1
|
Bagheri R, Daneshi SS, Bina S, Haghshenas M, Khoshnoud MJ, Asadi-Yousefabad SL, Khodaei F, Rashedinia M. Metformin Mitigates the Impact of Arsenic Exposure on the Maternal and Offspring Reproductive System of Female Mice. Biol Trace Elem Res 2025:10.1007/s12011-025-04577-2. [PMID: 40119994 DOI: 10.1007/s12011-025-04577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Exposure to arsenic causes health problems and is associated with adverse effects on fertility and development. Humans are facing increasing exposure to arsenic from multiple sources, such as drinking water, food products, and industrial processes. The mechanisms behind arsenic-induced reproductive toxicity and its impact on fertility and the development of future generations are investigated by the protective role of metformin (200 mg/kg) against arsenic-induced (20 ppm As2O3) ovarian damage in both maternal and offspring generations. Results showed arsenic exposure caused significant weight loss, increased mortality, reduced serum anti-Mullerian hormone (AMH) levels, and heightened oxidative stress, indicated by increased reactive oxygen species (ROS), malondialdehyde (MDA), and reduced ovarian antioxidant activity. Gene expression changes related to apoptosis and inflammation, such as BAX, Bcl-2, Bcl-2, caspase-3, tumor necrosis factor-alpha (TNF-α), and interleukin-1 (IL-1), were also noted, along with a decrease in HO-1 expression. Arsenic exposure led to a reduction in ovarian follicles and an increase in atretic follicles and uterine thickness. However, metformin significantly reduced ROS and MDA levels, enhanced antioxidant capacity, and protected ovarian tissue by upregulating heme oxygenase-1 (HO-1) and Bcl-2, modulating apoptotic and inflammatory genes, and preserving AMH levels. The possible protective role of metformin against arsenic-induced toxicity and its detrimental effects aims to improve therapeutic approaches to alleviate the harmful consequences of environmental pollutants, especially arsenic.
Collapse
Affiliation(s)
- Razieh Bagheri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Sajad Daneshi
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Bina
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Marziyeh Haghshenas
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Khoshnoud
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Forouzan Khodaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Rashedinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Abdullah AR, Seliem MA, Khidr EG, Sobhy AM, El-Shiekh RA, Hafeez MSAE, El-Husseiny AA. A comprehensive review on diabetic cardiomyopathy (DCM): histological spectrum, diagnosis, pathogenesis, and management with conventional treatments and natural compounds. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03980-9. [PMID: 40100371 DOI: 10.1007/s00210-025-03980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/22/2025] [Indexed: 03/20/2025]
Abstract
Diabetic complications are among the most pressing health issues currently. Cardiovascular problems, particularly diabetic cardiomyopathy (DCM), are responsible for almost 80% of diabetic deaths. Because of the increasing prevalence of diabetes and the increased threat of death from its consequences, researchers are searching for new pharmaceutical targets to delay or cure it. Currently, there are a few medicines available for the treatment of DCM, some of which have serious side effects. To address this issue, researchers are focusing on natural products. Thus, in this review, we discuss the prevalence, incidence, risk factors, histological spectrum, diagnosis, pathogenic pathways of DCM, genetic and epigenetic mechanisms involved in DCM, the current treatments, and the beneficial effects of natural product-based therapeutics. Natural treatments range from single doses to continuous regimens lasting weeks or months. Flavonoids are the largest class of natural compounds reported for the treatment of DCM. Natural regimens may cover the way for new treatment strategies for DCM for being multi-target agents in the treatment of DCM, with the ability to play a variety of functions via distinct signaling pathways.
Collapse
Affiliation(s)
- Ahmed R Abdullah
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
| | - Mahmoud A Seliem
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, 6Th of October City, Giza, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
| | - Ayah M Sobhy
- Pharmacognosy Department, Faculty of Pharmacy, Badr University in Assiut, Assiut, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Mohamed S Abd El Hafeez
- Department of Pharmacy, Kut University College, Al Kut, Wasit, 52001, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| |
Collapse
|
3
|
Chakraborty P, Dewanjee S. Unrevealing the mechanisms behind the cardioprotective effect of wheat polyphenolics. Arch Toxicol 2024; 98:3543-3567. [PMID: 39215839 DOI: 10.1007/s00204-024-03850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases pose a major threat to both life expectancy and quality of life worldwide, and a concerning level of disease burden has been attained, particularly in middle- and low-income nations. Several drugs presently in use lead to multiple adverse events. Thus, it is urgently needed to develop safe, affordable, and effective management of cardiovascular diseases. Emerging evidence reveals a positive association between polyphenol consumption and cardioprotection. Whole wheat grain and allied products are good sources of polyphenolic compounds bearing enormous cardioprotective potential. Polyphenolic extract of the entire wheat grain contains different phenolic compounds viz. ferulic acid, caffeic acid, chlorogenic acid, p-coumaric acid, sinapic acid, syringic acid, vanillic acid, apigenin, quercetin, luteolin, etc. which exert cardioprotection by reducing oxidative stress and interfering with different toxicological processes. The antioxidant capacity has been thought to exert the cardioprotective mechanism of wheat grain polyphenolics, which predominantly suppresses oxidative stress, inflammation and fibrosis by downregulating several pathogenic signaling events. However, the combined effect of polyphenolics appears to be more prominent than that of a single molecule, which might be attained due to the synergy resulting in multimodal cardioprotective benefits from multiple phenolics. The current article covers the bioaccessibility and possible effects of wheat-derived polyphenolics in protecting against several cardiovascular disorders. This review discusses the mechanistic pharmacology of individual wheat polyphenols on the cardiovascular system. It also highlights the comparative superiority of polyphenolic extracts over a single phenolic.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
4
|
Sarikaya K, Kölükçü E, Unsal V, Özdemir S. Protective Effects of Syringic Acid on Ischemia-Reperfusion Injury in Testicular Torsion: An Experimental Study in a Rat Model. Cureus 2023; 15:e42390. [PMID: 37492038 PMCID: PMC10365399 DOI: 10.7759/cureus.42390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
AIM The purpose of this study was to assess the effectiveness of syringic acid in preventing ischemia-reperfusion injury following detorsion in a rat model of induced testicular torsion. MATERIAL AND METHODS In our study, a total of 24 rats, eight in each group, were used. Group 1 served as the control group. Group 2 underwent testicular torsion and detorsion. Group 3 underwent the same procedures as Group 2, but also received 100 mg/kg syringic acid immediately following ischemia. Spectrophotometric analysis was performed on blood samples, and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), as well as the values of malondialdehyde (MDA), were evaluated under direct microscopic examination of the testis to determine tissue injury. The architecture of the seminiferous tubules and spermatogenesis processes were graded using the Johnsen and Cosentino scoring systems. RESULTS The mean value of MDA was higher in Group 2 compared to the other groups (p < 0.001). Group 3 demonstrated a decline in the concentrations of proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-6, and interleukin-1 beta, as indicated by biochemical analysis of blood samples, when compared to Group 2 (p-values: 0.045, 0.001, and <0.001, respectively). In addition, the improvement in Johnsen and Cosentino scores was significantly higher in Group 3 compared to Group 2 (p = 0.028 and p = 0.001, respectively). CONCLUSION These findings suggest that syringic acid has a protective effect against testicular oxidative damage.
Collapse
Affiliation(s)
- Kubilay Sarikaya
- Urology, Health Sciences University Ankara Etlik City Hospital, Ankara, TUR
| | - Engin Kölükçü
- Urology, Tokat Gaziosmanpaşa University School of Medicine, Tokat, TUR
| | - Velid Unsal
- Biochemistry, Faculty of Health Sciences and Central Research Laboratory, Mardin Artuklu University, Mardin, TUR
| | - Süleyman Özdemir
- Pathology, Faculty of Medicine, Gaziosmanpaşa University, Tokat, TUR
| |
Collapse
|
5
|
Haddadi N, Mirzania M, Ansarihadipour H. Syringic acid Attenuates Oxidative Stress in Plasma and Peripheral Blood Mononuclear Cells of Patients with Acute Myeloid Leukemia. Nutr Cancer 2023; 75:1038-1049. [PMID: 36697381 DOI: 10.1080/01635581.2023.2170432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Syringic acid (SA) is a natural phenolic acid that possesses antioxidant properties. The current study aimed to assess the possible ameliorative effects of SA on oxidative stress in patients with acute myeloid leukemia (AML). Twenty-two healthy donors as well as 22 sex- and age-matched AML patients participated in the study. AML patients were at the time of diagnosis and before remission. The peripheral blood mononuclear cells (PBMCs) and plasma samples were obtained and divided into four groups. The groups include: 1) buffer (B), containing isotonic phosphate buffer saline (100 mM, pH 7.4, 1 hr); 2) OX, containing solution subjected to iron-mediated oxidation (2.7 µM, 1 hr); 3) SA, containing SA solution (10 µM, 1 h) as ROS quencher and 4) SA + OX in which samples were pretreated with 10 µM of SA for 1 h, and then exposed to OX solution (2.7 µM) for 1 h. The results indicated that SA caused a significant increase in the activity of glutathione peroxidase (GPX) in PBMCs. Of note, the treatment of PBMCs and plasma samples of AML patients with SA was able to normalize the altered levels of GPX, superoxide dismutase (SOD), and catalase (CAT). The antioxidant effect of SA was further confirmed by analyzing the total oxidant status, lipid peroxidation, and protein carbonylation in both plasma samples and PBMCs of AML patients. According to the results, it seems that SA has strong protective effects on oxidative stress by elevating the total antioxidant status (TAS) of PBMCs and plasma specimens from AML patients.
Collapse
Affiliation(s)
- Naghmeh Haddadi
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehrzad Mirzania
- Department of Internal Medicine, Cancer Research Center Cancer Institute, Imam Khomeini Science, Tehran, Iran
| | - Hadi Ansarihadipour
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
6
|
Antiproliferative Effects of Ferulic, Coumaric, and Caffeic Acids in HepG2 Cells by hTERT Downregulation. Adv Pharmacol Pharm Sci 2022; 2022:1850732. [PMID: 36341080 PMCID: PMC9635977 DOI: 10.1155/2022/1850732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Objective Phenolic acids are well-known phytochemicals that are detected in a wide variety of medicinal plants, and their antiproliferative effects on cancer cells are known, but their mechanisms are poorly revealed. In most of cancer cells, telomerase reverse transcriptase (hTERT) is a dominant factor of telomere length regulation. The hTERT expression promotes invasiveness in tumor cells and is a hallmark of cancer. Therefore, in this study, the probable inhibitory effects of caffeic (Caf), coumaric (Cum), and ferulic acids (Fer) are investigated on the hTERT expression pattern in HepG2 cells. Methods The MTT, apoptosis assays, and real-time PCR analysis were applied to evaluate viability, cytotoxicity, and hTERT gene expression level, respectively. Results All of the studied phenolic acids showed cytotoxic effects on HepG2 cells in a timely manner and presented a time-dependent inhibitory effect on the growth of HepG2 cells. They reduced percentage of viable cells and induced apoptosis. Also, these phenolic acids had significant inhibitory effects on hTERT gene expression. Conclusion These findings suggest that cell viability along with hTERT gene expression in HepG2 cells could be reduced by Cum, Caf, and Fer. As different cancer cells are resistant to conventional chemotherapeutics, this type of results proposes the telomerase as a proper target of cancer therapy development by natural products.
Collapse
|
7
|
Han X, Bai L, Kee HJ, Jeong MH. Syringic acid mitigates isoproterenol-induced cardiac hypertrophy and fibrosis by downregulating Ereg. J Cell Mol Med 2022; 26:4076-4086. [PMID: 35719043 PMCID: PMC9279583 DOI: 10.1111/jcmm.17449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/01/2022] Open
Abstract
Gallic acid has been reported to mitigate cardiac hypertrophy, fibrosis and arterial hypertension. The effects of syringic acid, a derivative of gallic acid, on cardiac hypertrophy and fibrosis have not been previously investigated. This study aimed to examine the effects of syringic acid on isoproterenol‐treated mice and cells. Syringic acid mitigated the isoproterenol‐induced upregulation of heart weight to bodyweight ratio, pathological cardiac remodelling and fibrosis in mice. Picrosirius red staining, quantitative real‐time polymerase chain reaction (qRT‐PCR) and Western blotting analyses revealed that syringic acid markedly downregulated collagen accumulation and fibrosis‐related factors, including Fn1. The results of RNA sequencing analysis of Ereg expression were verified using qRT‐PCR. Syringic acid or transfection with si‐Ereg mitigated the isoproterenol‐induced upregulation of Ereg, Myc and Ngfr. Ereg knockdown mitigated the isoproterenol‐induced upregulation of Nppb and Fn1 and enhancement of cell size. Mechanistically, syringic acid alleviated cardiac hypertrophy and fibrosis by downregulating Ereg. These results suggest that syringic acid is a potential therapeutic agent for cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Xiongyi Han
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Liyan Bai
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea.,Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|