1
|
Zhou H, Deng C, Xi Y. Mechanism of HOXA10 in nasopharyngeal carcinoma cell proliferation through the PTPRG-AS1/USP1 axis. J Biochem Mol Toxicol 2024; 38:e70025. [PMID: 39445487 DOI: 10.1002/jbt.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial carcinoma arising from the nasopharyngeal mucosal lining. The present study sought to analyze the mechanism by which homeobox A10 (HOXA10) affects NPC cell proliferation. The expression levels of HOXA10/long noncoding RNA (lncRNA) PTPRG antisense RNA 1 (PTPRG-AS1)/ubiquitin-specific peptidase 1 (USP1) in NPC tissues and cells were determined. Cell proliferation was evaluated. The enrichment of HOXA10 on the PTPRG-AS1 promoter was determined. The binding of PTPRG-AS1, HuR, and USP1 to each other was analyzed via RNA immunoprecipitation. USP1 mRNA stability was determined after actinomycin D treatment. The role of the PTPRG-AS1/USP1 axis in NPC cell proliferation was analyzed in combined experiments. The role of HOXA10 in vivo was confirmed in xenograft tumor models. The results revealed that HOXA10 was overexpressed in NPC. HOXA10 downregulation reduced NPC cell proliferation. PTPRG-AS1 and USP1 were upregulated in NPC. HOXA10 bound to the PTPRG-AS1 promoter to increase PTPRG-AS1 expression, and the binding of PTPRG-AS1 to HuR increased USP1 expression. PTPRG-AS1 or USP1 overexpression attenuated the inhibitory effects of HOXA10 downregulation on NPC cell proliferation. HOXA10 downregulation inhibited in vivo NPC proliferation through the PTPRG-AS1/USP1 axis. In conclusion, HOXA10 facilitates NPC cell proliferation in vitro and in vivo through the PTPRG-AS1/USP1 axis.
Collapse
Affiliation(s)
- He Zhou
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Chang Deng
- Forensic Laboratory of Material Evidence Identification Department, Jinan Municipal Bureau of Public Security, Jinan, China
| | - Yue Xi
- Department of Pathology, Heze Municipal Hospital, Heze, China
| |
Collapse
|
2
|
Li J, Li PT, Wu W, Ding BN, Wen YG, Cai HL, Liu SX, Hong T, Zhang JF, Zhou JD, Qian LY, Du J. POU2F2-mediated upregulation of lncRNA PTPRG-AS1 inhibits ferroptosis in breast cancer via miR-376c-3p/SLC7A11 axis. Epigenomics 2024; 16:215-231. [PMID: 38318853 DOI: 10.2217/epi-2023-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is a subtype of BC with high rates of mortality. The mechanism of PTPRG-AS1 in ferroptosis of TNBC was investigated. Methods: Chromatin immunoprecipitation and dual-luciferase reporter assays were used to measure intermolecular relationships. MTT and colony formation assays detected cell viability and proliferation. Kits detected Fe2+ and reactive oxygen species levels. The role of PTPRG-AS1 in tumor growth was analyzed in vivo. Results: PTPRG-AS1 was increased in TNBC tissues and cells. PTPRG-AS1 silencing increased the reduction of glutathione and GPX4, increased Fe2+ and reactive oxygen species in erastin-treated cells and inhibited proliferation. POU2F2 transcriptionally upregulated PTPRG-AS1. PTPRG-AS1 targeted miR-376c-3p to upregulate SLC7A11. PTPRG-AS1 knockdown suppressed tumor growth in vivo. Conclusion: POU2F2 transcriptionally activates PTPRG-AS1 to modulate ferroptosis and proliferation by miR-376c-3p/SLC7A11, promoting TNBC.
Collapse
Affiliation(s)
- Jun Li
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Pei-Ting Li
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Wei Wu
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Bo-Ni Ding
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Yan-Guang Wen
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Hai-Lin Cai
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Shuang-Xi Liu
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Tao Hong
- Department of Breast & Thyroid Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, Jiangxi Province, China
| | - Jian-Fei Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital of the University of South China, Hengyang, 421000, Hunan Province, China
| | - Jian-Da Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Li-Yuan Qian
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Juan Du
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| |
Collapse
|
3
|
Lee JXT, Tan WR, Low ZS, Lee JQ, Chua D, Yeo WDC, See B, Vos MIG, Yasuda T, Nomura S, Cheng HS, Tan NS. YWHAG Deficiency Disrupts the EMT-Associated Network to Induce Oxidative Cell Death and Prevent Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301714. [PMID: 37759388 PMCID: PMC10625110 DOI: 10.1002/advs.202301714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Metastasis involves epithelial-to-mesenchymal transition (EMT), a process that is regulated by complex gene networks, where their deliberate disruption may yield a promising outcome. However, little is known about mechanisms that coordinate these metastasis-associated networks. To address this gap, hub genes with broad engagement across various human cancers by analyzing the transcriptomes of different cancer cell types undergoing EMT are identified. The oncogenic signaling adaptor protein tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG) is ranked top for its clinical relevance and impact. The cellular kinome and transcriptome data are surveyed to construct the regulome of YWHAG, revealing stress responses and metabolic processes during cancer EMT. It is demonstrated that a YWHAG-dependent cytoprotective mechanism in the regulome is embedded in EMT-associated networks to protect cancer cells from oxidative catastrophe through enhanced autophagy during EMT. YWHAG deficiency results in a rapid accumulation of reactive oxygen species (ROS), delayed EMT, and cell death. Tumor allografts show that metastasis potential and overall survival time are correlated with the YWHAG expression level of cancer cell lines. Metastasized tumors have higher expression of YWHAG and autophagy-related genes than primary tumors. Silencing YWHAG diminishes primary tumor volumes, prevents metastasis, and prolongs the median survival period of the mice.
Collapse
Affiliation(s)
- Jeannie Xue Ting Lee
- Lee Kong Chian School of MedicineClinical Sciences BuildingNanyang Technological University Singapore11 Mandalay RoadSingapore308232Singapore
| | - Wei Ren Tan
- Lee Kong Chian School of MedicineClinical Sciences BuildingNanyang Technological University Singapore11 Mandalay RoadSingapore308232Singapore
| | - Zun Siong Low
- Lee Kong Chian School of MedicineClinical Sciences BuildingNanyang Technological University Singapore11 Mandalay RoadSingapore308232Singapore
| | - Jia Qi Lee
- School of Biological SciencesNanyang Technological University Singapore60 Nanyang DriveSingapore637551Singapore
| | - Damien Chua
- Lee Kong Chian School of MedicineClinical Sciences BuildingNanyang Technological University Singapore11 Mandalay RoadSingapore308232Singapore
| | - Wisely Duan Chi Yeo
- School of Biological SciencesNanyang Technological University Singapore60 Nanyang DriveSingapore637551Singapore
| | - Benedict See
- School of Biological SciencesNanyang Technological University Singapore60 Nanyang DriveSingapore637551Singapore
| | - Marcus Ivan Gerard Vos
- Lee Kong Chian School of MedicineClinical Sciences BuildingNanyang Technological University Singapore11 Mandalay RoadSingapore308232Singapore
| | - Tomohiko Yasuda
- Department of Gastrointestinal SurgeryGraduate School of MedicineThe University of TokyoTokyo113‐8654Japan
- Department of Gastrointestinal SurgeryNippon Medical School Chiba Hokusoh HospitalChiba270‐1694Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal SurgeryGraduate School of MedicineThe University of TokyoTokyo113‐8654Japan
| | - Hong Sheng Cheng
- Lee Kong Chian School of MedicineClinical Sciences BuildingNanyang Technological University Singapore11 Mandalay RoadSingapore308232Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of MedicineClinical Sciences BuildingNanyang Technological University Singapore11 Mandalay RoadSingapore308232Singapore
- School of Biological SciencesNanyang Technological University Singapore60 Nanyang DriveSingapore637551Singapore
| |
Collapse
|
4
|
Lv Z, Wang T, Cao X, Sun M, Qu Y. The role of receptor‐type protein tyrosine phosphatases in cancer. PRECISION MEDICAL SCIENCES 2023. [DOI: 10.1002/prm2.12090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Zhengyuan Lv
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
| | - Tianming Wang
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
- Central Laboratory, Translational Medicine Research Center The Affiliated Jiangning Hospital with Nanjing Medical University Nanjing China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
| | - Mengting Sun
- Biobank of Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Yuan Qu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
5
|
Hashemi M, Mirzaei S, Zandieh MA, Rezaei S, Amirabbas Kakavand, Dehghanpour A, Esmaeili N, Ghahremanzade A, Saebfar H, Heidari H, Salimimoghadam S, Taheriazam A, Entezari M, Ahn KS. Long non-coding RNAs (lncRNAs) in hepatocellular carcinoma progression: Biological functions and new therapeutic targets. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:207-228. [PMID: 36584761 DOI: 10.1016/j.pbiomolbio.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Liver is an important organ in body that performs vital functions such as detoxification. Liver is susceptible to development of cancers, and hepatocellular carcinoma (HCC) is among them. 75-85% of liver cancer cases are related to HCC. Therefore, much attention has been directed towards understanding factors mediating HCC progression. LncRNAs are epigenetic factors with more than 200 nucleotides in length located in both nucleus and cytoplasm and they are promising candidates in cancer therapy. Directing studies towards understanding function of lncRNAs in HCC is of importance. LncRNAs regulate cell cycle progression and growth of HCC cells, and they can also induce/inhibit apoptosis in tumor cells. LncRNAs affect invasion and metastasis in HCC mainly by epithelial-mesenchymal transition (EMT) mechanism. Revealing the association between lncRNAs and downstream signaling pathways in HCC is discussed in the current manuscript. Infectious diseases can affect lncRNA expression in mediating HCC development and then, altered expression level of lncRNA is associated with drug resistance and radio-resistance. Biomarker application of lncRNAs and their role in prognosis and diagnosis of HCC are also discussed to pave the way for treatment of HCC patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Hajar Heidari
- Department of Biomedical Sciences, School of Public Health University at Albany State University of New York, Albany, NY, 12208, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
LncRNA PTPRG-AS1 maintains stem-cell-like features and promotes oxaliplatin resistance in colorectal cancer via regulating the miR-665 and STAT3 axis. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Interactions between 14-3-3 Proteins and Actin Cytoskeleton and Its Regulation by microRNAs and Long Non-Coding RNAs in Cancer. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
14-3-3s are a family of structurally similar proteins that bind to phosphoserine or phosphothreonine residues, forming the central signaling hub that coordinates or integrates various cellular functions, thereby controlling many pathways important in cancer, cell motility, cell death, cytoskeletal remodeling, neuro-degenerative disorders and many more. Their targets are present in all cellular compartments, and when they bind to proteins they alter their subcellular localization, stability, and molecular interactions with other proteins. Changes in environmental conditions that result in altered homeostasis trigger the interaction between 14-3-3 and other proteins to retrieve or rescue homeostasis. In circumstances where these regulatory proteins are dysregulated, it leads to pathological conditions. Therefore, deeper understanding is needed on how 14-3-3 proteins bind, and how these proteins are regulated or modified. This will help to detect disease in early stages or design inhibitors to block certain pathways. Recently, more research has been devoted to identifying the role of MicroRNAs, and long non-coding RNAs, which play an important role in regulating gene expression. Although there are many reviews on the role of 14-3-3 proteins in cancer, they do not provide a holistic view of the changes in the cell, which is the focus of this review. The unique feature of the review is that it not only focuses on how the 14-3-3 subunits associate and dissociate with their binding and regulatory proteins, but also includes the role of micro-RNAs and long non-coding RNAs and how they regulate 14-3-3 isoforms. The highlight of the review is that it focuses on the role of 14-3-3, actin, actin binding proteins and Rho GTPases in cancer, and how this complex is important for cell migration and invasion. Finally, the reader is provided with super-resolution high-clarity images of each subunit of the 14-3-3 protein family, further depicting their distribution in HeLa cells to illustrate their interactions in a cancer cell.
Collapse
|