1
|
Li Y, Zhao W, Qian M, Wen Z, Bai W, Zeng X, Wang H, Xian Y, Dong H. Recent advances in the authentication (geographical origins, varieties and aging time) of tangerine peel (Citri reticulatae pericarpium): A review. Food Chem 2024; 442:138531. [PMID: 38271910 DOI: 10.1016/j.foodchem.2024.138531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The consumption of tangerine peel (Citri reticulatae pericarpium, CRP) has been steadily increasing worldwide due to its proven health benefits and sensory characteristics. However, the price of CRP varies widely based on its origin, variety, and aging time, which has led many manufacturers to offer inferior products by exploiting the sensory similarity of CRP, seriously undermining consumers' interests. Therefore, it is essential to identify the authenticity of the CRP. In this study, the research progress on the authenticity of CRP from different origins, years and varieties over the past 10 years and the application and prospects of the main technologies and techniques were reviewed. The advantages and disadvantages of the commonly used methods were also summarized and compared. Mass spectrometry-based and spectroscopy-based techniques are the most commonly used methods for analyzing CRP authenticity. However, designing fast, non-destructive and green methods for identifying CRP authenticity would be the future trend.
Collapse
Affiliation(s)
- Yanxin Li
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Min Qian
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| | - Zhiyi Wen
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Hong Wang
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Yanping Xian
- Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| |
Collapse
|
2
|
Sun X, Deng H, Shan B, Shan Y, Huang J, Feng X, Tang X, Ge Y, Liao P, Yang Q. Flavonoids contribute most to discriminating aged Guang Chenpi ( Citrus reticulata 'Chachi') by spectrum-effect relationship analysis between LC-Q-Orbitrap/MS fingerprint and ameliorating spleen deficiency activity. Food Sci Nutr 2023; 11:7039-7060. [PMID: 37970411 PMCID: PMC10630847 DOI: 10.1002/fsn3.3629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 11/17/2023] Open
Abstract
To further explore the mechanism of "the longer storage time, the better bioactivity" of aged Guang Chenpi, the dry pericarp of Citrus reticulata 'Chachi' (CRC), a series of activity assessments were performed on spleen deficiency mice. The constituents in CRC with different storage years were analyzed by LC-Q-Orbitrap/MS. A total of 53 compounds were identified, and CRC stored for more than 5 years showed higher flavonoid content, especially that of polymethoxyflavones. Anti-spleen deficiency bioactivity analysis among various CRC with different storage years showed aged CRC (stored for more than 3 years) could significantly alleviate fatigue and depression behaviors much better, increase D-xylose and gastrin secretion, and upregulate the expression of the linking protein occludin in the colon walls. Results from 16S rDNA sequencing showed that aged CRC could downregulate the abundance of Enterococcus, Gemmata, Citrobacter, Escherichia_Shigella, and Klebsiella, which were significantly overrepresented in the model group. Bacteroides, Muribaculum, Alloprevotella, Paraprevotella, Alistipes, Eisenbergiella, and Colidextribacter were downregulated in the model group but enriched in the CRC groups. At last, the spectrum-effect relationship analysis indicated that flavonoids such as citrusin III, homoeriodictyol, hesperidin, nobiletin, and isosinensetin in aged CRC showed the highest correlation with better activity in ameliorating spleen deficiency by regulating gut microbiota. Flavonoids contribute most to discriminating aged CRC and could disclose the basis of "the longer storage time, the better bioactivity" of aged Guang Chenpi.
Collapse
Affiliation(s)
- Xiaoming Sun
- School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
- Key Laboratory of Production & Development of Cantonese Medicinal MaterialsState Administration of Traditional Chinese MedicineGuangzhouChina
- Guangdong Provincial Research Center on Good Agricultural Practice & Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal MaterialsGuangzhouChina
- Comprehensive Experimental Station of GuangzhouChinese Material Medica, China Agriculture Research System (CARS‐21‐16)GuangzhouChina
| | - Haidan Deng
- School of Traditional Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Baojun Shan
- School of Traditional Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Yunqi Shan
- School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Jiaying Huang
- School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Xinshu Feng
- School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Xiaomin Tang
- Key Laboratory of Production & Development of Cantonese Medicinal MaterialsState Administration of Traditional Chinese MedicineGuangzhouChina
- Guangdong Provincial Research Center on Good Agricultural Practice & Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal MaterialsGuangzhouChina
- Comprehensive Experimental Station of GuangzhouChinese Material Medica, China Agriculture Research System (CARS‐21‐16)GuangzhouChina
- School of Traditional Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Yuewei Ge
- School of Traditional Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Peiran Liao
- Key Laboratory of Production & Development of Cantonese Medicinal MaterialsState Administration of Traditional Chinese MedicineGuangzhouChina
- Guangdong Provincial Research Center on Good Agricultural Practice & Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal MaterialsGuangzhouChina
- Comprehensive Experimental Station of GuangzhouChinese Material Medica, China Agriculture Research System (CARS‐21‐16)GuangzhouChina
- School of Traditional Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Quan Yang
- Key Laboratory of Production & Development of Cantonese Medicinal MaterialsState Administration of Traditional Chinese MedicineGuangzhouChina
- Guangdong Provincial Research Center on Good Agricultural Practice & Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal MaterialsGuangzhouChina
- Comprehensive Experimental Station of GuangzhouChinese Material Medica, China Agriculture Research System (CARS‐21‐16)GuangzhouChina
- School of Traditional Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
3
|
Wang Q, Qiu Z, Chen Y, Song Y, Zhou A, Cao Y, Xiao J, Xiao H, Song M. Review of recent advances on health benefits, microbial transformations, and authenticity identification of Citri reticulatae Pericarpium bioactive compounds. Crit Rev Food Sci Nutr 2023; 64:10332-10360. [PMID: 37326362 DOI: 10.1080/10408398.2023.2222834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The extensive health-promoting effects of Citri Reticulatae Pericarpium (CRP) have attracted researchers' interest. The difference in storage time, varieties and origin of CRP are closely related to the content of bioactive compounds they contain. The consitituent transformation mediated by environmental microorganisms (bacteria and fungi) and the production of new bioactive components during the storage process may be the main reason for 'the older, the better' of CRP. In addition, the gap in price between different varieties can be as large as 8 times, while the difference due to age can even reach 20 times, making the 'marketing young-CRP as old-CRP and counterfeiting origin' flood the entire market, seriously harming consumers' interests. However, so far, the research on CRP is relatively decentralized. In particular, a summary of the microbial transformation and authenticity identification of CRP has not been reported. Therefore, this review systematically summarized the recent advances on the main bioactive compounds, the major biological activities, the microbial transformation process, the structure, and content changes of the active substances during the transformation process, and authenticity identification of CRP. Furthermore, challenges and perspectives concerning the future research on CRP were proposed.
Collapse
Affiliation(s)
- Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenyuan Qiu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yilu Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yuqing Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Tan E, Li F, Lin X, Ma S, Zhang G, Zhou H, Ouyang Y, Tang Z, Cheng Q. Comparative study on comprehensive quality of Xinhui chenpi by two main plant propagation techniques. Food Sci Nutr 2023; 11:1104-1112. [PMID: 36789071 PMCID: PMC9922146 DOI: 10.1002/fsn3.3148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/22/2022] Open
Abstract
Xinhui chenpi (XHCP), the sun-dried peel of the mandarin orange, Citrus reticulata "Chachi," is the most famous crude drug, as well as a traditional seasoning in Chinese cooking. The main cultivation methods of XHCP are cutting and grafting, but it is generally considered that the quality of XHCP after cutting is superior to that obtained from plants propagated by graftings, which had a negative impact on the marketing of the finished product. In our study, a total of 25 samples of XHCP obtained from plants cultivated by either traditional methods (i.e., from cuttings) or by grafting were collected to compare the contents of four types of metabolites (essential oils, flavonoids, synephrine, and total polysaccharides) as well as antioxidant activity. The results revealed that the quality of XHCP did not decline after cutting, and marked individual differences between XHCP samples, even when prepared from plants grown in the same way. In general, grafting had no significant effect on the most essential oils components, total polysaccharides, synephrine, total flavonoids, total polymethoxylated flavones, hesperidin, nobiletin, tangeretin content, and antioxidant activity. Nevertheless, five volatile compounds can be used as potential chemical markers (p < 0.05) to distinguish between cutting XHCP and grafted XHCP, while four volatile compounds showed high content in grafted XHCP. Our study is expected to provide a theoretical basis for XHCP breeding and cultivation, and thereby further standardize the market of XHCP.
Collapse
Affiliation(s)
- E‐yu Tan
- School of Pharmaceutical Science, Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
- Jiangmen Wuyi Hospital of Traditional Chinese MedicineJiangmenPeople's Republic of China
- Guangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese MedicineGuangzhouPeople's Republic of China
| | - Fang Li
- Jiangmen Wuyi Hospital of Traditional Chinese MedicineJiangmenPeople's Republic of China
| | - Xinheng Lin
- Jiangmen Wuyi Hospital of Traditional Chinese MedicineJiangmenPeople's Republic of China
| | - Shaofeng Ma
- Jiangmen Wuyi Hospital of Traditional Chinese MedicineJiangmenPeople's Republic of China
| | - Guanghua Zhang
- Jiangmen Wuyi Hospital of Traditional Chinese MedicineJiangmenPeople's Republic of China
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese MedicineGuangzhouPeople's Republic of China
- Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhouPeople's Republic of China
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaPeople's Republic of China
| | - Yue Ouyang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaPeople's Republic of China
| | - Ziyu Tang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaPeople's Republic of China
| | - Qiqing Cheng
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaPeople's Republic of China
| |
Collapse
|