1
|
Wang C, Chen L, Ma S, Bai R, Xu Q, Feng R, Bian C, Zhang L, Su X. Biological effects of baicalin on the ovine mammary cells and regulatory mechanism study by transcriptomic analysis. Genomics 2025; 117:111012. [PMID: 39909133 DOI: 10.1016/j.ygeno.2025.111012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/14/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Baicalin is a natural flavonoid compound with a wide range of biological activities, including anti-oxidant and anti-inflammatory properties. Previous we found that the abundance of baicalin in bovine serum is significantly higher than in ovine serum at mid-lactation. It suggests that baicalin may play a role in the regulation of lactation performance. Here, the biological effects of baicalin on proliferative, oxidative stress response, synthesis capacities of major milk components of ovine mammary epithelial cells (OMECs) were investigated. And the transcriptomic analysis was utilized to explore the possible regulatory mechanism. Results showed that 25 μg/mL baicalin can significantly enhance the proliferation, antioxidant, triglyceride and lactose synthesis capacities of OMECs. In transcriptomic analysis, 150 differentially expressed genes (DEGs) were screened between 25 μM baicalin treated (Baicalin) and 0 μM baicalin treated (NT) groups. Functional analysis of DEGs showed that lipid metabolic process, response to oxidative stress, biosynthesis of fat and saccharide pathways were enriched. qRT-PCR result showed that antioxidation-related negative regulatory gene MPO was significantly down-regulated and milk fat biosynthesis related genes PLA2G12A, GPCPD1, LPIN1, FASN and lactose biosynthesis related genes MGEA5, RHOQ were significantly up-regulated in baicalin treated OMECs (P < 0.01). In summarize, 25 μM baicalin can significantly enhance the proliferation, antioxidant and biosynthesis of milk fat and lactose capacities through lipid metabolic process, response to oxidative stress, biosynthesis of fat and saccharide pathways related genes regulation in OMECs. The study would provide a theoretical basis for the improvement of lactation performance and the exploration of lactation regulation theory of dairy sheep.
Collapse
Affiliation(s)
- Chunwei Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, PR China
| | - Liqiang Chen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, PR China
| | - Sijia Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, PR China
| | - Ruixue Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, PR China
| | - Quanzhong Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, PR China
| | - Rui Feng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, PR China
| | - Chao Bian
- Tumor radiotherapy department, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, 010017, PR China
| | - Liguo Zhang
- Ulanqab Animal Husbandry Workstation, Ulanqab Agriculture and Animal Husbandry Bureau, Ulanqab, Inner Mongolia Autonomous Region, 012000, PR China
| | - Xiaohu Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
2
|
Wang X. The Effects of Silibinin Combined With EGFR-TKIs in the Treatment of NSCLC. Cancer Med 2025; 14:e70643. [PMID: 39907159 DOI: 10.1002/cam4.70643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Currently, the most effective oral targeted therapies for NSCLC in clinical practice are EGFR-TKIs. However, acquired drug resistance often leads to tumor progression and recurrence. EGFR overexpression and activation of its downstream pathways are primary contributors to both mutations in tumor cells and their development of drug resistance. Silibinin has been identified as a promising agent that can suppress EGFR signaling through multiple mechanisms. However, its poor water solubility and difficulty penetrating cell membranes result in rapid metabolism in vivo, and significantly affect its concentration in the blood. METHODS We conducted a comprehensive search of the English PubMed database using various combinations of keywords, including "silibinin," "epidermal growth factor receptor," "phosphorylation," "chemotherapy," "nano," and "non-small cell lung cancer." The results were then filtered for their relevance and impact on current treatment paradigms. RESULTS This review presents a comprehensive exploration of the mechanisms underlying the EGFR autophosphorylation pathways that contribute to acquire drug resistance in. Additionally, this study delves into the potential of silibinin as a novel therapeutic agent for NSCLC, evaluating its advantages and limitations on the basis of existing research. The majority of the available data suggest that combining silibinin with first-generation TKIs would yield promising outcomes because of additive or synergistic effects, suggesting that optimizing the time and dosage of each of these treatments is crucial for achieving the best results. CONCLUSION The existing evidence is inadequate to endorse the clinical application of nano silibinin for NSCLC treatment. Developing multifunctional nanomedicines that incorporate silibinin, EGFR-TKIs, and other bioactive compounds is a recommended future strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Xiaocen Wang
- School of Health Medicine, University of Sanya, Hainan, China
| |
Collapse
|
3
|
Yin Y, Liu Z, Li Q, Gou M, Han Y, Xu Y. Identification and evolution of PDK-1-like involving lamprey innate immunity. Mol Immunol 2024; 172:47-55. [PMID: 38875755 DOI: 10.1016/j.molimm.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/02/2023] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
3-phosphoinositide-dependent protein kinase-1 (PDK-1) is a key kinase regulating the activity of the PI3K/AKT pathway and a major regulator of the AGC protein kinase family. It is essential in the physiological activities of cells, embryonic development, individual development and immune response. In this study, we have identified for the first time an analogue of PDK-1 in the most primitive vertebrate, lamprey, and named it PDK-1-like. The protein sequence similarity of lamprey PDK-1-like to human, mouse, chicken, African xenopus and zebrafish PDK-1 were 64.4 %, 64.5 %, 65.0 %, 61.3 % and 63.2 %, respectively. The phylogenetic tree showed that PDK-1-like of lamprey were located at the base of the vertebrate branch, in line with the trend of biological evolution. Meanwhile, homology analysis showed that PDK-1 proteins across species shared a conserved kinase structural domain and a Pleckstrin Homology (PH) domain. Genomic synteny analysis revealed that the large-scale duplication blocks were not found in lamprey genome and neighbor genes of lamprey PDK-1-like presented dramatic differences compared with jawed vertebrates. More importantly, qPCR analysis showed that PDK-1-like was widely expressed in lamprey. Its mRNA expression levels varied in response to different pathogenic stimuli, and its expression was generally up-regulated under Polyinosinic-Polycytidylic acid (Poly(I:C)) stimulation. Pearson's correlation analysis showed that PDK-1-like was involved in co-expressed with MyD88-independent TLR-3 pathway during the immune response of lamprey, instead of MyD88-dependent TLR-3 pathway. In summary, our composite results offer valuable clues to the origin and evolution of PDK-1, and imply that PDK-1 s are among the most ancestral immune regulators in vertebrates.
Collapse
Affiliation(s)
- Yi Yin
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhulin Liu
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Meng Gou
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China.
| | - Yinglun Han
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China.
| | - Yang Xu
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|
4
|
Chen T, Zhang P, Cong XF, Wang YY, Li S, Wang H, Zhao SR, Sun XJ. Synergistic antitumor activity of baicalein combined with almonertinib in almonertinib-resistant non-small cell lung cancer cells through the reactive oxygen species-mediated PI3K/Akt pathway. Front Pharmacol 2024; 15:1405521. [PMID: 39144617 PMCID: PMC11322074 DOI: 10.3389/fphar.2024.1405521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Almonertinib is an important third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) exhibiting high selectivity to EGFR-sensitizing and T790M-resistant mutations. Almonertinib resistance is a major obstacle in clinical use. Baicalein possesses antitumor properties, but its mechanism of antitumor action against almonertinib-resistant non-small cell lung cancer (NSCLC) remains unelucidated. Methods CCK-8 assay was used to examine the survival rate of H1975/AR and HCC827/AR cells following treatment for 24 h with different concentrations of baicalein, almonertinib or their combination. The changes in colony formation ability, apoptosis, and intracellular reactive oxygen species (ROS) levels of the treated cells were analyzed using colony formation assay and flow cytometry. Western blotting was performed to detect the changes in protein expressions in the cells. The effects of pre-treatment with NAC on proliferation, apoptosis, and PI3K/Akt signaling pathway were observed in baicalein- and/or almonertinib-treated cells. A nude mouse model bearing subcutaneous HCC827/AR cell xenograft were treated with baicalein (20 mg/kg) or almonertinib (15 mg/kg), and the tumor volume and body mass changes was measured. Results Both baicalein and almonertinib represses the viability of HCC827/AR and H1975/AR cells in a concentration-dependent manner. Compared with baicalein or almonertinib alone, the combined application of the two drugs dramatically attenuates cell proliferation; triggers apoptosis; causes cleavage of Caspase-3, PARP, and Caspase-9; downregulates the protein expressions of p-PI3K and p-Akt; and significantly inhibits tumor growth in nude mice. Furthermore, baicalein combined with almonertinib results in massive accumulation of reactive oxygen species (ROS) and preincubation with N-acetyl-L-cysteine (ROS remover) prevents proliferation as well as inhibits apoptosis induction, with partial recovery of the decline of p-PI3K and p-Akt. Discussion The combination of baicalein and almonertinib can improve the antitumor activity in almonertinib-resistant NSCLC through the ROS-mediated PI3K/Akt pathway.
Collapse
Affiliation(s)
- Teng Chen
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Pei Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, China
| | - Xiao-Fan Cong
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Yuan-Yuan Wang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Shuo Li
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Hao Wang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Su-Rong Zhao
- School of Pharmacy, Bengbu Medical University, Bengbu, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, China
| | - Xiao-Jin Sun
- School of Pharmacy, Bengbu Medical University, Bengbu, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, China
| |
Collapse
|
5
|
Jia Q, Zhou Y, Song L, Shi X, Jiang X, Tao R, Wang A, Wu Y, Wei Z, Zhang Y, Li X, Lu Y. Baicalin reduces chronic stress-induced breast cancer metastasis via directly targeting β2-adrenergic receptor. J Pharm Anal 2024; 14:100934. [PMID: 39139999 PMCID: PMC11321295 DOI: 10.1016/j.jpha.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 08/15/2024] Open
Abstract
Recent studies have shown that stress can substantially facilitate breast cancer metastasis, which can be reduced by nonselective β1/β2-adrenergic receptor (β1/β2-AR) blocker. However, several side effects were identified. Thus, it is extremely warranted to explore more effective and better-tolerated β2-AR blocker. Currently, we demonstrated that baicalin (BA), a major bioactive component of Scutellaria baicalensis Georgi, could significantly attenuate stress hormones especially epinephrine (Epi)-induced breast cancer cell migration and invasion in vitro. Mechanistically, we identified that β2-AR was a direct target of BA via the drug affinity responsive target stability (DARTS) combined with mass spectrum assay, and BA photoaffinity probe with pull-down assay, which was further confirmed by a couple of biophysical and biochemical assays. Furthermore, we demonstrated that BA could directly bind to the Phe-193 and Phe-289 of β2-AR, subsequently inhibit cyclic adenosine monophosphate-protein kinase A-focal adhesion kinase (cAMP-PKA-FAK) pathway, and thus impede epithelial-mesenchymal transition (EMT), thereby hindering the metastatic progression of the chronic stress coupled with syngeneic and xenograft in vivo orthotopic and tail vein mouse model. These findings firstly identify BA as a potential β2-AR inhibitor in the treatment of stress-induced breast cancer metastasis.
Collapse
Affiliation(s)
- Qi Jia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yinyin Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ximeng Shi
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuan Jiang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruizhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
6
|
Kaur P, Singh SK, Mishra MK, Singh S, Singh R. Promising Combinatorial Therapeutic Strategies against Non-Small Cell Lung Cancer. Cancers (Basel) 2024; 16:2205. [PMID: 38927911 PMCID: PMC11201636 DOI: 10.3390/cancers16122205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) presents a complex and diverse disease, exhibiting variations at individuals' cellular and histological levels. This complexity gives rise to different subtypes and genetic mutations, posing challenges for accurate diagnosis and effective treatment. Nevertheless, continuous progress in medical research and therapies is continually shaping the landscape of NSCLC diagnosis and management. The treatment of NSCLC has undergone significant advancements in recent years, especially with the emergence of targeted therapies that have shown remarkable efficacy in patients with actionable mutations. This has ushered in the era of personalized medicine in NSCLC treatment, with improvements in molecular and immunohistochemical techniques contributing to enhanced progression-free survival. This review focuses on the latest progress, challenges, and future directions in developing targeted therapies for NSCLC, including tyrosine kinase inhibitors (TKIs), DNA-damaging agents, immunotherapy regimens, natural drug therapy, and nanobodies. Furthermore, recent randomized studies have demonstrated enhanced overall survival in patients receiving different targeted and natural drug therapies.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (P.K.); (S.K.S.); (S.S.)
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (P.K.); (S.K.S.); (S.S.)
| | - Manoj K. Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL 36014, USA;
| | - Shailesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (P.K.); (S.K.S.); (S.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (P.K.); (S.K.S.); (S.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
7
|
Guo L, Yue M, Ma C, Wang Y, Hou J, Li H. Baicalin reduces inflammation to inhibit lung cancer via targeting SOCS1/NF-κB/STAT3 axis. Heliyon 2024; 10:e29361. [PMID: 38628726 PMCID: PMC11019232 DOI: 10.1016/j.heliyon.2024.e29361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
Inflammation affects several aspects of lung cancer progression including cell proliferation, metastasis, apoptosis, angiogenesis, and drug resistance. Baicalin, an active component of Scutellaria baicalensis Georgi, exhibits anticancer activity in various cancers. However, the effects of baicalin on lung cancer and the underlying molecular mechanisms remain largely unknown. This study is to explore the effect and mechanism of baicalin on lung cancer cell A549 and urethane-induced mouse lung cancer. A cell viability assay, colony formation assay, wound healing assay, acridine orange/ethidium bromide (AO/EB) staining assay, Western blot assay, urethane-induced mouse lung cancer model, hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), and ELISA assay were performed to investigate the effects of baicalin on lung cancer in vitro and in vivo. Network pharmacology analysis, molecular docking, gene silencing assays, and LPS-induced inflammation model were utilized to explore the molecular mechanisms underlying the effect of baicalin on lung cancer. Baicalin showed significant anti-proliferative, anti-migratory, anti-inflammatory and pro-apoptotic effects in vitro; it also inhibited the progression of urethane-induced mouse lung cancer in vivo. Mechanistically, suppressor of cytokine signaling 1 (SOCS1) was the key determinant for baicalin-induced inhibition of lung cancer. Baicalin increased SOCS1 expression to inactivate the NF-κB/STAT3 pathway to inhibit lung cancer in vitro and in vivo. Taken together, baicalin reduces inflammation to inhibit lung cancer via targeting SOCS1/NF-κB/STAT3 axis, providing a prospective compound and novel target for lung cancer treatment.
Collapse
Affiliation(s)
| | | | - Chengyuan Ma
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Yunjing Wang
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Jiejie Hou
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Hong Li
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| |
Collapse
|
8
|
Taiyab A, Choudhury A, Haidar S, Yousuf M, Rathi A, Koul P, Chakrabarty A, Islam A, Shamsi A, Hassan MI. Exploring MTH1 inhibitory potential of Thymoquinone and Baicalin for therapeutic targeting of breast cancer. Biomed Pharmacother 2024; 173:116332. [PMID: 38430630 DOI: 10.1016/j.biopha.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Cancers frequently have increased ROS levels due to disrupted redox balance, leading to oxidative DNA and protein damage, mutations, and apoptosis. The MTH1 protein plays a crucial role by sanitizing the oxidized dNTP pools. Hence, cancer cells rely on MTH1 to prevent the integration of oxidized dNTPs into DNA, preventing DNA damage and allowing cancer cell proliferation. We have discovered Thymoquinone (TQ) and Baicalin (BC) as inhibitors of MTH1 using combined docking and MD simulation approaches complemented by experimental validations via assessing binding affinity and enzyme inhibition. Docking and MD simulations studies revealed an efficient binding of TQ and BC to the active site pocket of the MTH1, and the resultant complexes are appreciably stable. Fluorescence measurements estimated a strong binding affinity of TQ and BC with Ka 3.4 ×106 and 1.0 ×105, respectively. Treating breast cancer cells with TQ and BC significantly inhibited the growth and proliferation (IC50 values 28.3 µM and 34.8 µM) and induced apoptosis. TQ and BC increased the ROS production in MCF7 cells, imposing substantial oxidative stress on cancer cells and leading to cell death. Finally, TQ and BC are proven strong MTH1 inhibitors, offering promising prospects for anti-cancer therapy.
Collapse
Affiliation(s)
- Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaista Haidar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Mohd Yousuf
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aanchal Rathi
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Priyanka Koul
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anindita Chakrabarty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 364, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
9
|
Wu S, Sun Z, Guo Z, Li P, Mao Q, Tang Y, Chen H, Peng H, Wang S, Cao Y. The effectiveness of blood-activating and stasis-transforming traditional Chinese medicines (BAST) in lung cancer progression-a comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116565. [PMID: 37172918 DOI: 10.1016/j.jep.2023.116565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blood-activating and stasis-transforming traditional Chinese medicines (BAST) are a class of herbs that have the effect of dilating blood vessels and dispersing stagnation. Modern pharmaceutical research has demonstrated that they are capable of improving hemodynamics and micro-flow, resist thrombosis and promote blood flow. BAST contain numerous active ingredients, which can theoretically regulate multiple targets at the same time and have a wide range of pharmacological effects in the treatment of diseases including human cancers. Clinically, BAST have minimal side effects and can be used in combination with Western medicine to improve patients' quality of life, lessen adverse effects and minimize the risk of recurrence and metastasis of cancers. AIM OF THE REVIEW We aimed to summarize the research progression of BAST on lung cancer in the past five years and present a prospect for the future. Particularly, this review further analyzes the effects and molecular mechanisms that BAST inhibit the invasion and metastasis of lung cancer. MATERIALS AND METHODS Relevant studies about BSAT were collected from PubMed and Web of science. RESULTS Lung cancer is one of the malignant tumors with the highest mortality rate. Most patients with lung cancer are diagnosed at an advanced stage and are highly susceptible to metastasis. Recent studies have shown that BAST, a class of traditional Chinese medicine (TCM) with the function of opening veins and dispersing blood stasis, significantly improve hemodynamics and microcirculation, prevent thrombosis and promote blood flow, and thereby inhibiting the invasion and metastasis of lung cancer. In the current review, we analyzed 51 active ingredients extracted from BAST. It was found that BAST and their active ingredients contribute to the prevention of invasion and metastasis of lung cancer through multiple mechanisms, such as regulation of EMT process, specific signaling pathway and metastasis-related genes, tumor blood vessel formation, immune microenvironment and inflammatory response of tumors. CONCLUSIONS BSAT and its active ingredients have showed promising anticancer activity and significantly inhibit the invasion and metastasis of lung cancer. A growing number of studies have realized their potential clinical significance in the therapy of lung cancer, which will provide substantial evidences for the development of new TCM for lung cancer therapy.
Collapse
Affiliation(s)
- Siqi Wu
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhe Sun
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zehuai Guo
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Peiqin Li
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qianqian Mao
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yang Tang
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hongyu Chen
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Huiting Peng
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Sisi Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yang Cao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
10
|
Zhang Y, Liu F, Jia Q, Zheng L, Tang Q, Sai L, Zhang W, Du Z, Peng C, Bo C, Zhang F. Baicalin alleviates silica-induced lung inflammation and fibrosis by inhibiting TLR4/NF-?B pathway in rats. Physiol Res 2023; 72:221-233. [PMID: 37159856 PMCID: PMC10226396 DOI: 10.33549/physiolres.934978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/22/2022] [Indexed: 03/24/2024] Open
Abstract
Silicosis is an occupational lung disease caused by inhaling silica dust. The disease is characterized by early lung inflammation and late irreversible pulmonary fibrosis. Here we report the effect of Baicalin, a main flavonoid compound from the roots of Chinese herbal medicine Huang Qin on silicosis in a rat model. Results showed Baicalin (50 or 100 mg/kg/day) can mitigate the silica-induced lung inflammation and reduce the harm of alveolar structure and the blue region of collagen fibers in rat lung at 28 days after administration. At the same time, Baicalin also diminished the level of interleukin-1beta (IL-1beta, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta1 (TGF-beta1) in lung tissues. The protein expression of collagen I (Col-1), alpha-smooth muscle actin (alpha-SMA) and vimentin were down-regulated while E-cadherin (E-cad) was increased in Baicalin-treated rats. In addition, the Toll Like Receptor 4 (TLR4)/ nuclear factor kappaB (NF-kappaB) pathway was enabled at 28 days after silica infusion, and the treatment of Baicalin diminished the expression of TLR4 and NF-?B in the lungs of rat with silicosis. These results suggested that Baicalin inhibited the pulmonary inflammatory and fibrosis in a rat model of silicosis, which could be attributed to inhibition of the TLR4/NF-kappaB pathway.
Collapse
Affiliation(s)
- Y Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China. ,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Song S, Ding L, Liu G, Chen T, Zhao M, Li X, Li M, Qi H, Chen J, Wang Z, Wang Y, Ma J, Wang Q, Li X, Wang Z. The protective effects of baicalin for respiratory diseases: an update and future perspectives. Front Pharmacol 2023; 14:1129817. [PMID: 37007037 PMCID: PMC10060540 DOI: 10.3389/fphar.2023.1129817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Background: Respiratory diseases are common and frequent diseases. Due to the high pathogenicity and side effects of respiratory diseases, the discovery of new strategies for drug treatment is a hot area of research. Scutellaria baicalensis Georgi (SBG) has been used as a medicinal herb in China for over 2000 years. Baicalin (BA) is a flavonoid active ingredient extracted from SBG that BA has been found to exert various pharmacological effects against respiratory diseases. However, there is no comprehensive review of the mechanism of the effects of BA in treating respiratory diseases. This review aims to summarize the current pharmacokinetics of BA, baicalin-loaded nano-delivery system, and its molecular mechanisms and therapeutical effects for treating respiratory diseases.Method: This review reviewed databases such as PubMed, NCBI, and Web of Science from their inception to 13 December 2022, in which literature was related to “baicalin”, “Scutellaria baicalensis Georgi”, “COVID-19”, “acute lung injury”, “pulmonary arterial hypertension”, “asthma”, “chronic obstructive pulmonary disease”, “pulmonary fibrosis”, “lung cancer”, “pharmacokinetics”, “liposomes”, “nano-emulsions”, “micelles”, “phospholipid complexes”, “solid dispersions”, “inclusion complexes”, and other terms.Result: The pharmacokinetics of BA involves mainly gastrointestinal hydrolysis, the enteroglycoside cycle, multiple metabolic pathways, and excretion in bile and urine. Due to the poor bioavailability and solubility of BA, liposomes, nano-emulsions, micelles, phospholipid complexes, solid dispersions, and inclusion complexes of BA have been developed to improve its bioavailability, lung targeting, and solubility. BA exerts potent effects mainly by mediating upstream oxidative stress, inflammation, apoptosis, and immune response pathways. It regulates are the NF-κB, PI3K/AKT, TGF-β/Smad, Nrf2/HO-1, and ERK/GSK3β pathways.Conclusion: This review presents comprehensive information on BA about pharmacokinetics, baicalin-loaded nano-delivery system, and its therapeutic effects and potential pharmacological mechanisms in respiratory diseases. The available studies suggest that BA has excellent possible treatment of respiratory diseases and is worthy of further investigation and development.
Collapse
Affiliation(s)
- Siyu Song
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lu Ding
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guangwen Liu
- GCP Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Tian Chen
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meiru Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jinjin Chen
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ziyuan Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qi Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- *Correspondence: Xiangyan Li, ; Zeyu Wang,
| | - Zeyu Wang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- *Correspondence: Xiangyan Li, ; Zeyu Wang,
| |
Collapse
|
12
|
Wang D, Li Y. Pharmacological effects of baicalin in lung diseases. Front Pharmacol 2023; 14:1188202. [PMID: 37168996 PMCID: PMC10164968 DOI: 10.3389/fphar.2023.1188202] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
The flavonoids baicalin and baicalein were discovered in the root of Scutellaria baicalensis Georgi and are primarily used in traditional Chinese medicine, herbal supplements and healthcare. Recently, accumulated investigations have demonstrated the therapeutic benefits of baicalin in treating various lung diseases due to its antioxidant, anti-inflammatory, immunomodulatory, antiapoptotic, anticancer, and antiviral effects. In this review, the PubMed database and ClinicalTrials website were searched with the search string "baicalin" and "lung" for articles published between September 1970 and March 2023. We summarized the therapeutic role that baicalin plays in a variety of lung diseases, such as chronic obstructive pulmonary disease, asthma, pulmonary fibrosis, pulmonary hypertension, pulmonary infections, acute lung injury/acute respiratory distress syndrome, and lung cancer. We also discussed the underlying mechanisms of baicalin targeting in these lung diseases.
Collapse
Affiliation(s)
- Duoning Wang
- Chengdu Hi-tech Nanxili Jiuzheng Clinic, Chengdu, Sichuan, China
| | - Yi Li
- Chengdu Hi-tech Nanxili Jiuzheng Clinic, Chengdu, Sichuan, China
- *Correspondence: Yi Li, /
| |
Collapse
|
13
|
Xu M, Cui Q, Su W, Zhang D, Pan J, Liu X, Pang Z, Zhu Q. High-content screening of active components of Traditional Chinese Medicine inhibiting TGF-β-induced cell EMT. Heliyon 2022; 8:e10238. [PMID: 36042745 PMCID: PMC9420491 DOI: 10.1016/j.heliyon.2022.e10238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/13/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
The epithelial mesenchymal transition (EMT) has roles in metastasis and invasion during fibrotic diseases and cancer progression. Some Traditional Chinese Medicines (TCMs) have shown inhibitory effects with respect to the EMT. The current study attempted to establish a multiparametric high-content method to screen for active monomeric compounds in TCM with the ability to target cellular EMT by assessing phenotypic changes. A total of 306 monomeric compounds from the MedChemExpress (MCE) compound library were screened by the high-content screening (HCS) system and 5 compounds with anti-EMT activity, including camptothecin (CPT), dimethyl curcumin (DMC), artesunate (ART), sinapine (SNP) and berberine (BER) were identified. To confirm anti-EMT activity, expression of EMT markers was assessed by qRT-PCR and Western blotting, and cell adhesion and migration measured by cell function assays. The results revealed that CPT, DMC, ART, SNP and BER inhibited transforming growth factor-β1 (TGF-β1)-induced expression of vimentin and α-SMA, upregulated expression of E-cadherin, increased cell adhesion and reduced cell migration. In summary, by quantifying the cell morphological changes during TGF-β1-induced EMT through multi-parametric analysis, TCM compounds with anti-EMT activity were successfully screened using the HCS system, a faster and more economical approach than conventional methods.
Collapse
Affiliation(s)
- Mengzhen Xu
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qinghua Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wen Su
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dan Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jiaxu Pan
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiangqi Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
14
|
Nadalin P, Kim JK, Kim TW, Park SU. Recent insights into the biological functions of baicalin. EXCLI JOURNAL 2022; 21:1019-1027. [PMID: 36172075 PMCID: PMC9489896 DOI: 10.17179/excli2022-5184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Priscilla Nadalin
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Tae Won Kim
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea,*To whom correspondence should be addressed: Sang Un Park, Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea; Tel.: +82-42-821-5730, Fax: +82-42-822-2631, E-mail:
| |
Collapse
|
15
|
Wang L, Feng T, Su Z, Pi C, Wei Y, Zhao L. Latest research progress on anticancer effect of baicalin and its aglycone baicalein. Arch Pharm Res 2022; 45:535-557. [DOI: 10.1007/s12272-022-01397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/11/2022] [Indexed: 11/02/2022]
|