1
|
Shang P, Liu Y, Ren J, Liu Q, Song H, Jia J, Liu Q. Overexpression of miR-532-5p restrains oxidative stress response of chondrocytes in nontraumatic osteonecrosis of the femoral head by inhibiting ABL1. Open Med (Wars) 2024; 19:20240943. [PMID: 38584839 PMCID: PMC10997031 DOI: 10.1515/med-2024-0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
This study is to probe into the meaning of serum miR-532-5p in nontraumatic osteonecrosis of the femoral head (ONFH), and a molecular mechanism of miR-532-5p in the development of nontraumatic ONFH. This study enrolled 96 patients diagnosed with nontraumatic ONFH and 96 patients with femoral neck fracture. The levels of miR-532-5p, ABL1, MMP-3, MMP-13, and cleaved-caspase3 were determined. Radiographic progression was assessed by ARCO staging system. Visual analog scale (VAS) and Harris hip score (HHS) were employed for evaluation of the symptomatic severity of nontraumatic ONFH. Cell viability and apoptosis in chondrocytes isolated from clinical samples were investigated with CCK-8 and flow cytometry. The levels of lactic dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA), mitochondrial membrane potential (ΔΨm), and reactive oxygen species (ROS) were determined. miR-532-5p was downregulated in tissues and serum of patients with nontraumatic ONFH, negatively related with ARCO staging and VAS, and positively correlated with HHS. Cell apoptosis, LDH, MDA, and ROS strengthened, while cell viability, ΔΨm, and SOD reduced in chondrocytes of nontraumatic ONFH patients. ABL1 was upregulated in cartilage tissues from nontraumatic ONFH patients. miR-532-5p targeted ABL1, and overexpressed miR-532-5p alleviated nontraumatic ONFH-induced oxidative stress damage of chondrocytes by restraining ABL1. miR-532-5p ameliorated oxidative stress injury in nontraumatic ONFH by inhibiting ABL1.
Collapse
Affiliation(s)
- Peng Shang
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Ying Liu
- Department of Oncology, Second Hospital of Shanxi Medial University, Taiyuan, Shanxi, 030001, P.R. China
| | - Jie Ren
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Qingqing Liu
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Haobo Song
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
| | - Junqing Jia
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei, 430030, P.R. China
| | - Qiang Liu
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei, 430030, P.R. China
| |
Collapse
|
2
|
Tang H, Zhang H, Liu D, Wang Z, Yu D, Fan W, Guo Z, Huang W, Hou S, Zhou Z. Genome-wide association study reveals the genetic determinism of serum biochemical indicators in ducks. BMC Genomics 2022; 23:856. [PMID: 36575369 PMCID: PMC9795613 DOI: 10.1186/s12864-022-09080-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The serum is rich in nutrients and plays an essential role in electrolyte and acid-base balance, maintaining cellular homeostasis. In addition, serum parameters have been commonly used as essential biomarkers for clinical diagnosis. However, little is known about the genetic mechanism of the serum parameters in ducks. RESULTS This study measured 18 serum parameters in 320 samples of the F2 segregating population generated by Mallard × Pekin duck. The phenotypic correlations showed a high correlation between LDH, HBDH, AST, and ALT (0.59-0.99), and higher coefficients were also observed among TP, ALB, HDL-C, and CHO (0.46-0.87). And then, we performed the GWAS to reveal the genetic basis of the 18 serum biochemical parameters in ducks. Fourteen candidate protein-coding genes were identified with enzyme traits (AST, ALP, LDH, HBDH), and 3 protein-coding genes were associated with metabolism and protein-related serum parameters (UA, TG). Moreover, the expression levels of the above candidate protein-coding genes in different stages of breast muscle and different tissues were analyzed. Furthermore, the genes located within the high-LD region (r2 > 0.4 and - log10(P) < 4) neighboring the significant locus also remained. Finally, 86 putative protein-coding genes were used for GO and KEGG enrichment analysis, the enzyme-linked receptor protein signaling pathway and ErbB signaling pathway deserve further focus. CONCLUSIONS The obtained results can contribute to new insights into blood metabolism and provide new genetic biomarkers for application in duck breeding programs.
Collapse
Affiliation(s)
- Hehe Tang
- grid.410727.70000 0001 0526 1937Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - He Zhang
- grid.410727.70000 0001 0526 1937Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Dapeng Liu
- grid.410727.70000 0001 0526 1937Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhen Wang
- grid.410727.70000 0001 0526 1937Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Daxin Yu
- grid.410727.70000 0001 0526 1937Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Wenlei Fan
- grid.412608.90000 0000 9526 6338College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, PR China
| | - Zhanbao Guo
- grid.410727.70000 0001 0526 1937Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Wei Huang
- grid.410727.70000 0001 0526 1937Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Shuisheng Hou
- grid.410727.70000 0001 0526 1937Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhengkui Zhou
- grid.410727.70000 0001 0526 1937Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
3
|
A new strategy for the rapid identification and validation of direct toxicity targets of psoralen-induced hepatotoxicity. Toxicol Lett 2022; 363:11-26. [PMID: 35597499 DOI: 10.1016/j.toxlet.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
The interaction between small-molecule compounds of traditional Chinese medicine and their direct targets is the molecular initiation event, which is the key factor for toxicity efficacy. Psoralen, an active component of Fructus Psoraleae, is toxic to the liver and has various pharmacological properties. Although the mechanism of psoralen-induced hepatotoxicity has been studied, the direct target of psoralen remains unclear. Thus, the aim of this study was to discover direct targets of psoralen. To this end, we initially used proteomics based on drug affinity responsive target stability (DARTS) technology to identify the direct targets of psoralen. Next, we used surface plasmon resonance (SPR) analysis and verified the affinity effect of the 'component-target protein'. This method combines molecular docking technology to explore binding sites between small molecules and proteins. SPR and molecular docking confirmed that psoralen and tyrosine-protein kinase ABL1 could be stably combined. Based on the above experimental results, ABL1 is a potential direct target of psoralen-induced hepatotoxicity. Finally, the targets Nrf2 and mTOR, which are closely related to the hepatotoxicity caused by psoralen, were predicted by integrating proteomics and network pharmacology. The direct target ABL1 is located upstream of Nrf2 and mTOR, Nrf2 can influence the expression of mTOR by affecting the level of reactive oxygen species. Immunofluorescence experiments and western blot results showed that psoralen could affect ROS levels and downstream Nrf2 and mTOR protein changes, whereas the ABL1 inhibitor imatinib and ABL1 agonist DPH could enhance or inhibit this effect. In summary, we speculated that when psoralen causes hepatotoxicity, it acts on the direct target ABL1, resulting in a decrease in Nrf2 expression, an increase in ROS levels and a reduction in mTOR expression, which may cause cell death. We developed a new strategy for predicting and validating the direct targets of psoralen. This strategy identified the toxic target, ABL1, and the potential toxic mechanism of psoralen.
Collapse
|