1
|
Alqurashy NN, Yousef MI, Hussein AA, Kamel MA, El Wakil A. Monascus red pigment influence on hydroxyapatite nanoparticles-mediated renal toxicity in rats. Sci Rep 2025; 15:2715. [PMID: 39837868 PMCID: PMC11750980 DOI: 10.1038/s41598-024-84959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
Hydroxyapatite nanoparticles (HANPs) have been applied in several biomedical fields. However, its interaction with biological systems is less exploited. This study aimed to characterize HANPs, examine their influence on kidneys, and explore the potential protective effects of naturally extracted red pigment (RP) from Monascus purpureus against HANPs-induced renal toxicity. To this aim, forty eight adult male rats were randomly divided into 8 equal groups: a control group receiving 4% dimethyl sulfoxide (the solvent for HANPs), three groups receiving extracted RP at different doses of 10, 20, and 40 mg/kg, a group receiving HANPs at a dose of 88.3 mg/kg, and three more groups receiving a double treatment of HANPs associated with RP. The respective treatment was given daily by oral gavage to animals for 50 days which is the duration of the whole experiment. The renal toxicity caused by HANPs was manifested by aberrations in kidney function parameters, intensification of oxidative stress markers, and a decrease in the activity of antioxidant enzymes. Moreover, an increase in inflammatory (TNF-α and TGF-β) and apoptotic (caspace-3) markers, an elevation in gene-based kidney injuries markers (Kim-1 and lipocalin-2), and pathological tissue changes were determined. Meanwhile, co-treatment with different doses of biopigment and HANPs have reduced oxidative stress via their potent antioxidant effect. This was confirmed by pronounced improvement in the measured parameters along with the histological structural enhancement in a dose dependent manner compared to controls. To sum up, RP from M. purpureus has potential protective benefits in mitigating the adverse effects of HANPs.
Collapse
Affiliation(s)
- Nasser N Alqurashy
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mokhtar I Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ahmed A Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, 21526, Egypt.
| |
Collapse
|
2
|
Lv M, Sun Q, Yu Y, Bao J. Nanocurcumin in myocardial infarction therapy: emerging trends and future directions. Front Bioeng Biotechnol 2025; 12:1511331. [PMID: 39845374 PMCID: PMC11750836 DOI: 10.3389/fbioe.2024.1511331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide. Curcumin has been observed to significantly reduce pathological processes associated with MI. Its clinical application is limited due to its low bioavailability, rapid degradation, and poor solubility. Advancements in nanotechnology can be used to enhance its therapeutic potentials in MI. Curcumin nano-formulation enhances its solubility, stability, and bioavailability, allowing more precise delivery to ischemic cardiac tissue. Curcumin nanoparticles have been observed to successfully reduce infarct size, maintain heart function by modulating essential molecular pathways in MI. Its liposomal formulations provide sustained release and higher tissue penetration with improved pharmacokinetics and enhanced therapeutic efficacy. Preclinical studies revealed that nanocurcumin drastically lower oxidative stress indicators, inflammatory cytokines, and cardiac damage. Micelles composed of polymers have demonstrated high biocompatibility and targeting capabilities with increased cardio-protective effects. Research and clinical trials are essential for comprehensive analysis and efficacy of curcumin-based nano-therapeutics in cardiovascular condition and lowering risk of MI.
Collapse
Affiliation(s)
- Mei Lv
- General Medicine Department, Yantaishan Hospital, Yantai, Shandong, China
| | - Qing Sun
- Department of Cardiology, Yantaishan Hospital, Yantai, Shandong, China
| | - Yilin Yu
- Preventive medicine, Shandong University, Jinan, Shandong, China
| | - Jinwei Bao
- Department of Cardiology, Yantaishan Hospital, Yantai, Shandong, China
| |
Collapse
|
3
|
Salem EM, Abdelfatah OM, Hanafy RA, El-Sharkawy RM, Elnawawy G, Alghonemy WY. Comparative study of pulpal response following direct pulp capping using synthesized fluorapatite and hydroxyapatite nanoparticles. BMC Oral Health 2025; 25:17. [PMID: 39754111 PMCID: PMC11699670 DOI: 10.1186/s12903-024-05285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/29/2024] [Indexed: 01/06/2025] Open
Abstract
OBJECTIVE This study aimed to investigate and compare the histological response of rabbit dental pulp after direct pulp capping with 3 different materials: mineral trioxide aggregate (MTA), nanoparticles of fluorapatite (Nano-FA), and nanoparticles of hydroxyapatite (Nano-HA) after 4 and 6-week time intervals. MATERIAL AND METHODS A total of 72 upper and lower incisor teeth from 18 rabbits were randomly categorized into 3 groups)24 incisors from six rabbits each. MTA Group: teeth were capped with MTA. Nano-FA Group: teeth were capped with fluorapatite nanoparticles. Nano-HA Group: teeth were capped with hydroxyapatite nanoparticles. Blood samples were collected to examine some antioxidant enzymes nitric oxide (NO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). After that, three rabbits from each group were euthanized after 4 and 6 weeks, respectively. Pulp tissues of all teeth in all groups were histologically observed. RESULTS The obtained results showed that both Nano-HA induced the formation of thick dentin bridges with irregular dentin patterns at 6 weeks, while MTA and Nano-FA induced no dentin bridge with no tubular dentin pattern. Blood examination at the two intervals revealed no significant increase or decrease in the values of NO, SOD, CAT, GPx, GSH, and TNF-α. However, there was a significant increase in p-values of IL-6 in the Nano-FA treated group compared to both MTA and Nano-HA treated groups at the two intervals. Regarding the inflammatory reaction of the dental pulp, the MTA and Nano-HA groups displayed moderate inflammation, followed by Nano-FA, which showed the highest prevalence of nonpathological inflammation. Histological results were consistent with the blood examination. After 4 weeks, the Nano-FA and Nano-HA groups showed pulp fibrosis at the operating site, but the MTA showed only granulation tissues. Plus, dilated blood vessels appeared in the Nano-FA group. After 6 weeks, MTA and Nano-FA groups showed pulp fibrosis at the operating site with the persistence of dilated blood vessels with Nano-FA. The nano-HA group showed dentin bridge formation at the operating site. CONCLUSION MTA and Nano-HA could be considered favorable materials for direct pulp capping, while Nano-FA produces nonpathological inflammatory cell reactions. Moreover, the Nano-HA was the best in dentin bridge formation. Although nano-FA increased the operating site closure, it was noticed that it significantly increased IL-6 compared to MTA at the two intervals and significantly increased IL-6 compared to Nano-HA at 6 weeks, which may be manifested as some nonpathological inflammations in the Nano-FA group compared to the other groups, but it was deemed acceptable to direct pulp capping procedures.
Collapse
Affiliation(s)
- Eman M Salem
- Oral Biology Department, Faculty of Dentistry, Pharos University in Alexandria, P.O. Box 37, Sidi Gaber, Alexandria, Egypt.
| | - Omnia M Abdelfatah
- Oral Biology Department, Faculty of Dentistry, Pharos University in Alexandria, P.O. Box 37, Sidi Gaber, Alexandria, Egypt
| | - Rania A Hanafy
- Dental Material Department, Faculty of Dentistry, Pharos University in Alexandria, Sidi Gaber, Alexandria, Egypt
| | - Rehab M El-Sharkawy
- Chemistry Department, Faculty of Dentistry, Pharos University in Alexandria, P.O. Box 37, Sidi Gaber, Alexandria, Egypt
| | - Ghadir Elnawawy
- Zoology Department, Faculty of Dentistry, Pharos University in Alexandria, P.O. Box 37, Sidi Gaber, Alexandria, Egypt
| | - Wafaa Yahia Alghonemy
- Basic Dental Sciences Department, Faculty of Dentistry, Zarqa University, PO Box 2000, Zarqa, 13110, Jordan
- Oral Biology Department, Faculty of Dentistry, Tanta University, Alexandria, Egypt
| |
Collapse
|
4
|
Eldeeb GM, Yousef MI, Helmy YM, Aboudeya HM, Mahmoud SA, Kamel MA. The protective effects of chitosan and curcumin nanoparticles against the hydroxyapatite nanoparticles-induced neurotoxicity in rats. Sci Rep 2024; 14:21009. [PMID: 39251717 PMCID: PMC11385554 DOI: 10.1038/s41598-024-70794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024] Open
Abstract
Hydroxyapatite nanoparticles (HANPs) have extensive applications in biomedicine and tissue engineering. However, little information is known about their toxicity. Here, we aim to investigate the possible neurotoxicity of HANPs and the possible protective role of chitosan nanoparticles (CNPs) and curcumin nanoparticles (CUNPs) against this toxicity. In our study, HANPs significantly reduced the levels of neurotransmitters, including acetylcholine (Ach), dopamine (DA), serotonin (SER), epinephrine (EPI), and norepinephrine (NOR). HANPs significantly suppressed cortical expression of the genes controlling mitochondrial biogenesis such as peroxisome proliferator activator receptor gamma coactivator 1α (PGC-1α) and mitochondrial transcription factor A (mTFA). Our findings revealed significant neuroinflammation associated with elevated apoptosis, lipid peroxidation, oxidative DNA damage and nitric oxide levels with significant decline in the antioxidant enzymes activities and glutathione (GSH) levels in HANPs-exposed rats. Meanwhile, co-supplementation of HANP-rats with CNPs and/or CUNPs significantly showed improvement in levels of neurotransmitters, mitochondrial biogenesis, oxidative stress, DNA damage, and neuroinflammation. The co-supplementation with both CNPs and CUNPs was more effective to ameliorate HANPs-induced neurotoxicity than each one alone. So, CNPs and CUNPs could be promising protective agents for prevention of HANPs-induced neurotoxicity.
Collapse
Affiliation(s)
- Gihan Mahmoud Eldeeb
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mokhtar Ibrahim Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | | - Hebatallah Mohammed Aboudeya
- Department of Human Physiology, Medical Research Institute, Alexandria University, 165, Horreya Avenue, Hadara, Alexandria, Egypt.
| | - Shimaa A Mahmoud
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
- Pharos University in Alexandria, Alexandria, 21311, Egypt
| |
Collapse
|
5
|
Bertoncini-Silva C, Vlad A, Ricciarelli R, Giacomo Fassini P, Suen VMM, Zingg JM. Enhancing the Bioavailability and Bioactivity of Curcumin for Disease Prevention and Treatment. Antioxidants (Basel) 2024; 13:331. [PMID: 38539864 PMCID: PMC10967568 DOI: 10.3390/antiox13030331] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Curcumin, a natural polyphenolic component from Curcuma longa roots, is the main bioactive component of turmeric spice and has gained increasing interest due to its proposed anti-cancer, anti-obesity, anti-inflammatory, antioxidant, and lipid-lowering effects, in addition to its thermogenic capacity. While intake from dietary sources such as curry may be sufficient to affect the intestinal microbiome and thus may act indirectly, intact curcumin in the body may be too low (<1 microM) and not sufficient to affect signaling and gene expression, as observed in vitro with cultured cells (10-20 microM). Several strategies can be envisioned to increase curcumin levels in the body, such as decreasing its metabolism or increasing absorption through the formation of nanoparticles. However, since high curcumin levels could also lead to undesired regulatory effects on cellular signaling and gene expression, such studies may need to be carefully monitored. Here, we review the bioavailability of curcumin and to what extent increasing curcumin levels using nanoformulations may increase the bioavailability and bioactivity of curcumin and its metabolites. This enhancement could potentially amplify the disease-preventing effects of curcumin, often by leveraging its robust antioxidant properties.
Collapse
Affiliation(s)
- Caroline Bertoncini-Silva
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Priscila Giacomo Fassini
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Vivian Marques Miguel Suen
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
6
|
Abolfazli S, Mortazavi P, Kheirandish A, Butler AE, Jamialahmadi T, Sahebkar A. Regulatory effects of curcumin on nitric oxide signaling in the cardiovascular system. Nitric Oxide 2024; 143:16-28. [PMID: 38141926 DOI: 10.1016/j.niox.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/25/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The continuously rising prevalence of cardiovascular disease (CVD) globally substantially impacts the economic growth of developing countries. Indeed, one of the leading causes of death worldwide is unfavorable cardiovascular events. Reduced nitric oxide (NO) generation is the pathogenic foundation of endothelial dysfunction, which is regarded as the first stage in the development of a number of CVDs. Nitric oxide exerts an array of biological effects, including vasodilation, the suppression of vascular smooth muscle cell proliferation and the functional control of cardiac cells. Numerous treatment strategies aim to increase NO synthesis or upregulate downstream NO signaling pathways. The major component of Curcuma longa, curcumin, has long been utilized in traditional medicine to treat various illnesses, especially CVDs. Curcumin improves CV function as well as having important pleiotropic effects, such as anti-inflammatory and antioxidant, through its ability to increase the bioavailability of NO and to positively impact NO-related signaling pathways. In this review, we discuss the scientific literature relating to curcumin's positive effects on NO signaling and vascular endothelial function.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Parham Mortazavi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Kheirandish
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, PO Box, 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Mihailovic V, Katanic Stankovic JS, Selakovic D, Rosic G. An Overview of the Beneficial Role of Antioxidants in the Treatment of Nanoparticle-Induced Toxicities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7244677. [PMID: 34820054 PMCID: PMC8608524 DOI: 10.1155/2021/7244677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
Nanoparticles (NPs) are used in many products and materials for humans such as electronics, in medicine for drug delivery, as biosensors, in biotechnology, and in agriculture, as ingredients in cosmetics and food supplements. Besides that, NPs may display potentially hazardous properties on human health and the environment as a consequence of their abundant use in life nowadays. Hence, there is increased interest of researchers to provide possible therapeutic agents or dietary supplements for the amelioration of NP-induced toxicity. This review summarizes the new findings in the research of the use of antioxidants as supplements for the prevention and alleviation of harmful effects caused by exposure of organisms to NPs. Also, mechanisms involved in the formation of NP-induced oxidative stress and protective mechanisms using different antioxidant substances have also been elaborated. This review also highlights the potential of naturally occurring antioxidants for the enhancement of the antioxidant defense systems in the prevention and mitigation of organism damage caused by NP-induced oxidative stress. Based on the presented results of the most recent studies, it may be concluded that the role of antioxidants in the prevention and treatment of nanoparticle-induced toxicity is unimpeachable. This is particularly important in terms of oxidative stress suppression.
Collapse
Affiliation(s)
- Vladimir Mihailovic
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Jelena S. Katanic Stankovic
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|
8
|
Mihailovic V, Katanic Stankovic JS, Selakovic D, Rosic G. An Overview of the Beneficial Role of Antioxidants in the Treatment of Nanoparticle-Induced Toxicities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: https://doi.org/10.1155/2021/7244677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nanoparticles (NPs) are used in many products and materials for humans such as electronics, in medicine for drug delivery, as biosensors, in biotechnology, and in agriculture, as ingredients in cosmetics and food supplements. Besides that, NPs may display potentially hazardous properties on human health and the environment as a consequence of their abundant use in life nowadays. Hence, there is increased interest of researchers to provide possible therapeutic agents or dietary supplements for the amelioration of NP-induced toxicity. This review summarizes the new findings in the research of the use of antioxidants as supplements for the prevention and alleviation of harmful effects caused by exposure of organisms to NPs. Also, mechanisms involved in the formation of NP-induced oxidative stress and protective mechanisms using different antioxidant substances have also been elaborated. This review also highlights the potential of naturally occurring antioxidants for the enhancement of the antioxidant defense systems in the prevention and mitigation of organism damage caused by NP-induced oxidative stress. Based on the presented results of the most recent studies, it may be concluded that the role of antioxidants in the prevention and treatment of nanoparticle-induced toxicity is unimpeachable. This is particularly important in terms of oxidative stress suppression.
Collapse
Affiliation(s)
- Vladimir Mihailovic
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Jelena S. Katanic Stankovic
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|