PMCID: PMC10213330 DOI: 10.3389/fphar.2023.1166178] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Background: The incidence of glycolipid metabolic diseases is extremely high worldwide, which greatly hinders people's life expectancy and patients' quality of life. Oxidative stress (OS) aggravates the development of diseases in glycolipid metabolism. Radical oxygen species (ROS) is a key factor in the signal transduction of OS, which can regulate cell apoptosis and contribute to inflammation. Currently, chemotherapies are the main method to treat disorders of glycolipid metabolism, but this can lead to drug resistance and damage to normal organs. Botanical drugs are an important source of new drugs. They are widely found in nature with availability, high practicality, and low cost. There is increasing evidence that herbal medicine has definite therapeutic effects on glycolipid metabolic diseases. Objective: This study aims to provide a valuable method for the treatment of glycolipid metabolic diseases with botanical drugs from the perspective of ROS regulation by botanical drugs and to further promote the development of effective drugs for the clinical treatment of glycolipid metabolic diseases. Methods: Using herb*, plant medicine, Chinese herbal medicine, phytochemicals, natural medicine, phytomedicine, plant extract, botanical drug, ROS, oxygen free radicals, oxygen radical, oxidizing agent, glucose and lipid metabolism, saccharometabolism, glycometabolism, lipid metabolism, blood glucose, lipoprotein, triglyceride, fatty liver, atherosclerosis, obesity, diabetes, dysglycemia, NAFLD, and DM as keywords or subject terms, relevant literature was retrieved from Web of Science and PubMed databases from 2013 to 2022 and was summarized. Results: Botanical drugs can regulate ROS by regulating mitochondrial function, endoplasmic reticulum, phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT), erythroid 2-related factor 2 (Nrf-2), nuclear factor κB (NF-κB), and other signaling pathways to improve OS and treat glucolipid metabolic diseases. Conclusion: The regulation of ROS by botanical drugs is multi-mechanism and multifaceted. Both cell studies and animal experiments have demonstrated the effectiveness of botanical drugs in the treatment of glycolipid metabolic diseases by regulating ROS. However, studies on safety need to be further improved, and more studies are needed to support the clinical application of botanical drugs.
Collapse
Affiliation(s)
- Maocai Luo
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Zheng
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- GCP Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linsen Gu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongtao Ying
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yufei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianli Ma
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruixin Guo
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Nyandwi JB, Ko YS, Jin H, Yun SP, Park SW, Kang KR, Kim HJ. Rosmarinic acid downregulates the oxLDL‑induced interaction between monocytes and endothelial cells, in addition to monocyte diapedesis, under high glucose conditions. Int J Mol Med 2022; 49:68. [PMID: 35315501 PMCID: PMC8989427 DOI: 10.3892/ijmm.2022.5125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/22/2022] [Indexed: 11/20/2022] Open
Abstract
Endothelial dysfunction during diabetes has been previously reported to be at least in part attributed to increased oxidized low‑density lipoprotein (oxLDL) levels mediated by high glucose (HG) levels. Endothelial inflammation increases the adhesiveness of monocytes to the endothelium in addition to increasing vascular permeability, promoting diabetic atherogenesis. In a previous study, it was reported that oxLDL treatment induced nucleotide‑binding domain and leucine‑rich repeat containing family, pyrin domain‑containing 3 inflammasome activation in endothelial cells (ECs) under HG conditions, in a manner that could be effectively reversed by rosmarinic acid. However, it remains unclear whether oxLDL‑mediated inflammasome activation can regulate the interaction between monocytes and ECs. The effects of oxLDL‑mediated inflammasome activation on endothelial permeability under HG conditions, in addition to the effects of rosmarinic acid on these oxLDL‑mediated processes, also remain poorly understood. Therefore, the present study aimed to elucidate the mechanisms involved in oxLDL‑induced endothelial permeability and monocyte diapedesis under HG conditions, in addition to the potential effects of rosmarinic acid. ECs were treated with oxLDL under HG conditions in the presence or absence of ROS scavengers mitoTEMPO and NAC, p38 inhibitor SB203580, FOXO1 inhibitor AS1842856 or transfected with the TXNIP siRNA, before protein expression levels of intercellular adhesion molecule 1 (ICAM‑1), vascular cell adhesion molecule‑1 (VCAM‑1), phosphorylated vascular endothelial‑cadherin (VE‑cadhedrin), VE‑cadherin and zonula occludens‑1 (ZO‑1) were measured by western blotting. In addition, adhesion assay and Transwell assays were performed. oxLDL was found to significantly increase the expression of ICAM‑1 and VCAM‑1 in ECs under HG conditions whilst also enhancing the adhesion of monocytes to ECs. This was found to be dependent on the reactive oxygen species (ROS)/p38 MAPK/forkhead box O1 (FOXO1)/thioredoxin interacting protein (TXNIP) signaling pathway. In addition, oxLDL‑stimulated ECs under HG conditions exhibited increased phosphorylated VE‑cadherin protein levels and decreased ZO‑1 protein expression levels compared with those in untreated ECs, suggesting increased endothelial permeability. Furthermore, monocyte transmigration through the endothelial monolayer was significantly increased by oxLDL treatment under HG conditions. These oxLDL‑mediated effects under HG conditions were also demonstrated to be dependent on this ROS/p38 MAPK/FOXO1/TXNIP signaling pathway. Subsequently, rosmarinic acid treatment significantly reversed oxLDL‑induced overexpression of adhesion molecules and monocyte‑EC adhesion, oxLDL‑induced endothelial junction hyperpermeability and monocyte transmigration through the endothelial monolayer under HG conditions, in a dose‑dependent manner. These results suggest that rosmarinic acid can exert a protective effect against oxLDL‑mediated endothelial dysfunction under HG conditions by reducing the interaction between monocytes and ECs in addition to preventing monocyte diapedesis.
Collapse
Affiliation(s)
- Jean Baptiste Nyandwi
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali 4285, Republic of Rwanda
| | - Young Shin Ko
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Hana Jin
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Kee Ryeon Kang
- Department of Biochemistry, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| |
Collapse
|
5
|
Hsieh SL, Shih YW, Chiu YM, Tseng SF, Li CC, Wu CC. By-Products of the Black Soybean Sauce Manufacturing Process as Potential Antioxidant and Anti-Inflammatory Materials for Use as Functional Foods. PLANTS (BASEL, SWITZERLAND) 2021; 10:2579. [PMID: 34961049 PMCID: PMC8709241 DOI: 10.3390/plants10122579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 05/15/2023]
Abstract
To assess the potential of by-products of the black bean fermented soybean sauce manufacturing process as new functional food materials, we prepared black bean steamed liquid lyophilized product (BBSLP) and analysed its antioxidant effects in vitro. RAW264.7 macrophages were cultured and treated with BBSLP for 24 h, and 1 μg/mL lipopolysaccharide (LPS) was then used for another 24 h to induce inflammation. The cellular antioxidant capacity and inflammatory response were then analysed. Activation of nuclear factor kappa B (NF-κB) signaling in RAW264.7 macrophages was also analysed. Results showed BBSLP had 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS+) radical-scavenging abilities and reducing power in vitro. The levels of both reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) were reduced after RAW264.7 macrophages were treated with BBSLP after LPS induction. After RAW264.7 macrophage treatment with BBSLP and induction by LPS, the levels of inflammatory molecules, including nitric oxide (NO), prostaglandin E2 (PGE2), IL-1α, IL-6 and TNF-α, decreased. NF-κB signaling activity was inhibited by reductions in IκB phosphorylation and NF-κB DNA-binding activity after RAW264.7 macrophages were treated with BBSLP after LPS induction. In conclusion, BBSLP has antioxidant and anti-inflammatory capabilities and can be a supplement material for functional food.
Collapse
Affiliation(s)
- Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan;
| | - Yi-Wen Shih
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan;
| | - Ying-Ming Chiu
- Department of Allergy, Immunology, and Rheumatology, Tungs’ Taichung Metro Harbor Hospital, Taichung 43503, Taiwan;
| | - Shao-Feng Tseng
- Department of Quality Control and Research, Ta-Tung Soya Sauce Co. Ltd., Yunlin 64069, Taiwan;
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan;
| |
Collapse
|