1
|
Sarmiento-Ordóñez JM, Brito-Samaniego DR, Vásquez-Palacios AC, Pacheco-Quito EM. Association Between Porphyromonas gingivalis and Alzheimer's Disease: A Comprehensive Review. Infect Drug Resist 2025; 18:2119-2136. [PMID: 40308631 PMCID: PMC12043021 DOI: 10.2147/idr.s491628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/13/2025] [Indexed: 05/02/2025] Open
Abstract
Background Periodontitis has long been linked to various inflammatory, chronic, and immunological diseases, such as heart disease or diabetes. Recently, there has been increasing scientific interest in the bidirectional relationship that may exist between periodontitis and the presence and progression of Alzheimer's disease (AD), where it is hypothesized that the infiltration of oral microorganisms (mainly Porphyromonas gingivalis) into the bloodstream, which subsequently reaches the brain, causes inflammatory and neurodegenerative processes related to AD. Purpose The purpose of this review is to determine the association between Porphyromonas gingivalis and Alzheimer's disease in older adults. Patients and Methods It was carried out using different databases such as PubMed, Web of Science, among others, of no more than 10 years old focused on older adult patients who have presented periodontitis and Alzheimer's disease. MESH-indexed terms were used, getting 307 articles. After removing 206 duplicates and applying inclusion criteria (language, relevance, and contribution to the study's objectives), 24 articles were selected for analysis. Conclusion Evidence has been found that gingipains produced by P. gingivalis may contribute to the formation of amyloid plaques in the brain and nerve cell damage characteristic of Alzheimer's disease. It has also been observed that P. gingivalis can enter the brain and stimulate a local immune response. Although the association is promising, more research is needed to confirm it and to develop effective treatments. These findings may have significant implications for clinical practice, potentially leading to preventive or therapeutic strategies targeting oral health as a modifiable risk factor for AD. Further research could focus on exploring these pathways and developing targeted interventions.
Collapse
Affiliation(s)
- Jéssica María Sarmiento-Ordóñez
- Unidad Académica de Salud y Bienestar, Facultad de Odontología, Universidad Católica de Cuenca, Cuenca, Ecuador
- Grupo de Investigación Innovación y Desarrollo Farmacéutico en Odontología, Facultad de Odontología, Jefatura de Investigación e Innovación, Universidad Católica de Cuenca, Cuenca, Ecuador
| | | | | | - Edisson-Mauricio Pacheco-Quito
- Unidad Académica de Salud y Bienestar, Facultad de Odontología, Universidad Católica de Cuenca, Cuenca, Ecuador
- Grupo de Investigación Innovación y Desarrollo Farmacéutico en Odontología, Facultad de Odontología, Jefatura de Investigación e Innovación, Universidad Católica de Cuenca, Cuenca, Ecuador
| |
Collapse
|
2
|
Albahri J, Allison H, Whitehead KA, Muhamadali H. The role of salivary metabolomics in chronic periodontitis: bridging oral and systemic diseases. Metabolomics 2025; 21:24. [PMID: 39920480 PMCID: PMC11805826 DOI: 10.1007/s11306-024-02220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND Chronic periodontitis is a condition impacting approximately 50% of the world's population. As chronic periodontitis progresses, the bacteria in the oral cavity change resulting in new microbial interactions which in turn influence metabolite production. Chronic periodontitis manifests with inflammation of the periodontal tissues, which is progressively developed due to bacterial infection and prolonged bacterial interaction with the host immune response. The bi-directional relationship between periodontitis and systemic diseases has been reported in many previous studies. Traditional diagnostic methods for chronic periodontitis and systemic diseases such as chronic kidney diseases (CKD) have limitations due to their invasiveness, requiring practised individuals for sample collection, frequent blood collection, and long waiting times for the results. More rapid methods are required to detect such systemic diseases, however, the metabolic profiles of the oral cavity first need to be determined. AIM OF REVIEW In this review, we explored metabolomics studies that have investigated salivary metabolic profiles associated with chronic periodontitis and systemic illnesses including CKD, oral cancer, Alzheimer's disease, Parkinsons's disease, and diabetes to highlight the most recent methodologies that have been applied in this field. KEY SCIENTIFIC CONCEPTS OF THE REVIEW Of the rapid, high throughput techniques for metabolite profiling, Nuclear magnetic resonance (NMR) spectroscopy was the most applied technique, followed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). Furthermore, Raman spectroscopy was the most used vibrational spectroscopic technique for comparison of the saliva from periodontitis patients to healthy individuals, whilst Fourier Transform Infra-Red Spectroscopy (FT-IR) was not utilised as much in this field. A recommendation for cultivating periodontal bacteria in a synthetic medium designed to replicate the conditions and composition of saliva in the oral environment is suggested to facilitate the identification of their metabolites. This approach is instrumental in assessing the potential of these metabolites as biomarkers for systemic illnesses.
Collapse
Affiliation(s)
- Jawaher Albahri
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Heather Allison
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kathryn A Whitehead
- Microbiology at Interfaces, Department of Life Sciences, Manchester Metropolitan University, Chester St, Manchester, M1 5GD, UK.
| | - Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
3
|
Condor A, Kui AI, Buduru SD, Negucioiu M, Condor DC, Lucaciu P. Metabolomics Analysis as a Tool in Periodontitis Diagnosis: A Systematic Review. Clin Exp Dent Res 2025; 11:e70095. [PMID: 40172143 PMCID: PMC11963077 DOI: 10.1002/cre2.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 04/04/2025] Open
Abstract
OBJECTIVES This study aims to summarize recent studies available on untargeted metabolomics employed for periodontitis diagnosis, from saliva and gingival crevicular fluid samples, to identify recurring metabolites with biomarker-value potential. A secondary objective was to analysudurue the protocols of existing studies, to facilitate further research. MATERIAL AND METHODS Three databases were electronically searched for relevant studies (PubMed, Web of Science, Scopus). Risk of bias assessment was performed using the Newcastle-Ottawa scale (NOS). Data was extracted from studies, regarding general characteristics and conclusions, population characteristics, periodontal protocols, and metabolomics protocols. Metabolic pathway analysis was performed for recurrent metabolites. RESULTS After screening 405 studies, 13 studies (10 using saliva samples, 3 using GCF samples) were included. 22 metabolites were identified in more than one study and included into the pathway analysis. Butyrate, lactate, isoleucine, glucose, pyruvate, isovalerate, hypoxanthine/xanthine, proline, valine, phenylalanine, and ethanol were most frequently encountered and were found upregulated in periodontitis patients compared to periodontally healthy patients. CONCLUSIONS Metabolomics could provide valuable opportunities in validating potential biomarkers or diagnosis panels, contributing to the screening, prognosis, progression and monitoring of periodontitis. Further studies on larger populations and using established protocols are needed. (PROSPERO CRD42023470339).
Collapse
Affiliation(s)
- Ana‐Maria Condor
- Department of Oral Rehabilitation, Faculty of Dental MedicineOral Health DisciplineCluj‐NapocaRomania
- Cluj County Emergency Clinical HospitalCluj‐NapocaRomania
- Department of Prosthodontics and Dental Materials, Faculty of Dental MedicineProsthodontics DisciplineCluj‐NapocaRomania
| | - Andreea Iuliana Kui
- Department of Prosthodontics and Dental Materials, Faculty of Dental MedicineProsthodontics DisciplineCluj‐NapocaRomania
| | - Smaranda Dana Buduru
- Department of Prosthodontics and Dental Materials, Faculty of Dental MedicineProsthodontics DisciplineCluj‐NapocaRomania
| | - Marius Negucioiu
- Department of Prosthodontics and Dental Materials, Faculty of Dental MedicineProsthodontics DisciplineCluj‐NapocaRomania
| | - Daniela Cornelia Condor
- Department of Oral Rehabilitation, Faculty of Dental MedicinePeriodontology DisciplineCluj‐NapocaRomania
| | - Patricia‐Ondine Lucaciu
- Department of Oral Rehabilitation, Faculty of Dental MedicineOral Health DisciplineCluj‐NapocaRomania
| |
Collapse
|
4
|
Chu S, Chan AKY, Chu CH. Polyamines in Dysbiotic Oral Conditions of Older Adults: A Scoping Review. Int J Mol Sci 2024; 25:10596. [PMID: 39408925 PMCID: PMC11477423 DOI: 10.3390/ijms251910596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Polyamines modulate cellular proliferation and function. Their dysregulation results in inflammatory and oncological repercussions. This study aims to map the current literature and provide an overview of polyamines in dysbiotic oral conditions among older adults. English publications indexed in MEDLINE, Scopus, and Web of Science from January 2000 to May 2024 were screened. Eligibility criteria included clinical and laboratory studies using samples from adults aged 65 or above. This scoping review identified 2725 publications and included 19 publications. Ten studies detected that older adults with oral carcinoma had increased levels of polyamines such as spermidine in saliva and tumour-affected tissues. Eight studies reported older adults suffering from periodontal infection had increased levels of polyamines such as putrescine in saliva, gingival crevicular fluid, and biofilm from the gingival crevice. Two studies showed polyamine levels could reflect the success of periodontal therapy. Three studies found older adults with halitosis had increased levels of polyamines such as cadaverine in saliva and tongue biofilm. Polyamines were suggested as biomarkers for these oral conditions. In conclusion, certain polyamine levels are elevated in older adults with oral cancer, periodontal infections, and halitosis. Polyamines may be used as a simple and non-invasive tool to detect dysbiotic oral conditions and monitor treatment progress in older adults (Open Science Framework registration).
Collapse
Affiliation(s)
| | | | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
5
|
Saliva Metabolomic Profile in Dental Medicine Research: A Narrative Review. Metabolites 2023; 13:metabo13030379. [PMID: 36984819 PMCID: PMC10052075 DOI: 10.3390/metabo13030379] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Metabolomic research tends to increase in popularity over the years, leading to the identification of new biomarkers related to specific health disorders. Saliva is one of the most newly introduced and systematically developed biofluids in the human body that can serve as an informative substance in the metabolomic profiling armamentarium. This review aims to analyze the current knowledge regarding the human salivary metabolome, its alterations due to physiological, environmental and external factors, as well as the limitations and drawbacks presented in the most recent research conducted, focusing on pre—analytical and analytical workflows. Furthermore, the use of the saliva metabolomic profile as a promising biomarker for several oral pathologies, such as oral cancer and periodontitis will be investigated.
Collapse
|
6
|
Islam SR, Prusty D, Maiti S, Dutta R, Chattopadhyay P, Manna SK. Effect of short-term use of FFP2 (N95) masks on the salivary metabolome of young healthy volunteers: a pilot study. Mol Omics 2023. [PMID: 36846883 DOI: 10.1039/d2mo00232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The use of face masks has become an integral part of public life in the post-pandemic era. However, the understanding of the effect of wearing masks on physiology remains incomplete and is required for informing public health policies. For the first time, we report the effects of wearing FFP2 masks on the metabolic composition of saliva, a proximal matrix to breath, along with cardiopulmonary parameters. Un-induced saliva was collected from young (31.2 ± 6.3 years) healthy volunteers (n = 10) before and after wearing FFP2 (N95) masks for 30 minutes and analyzed using GCMS. The results showed that such short-term mask use did not cause any significant change in heart rate, pulse rate or SpO2. Three independent data normalization approaches were used to analyze the changes in metabolomic signature. The individuality of the overall salivary metabotype was found to be unaffected by mask use. However, a trend of an increase in the salivary abundance of L-fucose, 5-aminovaleric acid, putrescine and phloretic acid was indicated irrespective of the method of data normalization. Quantitative analysis confirmed increases in concentrations of these metabolites in saliva of paired samples amid high inter-individual variability. The results showed that while there was no significant change in measured physiological parameters and individual salivary metabotypes, mask use was associated with correlated changes in these metabolites plausibly originating from altered microbial metabolic activity. These results might also explain the change in odour perception reported to be associated with mask use. Potential implications of these changes on mucosal health and immunity warrants further investigation to evolve more prudent mask use policies.
Collapse
Affiliation(s)
- Sk Ramiz Islam
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhan Nagar, Kolkata, West Bengal 700064, India. .,Homi Bhabha National Institute, Mumbai 400094, India
| | - Debasish Prusty
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhan Nagar, Kolkata, West Bengal 700064, India. .,Homi Bhabha National Institute, Mumbai 400094, India
| | - Subhadip Maiti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhan Nagar, Kolkata, West Bengal 700064, India. .,Homi Bhabha National Institute, Mumbai 400094, India
| | - Raju Dutta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhan Nagar, Kolkata, West Bengal 700064, India. .,Homi Bhabha National Institute, Mumbai 400094, India
| | - Partha Chattopadhyay
- Department of Medicine, College of Medicine and Sagore Dutta Hospital, Kolkata, India
| | - Soumen Kanti Manna
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhan Nagar, Kolkata, West Bengal 700064, India. .,Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
7
|
Belibasakis GN, Belstrøm D, Eick S, Gursoy UK, Johansson A, Könönen E. Periodontal microbiology and microbial etiology of periodontal diseases: Historical concepts and contemporary perspectives. Periodontol 2000 2023. [PMID: 36661184 DOI: 10.1111/prd.12473] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 01/21/2023]
Abstract
This narrative review summarizes the collective knowledge on periodontal microbiology, through a historical timeline that highlights the European contribution in the global field. The etiological concepts on periodontal disease culminate to the ecological plaque hypothesis and its dysbiosis-centered interpretation. Reference is made to anerobic microbiology and to the discovery of select periodontal pathogens and their virulence factors, as well as to biofilms. The evolution of contemporary molecular methods and high-throughput platforms is highlighted in appreciating the breadth and depth of the periodontal microbiome. Finally clinical microbiology is brought into perspective with the contribution of different microbial species in periodontal diagnosis, the combination of microbial and host biomarkers for this purpose, and the use of antimicrobials in the treatment of the disease.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Belstrøm
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Ulvi K Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | | | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Zhang Y, Guo Y, Wei W, Zhang Z, Xu X. Metabolomics profiling reveals berberine-inhibited inflammatory response in human gingival fibroblasts by regulating the LPS-induced apoptosis signaling pathway. Front Pharmacol 2022; 13:940224. [PMID: 36071855 PMCID: PMC9441553 DOI: 10.3389/fphar.2022.940224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
This article examines berberine’s biological effects and molecular mechanisms with an inflammatory response model induced by lipopolysaccharide (LPS) in human gingival fibroblasts (HGFs) using metabolomics. The viability of HGFs was determined using the cell counting kit-8 (CCK8). ELISA was used to measure inflammatory cytokines, including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor- α (TNF-α). An investigation of western blots was conducted to investigate the related proteins of apoptosis. Low concentrations of berberine (0.1, 0.5, and 1 μmol L−1) did not affect HGF growth, whereas high concentrations of berberine (5–25 μmol L−1) significantly activated cell proliferation. Berberine suppressed the elevated secretion of IL-6, IL-1β, and TNF-α induced by LPS in HGF. Western blot analysis showed that 10 μmol L−1 of berberine significantly inhibited LPS-induced apoptosis signaling pathway activation. Our results suggested that berberine could inhibit LPS-induced apoptosis and the production of proinflammatory mediators in HGFs cells. Berberine may be a potential therapeutic drug for the management of periodontitis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Stomatology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyang Guo
- Department of Stomatology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjia Wei
- Department of Stomatology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Wenjia Wei, ; Zhongxiao Zhang, ; Xiaodong Xu,
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wenjia Wei, ; Zhongxiao Zhang, ; Xiaodong Xu,
| | - Xiaodong Xu
- Department of Stomatology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Wenjia Wei, ; Zhongxiao Zhang, ; Xiaodong Xu,
| |
Collapse
|