1
|
Neha, Mazahir I, Khan SA, Kaushik P, Parvez S. The Interplay of Mitochondrial Bioenergetics and Dopamine Agonists as an Effective Disease-Modifying Therapy for Parkinson's Disease. Mol Neurobiol 2024; 61:8086-8103. [PMID: 38468113 DOI: 10.1007/s12035-024-04078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Parkinson's disease (PD) is a progressive neurological ailment with a slower rate of advancement that is more common in older adults. The biggest risk factor for PD is getting older, and those over 60 have an exponentially higher incidence of this condition. The failure of the mitochondrial electron chain, changes in the dynamics of the mitochondria, and abnormalities in calcium and ion homeostasis are all symptoms of Parkinson's disease (PD). Increased mitochondrial reactive oxygen species (mROS) and an energy deficit are linked to these alterations. Levodopa (L-DOPA) is a medication that is typically used to treat most PD patients, but because of its negative effects, additional medications have been created utilizing L-DOPA as the parent molecule. Ergot and non-ergot derivatives make up most PD medications. PD is successfully managed with the use of dopamine agonists (DA). To get around the motor issues produced by L-DOPA, these dopamine derivatives can directly excite DA receptors in the postsynaptic membrane. In the past 10 years, two non-ergoline DA with strong binding properties for the dopamine D2 receptor (D2R) and a preference for the dopamine D3 receptor (D3R) subtype, ropinirole, and pramipexole (PPx) have been developed for the treatment of PD. This review covers the most recent research on the efficacy and safety of non-ergot drugs like ropinirole and PPx as supplementary therapy to DOPA for the treatment of PD.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Iqra Mazahir
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sara Akhtar Khan
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
2
|
Raghavan A, Kashyap R, Sreedevi P, Jos S, Chatterjee S, Alex A, D’Souza MN, Giridharan M, Muddashetty R, Manjithaya R, Padavattan S, Nath S. Astroglia proliferate upon the biogenesis of tunneling nanotubes via α-synuclein dependent transient nuclear translocation of focal adhesion kinase. iScience 2024; 27:110565. [PMID: 39184442 PMCID: PMC11342280 DOI: 10.1016/j.isci.2024.110565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/13/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Astroglia play crucial neuroprotective roles by internalizing pathogenic aggregates and facilitating their degradation. Here, we show that α-SYN protofibril-induced organelle toxicities and reactive oxygen species (ROS) cause premature cellular senescence in astrocytes and astrocyte-derived cancer cells, resulting in a transient increase in the biogenesis of tunneling nanotubes (TNTs). TNT-biogenesis and TNT-mediated cell-to-cell transfer lead to clearance of α-SYN-induced organelle toxicities, reduction in cellular ROS levels, and reversal of cellular senescence. Enhanced cell proliferation is seen in the post-recovered cells after recovering from α-SYN-induced organelle toxicities. Further, we show that α-SYN-induced senescence promotes the transient localization of focal adhesion kinase (FAK) in the nucleus. FAK-mediated regulation of Rho-associated kinases plays a significant role in the biogenesis of TNTs and their subsequent proliferation. Our study emphasizes that TNT biogenesis has a potential role in the clearance of α-SYN-induced cellular toxicities, the consequences of which cause enhanced proliferation in the post-recovered astroglia cells.
Collapse
Affiliation(s)
- Abinaya Raghavan
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, India
| | - Rachana Kashyap
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, India
| | - P. Sreedevi
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Sneha Jos
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Suchana Chatterjee
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, India
| | - Ann Alex
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, India
| | | | - Mridhula Giridharan
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ravi Muddashetty
- Centre for Brain Research, Indian Institute of Science, CV Raman Avenue, Bengaluru, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Sivaraman Padavattan
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sangeeta Nath
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Zhong Y, Zhang Y, Zhu Z. Research progress on the association between MicroRNA and postoperative cognitive dysfunction. Minerva Anestesiol 2024; 90:191-199. [PMID: 38535971 DOI: 10.23736/s0375-9393.23.17614-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a significant complication following surgery. The precise mechanisms underlying POCD remain elusive, although it is speculated that they involve central nervous system inflammation, oxidative stress and cellular apoptosis. MicroRNAs (miRNAs), a class of non-coding RNAs widely distributed in eukaryotes, have been implicated in the pathogenesis of neurodegenerative disorders and could potentially impact POCD. This review explores the association between miRNAs and POCD and provides an overview of the progress of current research on miRNAs in the pathogenesis, diagnosis, and treatment of POCD.
Collapse
Affiliation(s)
- Yuanping Zhong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaoqiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China -
| |
Collapse
|
4
|
Du L, Wu Y, Jia Q, Li J, Li Y, Ma H, Fan Z, Guo X, Li L, Peng Y, Li J, Fang Z, Zhang X. Autophagy Suppresses Ferroptosis by Degrading TFR1 to Alleviate Cognitive Dysfunction in Mice with SAE. Cell Mol Neurobiol 2023; 43:3605-3622. [PMID: 37341832 PMCID: PMC11410008 DOI: 10.1007/s10571-023-01370-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/30/2023] [Indexed: 06/22/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a serious complication of sepsis that is characterized by long-term cognitive impairment, which imposes a heavy burden on families and society. However, its pathological mechanism has not been elucidated. Ferroptosis is a novel form of programmed cell death that is involved in multiple neurodegenerative diseases. In the current study, we found that ferroptosis also participated in the pathological process of cognitive dysfunction in SAE, while Liproxstatin-1 (Lip-1) effectively inhibited ferroptosis and alleviated cognitive impairment. Additionally, since an increasing number of studies have suggested the crosstalk between autophagy and ferroptosis, we further proved the essential role of autophagy in this process and demonstrated the key molecular mechanism of the autophagy-ferroptosis interaction. Currently, we showed that autophagy in the hippocampus was downregulated within 3 days of lipopolysaccharide injection into the lateral ventricle. Moreover, enhancing autophagy ameliorated cognitive dysfunction. Importantly, we found that autophagy suppressed ferroptosis by downregulating transferrin receptor 1 (TFR1) in the hippocampus, thereby alleviating cognitive impairment in mice with SAE. In conclusion, our findings indicated that hippocampal neuronal ferroptosis is associated with cognitive impairment. In addition, enhancing autophagy can inhibit ferroptosis via degradation of TFR1 to ameliorate cognitive impairment in SAE, which shed new light on the prevention and therapy for SAE.
Collapse
Affiliation(s)
- Lixia Du
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - You Wu
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Qi Jia
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jin Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yi Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hongwei Ma
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhongmin Fan
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiaofeng Guo
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Ling Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yuliang Peng
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zongping Fang
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
- Translational Research Institute of Brain and Brain-Like Intelligence, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China.
| | - Xijing Zhang
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
5
|
Ito N, Tsuji M, Adachi N, Nakamura S, Sarkar AK, Ikenaka K, Aguirre C, Kimura AM, Kiuchi Y, Mochizuki H, Teplow DB, Ono K. Extracellular high molecular weight α-synuclein oligomers induce cell death by disrupting the plasma membrane. NPJ Parkinsons Dis 2023; 9:139. [PMID: 37770475 PMCID: PMC10539356 DOI: 10.1038/s41531-023-00583-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
α-Synuclein (αS), the causative protein of Parkinson's disease and other α-synucleinopathies, aggregates from a low molecular weight form (LMW-αS) to a high molecular weight αS oligomer (HMW-αSo). Aggregated αS accumulates intracellularly, induces intrinsic apoptosis, is released extracellularly, and appears to propagate disease through prion-like spreading. Whether extracellular αS aggregates are cytotoxic, damage cell wall, or induce cell death is unclear. We investigated cytotoxicity and cell death caused by HMW-αSo or LMW-αS. Extracellular HMW-αSo was more cytotoxic than LMW-αS and was a crucial factor for inducing plasma membrane damage and cell death. HMW-αSo induced reactive oxygen species production and phospholipid peroxidation in the membrane, thereby impairing calcium homeostasis and disrupting plasma membrane integrity. HMW-αSo also induced extrinsic apoptosis and cell death by activating acidic sphingomyelinase. Thus, as extracellular HMW-αSo causes neuronal injury and death via cellular transmission and direct plasma membrane damage, we propose an additional disease progression pathway for α-synucleinopathies.
Collapse
Affiliation(s)
- Naohito Ito
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan
- Department of Internal Medicine, Division of Neurology, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan.
| | - Naoki Adachi
- Department of Physiology, School of Medicine, Showa University, Tokyo, 142-8555, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Avijite Kumer Sarkar
- Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3026, USA
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - César Aguirre
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Atsushi Michael Kimura
- Brain Research Institute Center for Integrated Human Brain Science, Department of Functional Neurology and Neurosurgery, Niigata University, Niigata, 951-8122, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles (UCLA), Los Angeles, LA, 10833, USA
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640, Japan.
| |
Collapse
|
6
|
Deng Y, Hong JS, Cao YY, Kang N, Han DY, Li YT, Chen L, Li ZQ, Zhan R, Guo XY, Yang N, Shi CM. Specific antagonist of receptor for advanced glycation end‑products attenuates delirium‑like behaviours induced by sevoflurane anaesthesia with surgery in aged mice partially by improving damage to the blood‑brain barrier. Exp Ther Med 2023; 26:317. [PMID: 38895540 PMCID: PMC11184639 DOI: 10.3892/etm.2023.12016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/16/2023] [Indexed: 06/21/2024] Open
Abstract
Postoperative delirium (POD), which occurs in hospital up to 1-week post-procedure or until discharge, is a common complication, especially in older adult patients. However, the pathogenesis of POD remains unclear. Although damage to blood-brain barrier (BBB) integrity is involved in the neuropathogenesis of POD, the specific role of the BBB in POD requires further elucidation. Anaesthesia using 2% isoflurane for 4 h results in the upregulation of hippocampal receptor for advanced glycation end-products (RAGE) expression and β-amyloid accumulation in aged rats. The present study investigated the role of RAGE in BBB integrity and its mechanisms in POD-like behaviours. The buried food, open field and Y maze tests were used to evaluate neurobehavioural changes in aged mice following 2.5% sevoflurane anaesthesia administration with exploratory laparotomy. Levels of tight junction proteins were assessed by western blotting. Multiphoton in vivo microscopy was used to observe the ultrastructural changes in the BBB in the hippocampal CA1 region. Anaesthesia with surgery decreased the levels of tight junction proteins occludin and claudin 5, increased matrix metalloproteinases (MMPs) 2 and 9, damaged the ultrastructure of the BBB and induced POD-like behaviour. FPS-ZM1, a specific RAGE antagonist, ameliorated POD-like behaviour induced by anaesthesia and surgery in aged mice. Furthermore, FPS-ZM1 also restored decreased levels of occludin and claudin 5 as well as increased levels of MMP2 and MMP9. The present findings suggested that RAGE signalling was involved in BBB damage following anaesthesia with surgery. Thus, RAGE has potential as a novel therapeutic intervention for the prevention of POD.
Collapse
Affiliation(s)
- Ying Deng
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jing-Shu Hong
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yi-Yun Cao
- Department of Anaesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Ning Kang
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Deng-Yang Han
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yi-Tong Li
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Lei Chen
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Zheng-Qian Li
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing 100191, P.R. China
| | - Rui Zhan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, P.R. China
| | - Xiang-Yang Guo
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing 100191, P.R. China
| | - Ning Yang
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Cheng-Mei Shi
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
7
|
Zhong Y, Zhao P, Zhang C, Wu Z, Fang X, Zhu Z. NUDT21 relieves sevoflurane-induced neurological damage in rats by down-regulating LIMK2. Open Life Sci 2023; 18:20220486. [PMID: 37077345 PMCID: PMC10106971 DOI: 10.1515/biol-2022-0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/22/2022] [Accepted: 07/28/2022] [Indexed: 04/21/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication of cognitive decline after surgery and anesthesia. Sevoflurane, as a commonly used anesthetic, was found to cause POCD. Nudix Hydrolase 21 (NUDT21), a conserved splicing factor, has been reported to exert important functions in multiple diseases' progression. In this study, the effect of NUDT21 on sevoflurane-induced POCD was elucidated. Results showed that NUDT21 was down-regulated in the hippocampal tissue of sevoflurane-induced rats. Morris water maze test results revealed that overexpression of NUDT21 improved sevoflurane-induced cognitive impairment. In addition, TUNEL assay results indicated that enhanced NUDT21 alleviated sevoflurane-induced apoptosis of hippocampal neurons. Furthermore, overexpression of NUDT21 suppressed the sevoflurane-induced LIMK2 expression. Taken together, NUDT21 alleviates sevoflurane-induced neurological damage in rats by down-regulating LIMK2, providing a novel target for the prevention of sevoflurane-induced POCD.
Collapse
Affiliation(s)
- Yuanping Zhong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
| | - Pengcheng Zhao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
| | - Chao Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
| | - Zhenyu Wu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
| | - Xu Fang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
| | - Zhaoqiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China
| |
Collapse
|
8
|
Synucleinopathy in Amyotrophic Lateral Sclerosis: A Potential Avenue for Antisense Therapeutics? Int J Mol Sci 2022; 23:ijms23169364. [PMID: 36012622 PMCID: PMC9409035 DOI: 10.3390/ijms23169364] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease classified as both a neurodegenerative and neuromuscular disorder. With a complex aetiology and no current cure for ALS, broadening the understanding of disease pathology and therapeutic avenues is required to progress with patient care. Alpha-synuclein (αSyn) is a hallmark for disease in neurodegenerative disorders, such as Parkinson's disease, Lewy body dementia, and multiple system atrophy. A growing body of evidence now suggests that αSyn may also play a pathological role in ALS, with αSyn-positive Lewy bodies co-aggregating alongside known ALS pathogenic proteins, such as SOD1 and TDP-43. This review endeavours to capture the scope of literature regarding the aetiology and development of ALS and its commonalities with "synucleinopathy disorders". We will discuss the involvement of αSyn in ALS and motor neuron disease pathology, and the current theories and strategies for therapeutics in ALS treatment, as well as those targeting αSyn for synucleinopathies, with a core focus on small molecule RNA technologies.
Collapse
|
9
|
Sun Z, Yang N, Jia X, Song Y, Han D, Wang X, Sun J, Li Z, Zuo Z, Guo X. Nobiletin Attenuates Anesthesia/Surgery-Induced Neurocognitive Decline by Preserving the Expression of Clock Genes in Mice. Front Neurosci 2022; 16:938874. [PMID: 35873828 PMCID: PMC9301141 DOI: 10.3389/fnins.2022.938874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is commonly observed during the postoperative period and significantly affects the prognosis of patients. Neuroinflammation plays a vital role in the pathogenesis of POCD. Despite laboratory and clinical research over the past decades, practical pharmacological strategies for the treatment and prevention of POCD are not yet available currently. Nobiletin (NOB) is a natural polymethoxylated flavone. As an enhancer of the clock protein retinoic acid receptor-related orphan receptors (RORs), NOB has been shown to attenuate inflammation and improve cognitive decline. We speculate that NOB is a candidate for the treatment and prevention of POCD. In this study, we investigated whether and how NOB affected surgery-induced neuroinflammation and POCD in adult CD1 mice. NOB pretreatment suppressed exploratory laparotomy-induced systemic inflammation and neuroinflammation in a dose-dependent manner (< 50 mg/kg), and attenuated POCD. Moreover, NOB dose-dependently reversed the decrease of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1, also known as Arntl) and Rors expression induced by exploratory laparotomy. The expression of Bmal was negatively correlated with tumor necrosis factor-α (TNF-α). Our results suggest that NOB attenuated POCD, possibly via preserving the expression of Bmal and Rors and inhibiting inflammation.
Collapse
Affiliation(s)
- Zhuonan Sun
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xixi Jia
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yanan Song
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Dengyang Han
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Xiaoxiao Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Jie Sun
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, United States
- *Correspondence: Zhiyi Zuo,
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Xiangyang Guo,
| |
Collapse
|