1
|
Han Q, Gu Y, Qian Y. Study on the mechanism of activating SIRT1/Nrf2/p62 pathway to mediate autophagy-dependent ferroptosis to promote healing of diabetic foot ulcers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3015-3025. [PMID: 39320410 DOI: 10.1007/s00210-024-03400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/18/2024] [Indexed: 09/26/2024]
Abstract
Diabetic foot (DF), a prevalent and grave diabetes sequela, is considered as a notable clinical concern, with SIRT1 downregulation observed in DF patients' blood specimens. Nonetheless, the regulatory mechanisms of SIRT1 in diabetic foot ulcer (DFU) remain unclear. Thus, in the current study, we investigated the role and mechanisms of SIRT1 in alleviating DFU. Western blotting was used to detect the expression of autophagy and ferroptosis-related proteins, CCK8 assay was used to measure cell proliferation. Plate colony method was used to measure bacterial growth, and the inhibitory effect on intracellular and extracellular Staphylococcus aureus was observed after drug intervention. ELISA was used to detect inflammatory cytokines and oxidative stress markers levels. ROS, total iron, and Fe2+ levels were detected using corresponding assays. Additionally, HE staining detected the thickness of the epidermis and dermis of the rat wound tissue while the collagen deposition in the wound tissue was detected using Masson staining. In addition, Prussian blue staining was used to detect iron deposition, and C11 BODIPY 581/591 lipid peroxidation probe was used to detect lipid ROS. Our results suggested that the activation of SIRT1/Nrf2/p62 signaling affects cell proliferation, colony formation, ferroptosis, and the production of lipid ROS in DFU-infected cell model through autophagy. In vivo experiments indicated that activating SIRT1/Nrf2/p62 signaling affects oxidative stress, inflammation, and autophagy in wound tissue and promotes wound healing in DFU rats through mediating autophagy-dependent ferroptosis. Taken together, the activation of SIRT1/Nrf2/p62 pathway can promote DFU healing, which might be mediated by autophagy-dependent ferroptosis.
Collapse
Affiliation(s)
- Qinglin Han
- Department of Orthopaedic, The Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, Jangsu, 226001, China.
| | - Yuming Gu
- Department of Orthopaedic, The Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, Jangsu, 226001, China
| | - Yongquan Qian
- Department of Orthopaedic, The Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, Jangsu, 226001, China
| |
Collapse
|
2
|
Peng J, Zhu H, Ruan B, Duan Z, Cao M. miR-155 promotes m6A modification of SOX2 mRNA through targeted regulation of HIF-1α and delays wound healing in diabetic foot ulcer in vitro models. J Diabetes Investig 2025; 16:60-71. [PMID: 39509294 DOI: 10.1111/jdi.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
OBJECTIVE Diabetic foot ulcers (DFU) are one of the most destructive complications of diabetes mellitus. The aim of this study was to link miR-155 and SOX2 with DFU to explore the regulation of wound healing by DFU and its potential mechanism. METHODS Human keratinocytes (HaCaT) were induced with advanced glycation end products (AGEs) to construct DFU models in vitro. AGE-induced HaCaT cells were subjected to CCK-8 assays, flow cytometry, and wound healing assays to evaluate cell proliferation, apoptosis, and migration capacity, respectively. RT-qPCR and Western blotting were used to determine gene and protein expression levels, respectively. N6-methyladenosine (M6A) levels in total RNA were assessed using an M6A methylation quantification kit. RESULTS Our results suggested that the inhibition of miR-155 promoted wound healing in an in vitro DFU model, while the knockdown of HIF-1α reversed this process, and that HIF-1α was a target protein of miR-155. In addition, knockdown of HIF-1α promoted the m6A level of SOX2 mRNA, inhibited the expression of SOX2, and inhibited the activation of the EGFR/MEK/ERK signaling pathway, thus inhibiting the proliferation and migration of HaCaT cells and promoting the apoptosis of HaCaT cells, while overexpression of SOX2 reversed this effect. We also found that METTL3 knockdown had the opposite effect of HIF-1α knockdown. CONCLUSIONS Inhibition of miR-155 promoted the expression of HIF-1α and attenuated the m6A modification of SOX2 mRNA, thereby promoting the expression of SOX2 and activating the downstream EGFR/MEK/ERK signaling pathway to promote wound healing in an in vitro DFU model.
Collapse
Affiliation(s)
- Jiarui Peng
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Hong Zhu
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Bin Ruan
- Department of Occupational Disease, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Zhisheng Duan
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Mei Cao
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
3
|
Ren Y, Zhang H. The causal effect of inflammatory proteins and immune cell populations on diabetic nephropathy: evidence from Mendelian randomization. Int Urol Nephrol 2024; 56:2769-2778. [PMID: 38520496 DOI: 10.1007/s11255-024-04017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the diabetic microvascular complications with complex pathophysiology, and exploring the landscape of immune dysregulation in DN is valuable for pathogenesis and disease treatment. We crystallized possible inflammatory exposures into 91 circulating inflammatory proteins and 109 blood immune cells; and assessed the causal relationship between inflammation and DN using Mendelian randomization (MR). METHODS Based on publicly available genetic data, we explored causal associations between inflammation and DN risk by two-sample MR analysis. Genome-wide association study (GWAS) summary statistics for 91 circulating inflammatory proteins, 109 immune cells absolute counts, and DN were acquired from the GWAS Catalog. Inverse Variance Weighted (IVW) was the main MR method, while MR-Egger and MR-pleiotropy residuals and outliers (MR-PRESSO) were utilized for sensitivity analysis. Cochrane's Q was used to test for heterogeneity. The leave-one-out method ensured the stability of the MR results. RESULTS This study revealed that higher levels of TNF-related activation-induced cytokine and tumor necrosis factor ligand superfamily member 14 were possibly associated with the increased risk of DN according to the IVW approach, with estimated odds ratios (OR) of 1.287 (95% confidence interval [CI] 1.051 to 1.577, P = 0.015) and 1.249 (95% CI 1.018 to 1.532, P = 0.033). Five immune cell traits were identified that might be linked to increased DN risk, including the higher absolute counts of HLA DR+ natural killer cell (OR = 1.248, 95% CI 1.055 to 1.476, P = 0.010), IgD+ CD38+ B cell (OR = 1.148, 95% CI 1.033 to 1.276, P = 0.010), CD25++ CD8+ T cell (OR = 1.159, 95% CI 1.032 to 1.302, P = 0.013), CD4- CD8- T cell (OR = 1.226, 95% CI 1.032 to 1.457, P = 0.020), and IgD- CD38- B cell (OR = 1.182, 95% CI 1.009 to 1.386, P = 0.039). In addition, elevated levels of interleukin-1 alpha (OR = 0.712, 95% CI 0.514 to 0.984, P = 0.040) and unswitched memory B cell (OR = 0.797, 95% CI 0.651 to 0.974, P = 0.027) may reduce the risk of developing DN. CONCLUSION We identified inflammation-related exposures that may be associated with the risk of DN at the level of genetic prediction, which contributes to a better understanding of the etiologic of DN and facilitates the development of targeted therapies for DN.
Collapse
Affiliation(s)
- Yi Ren
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pathology and Pathophysiology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Department of Pathology and Pathophysiology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Ng MY, Yu CC, Chen SH, Liao YW, Lin T. Er:YAG Laser Alleviates Inflammaging in Diabetes-Associated Periodontitis via Activation CTBP1-AS2/miR-155/SIRT1 Axis. Int J Mol Sci 2024; 25:2116. [PMID: 38396793 PMCID: PMC10888604 DOI: 10.3390/ijms25042116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Periodontitis is a significant health concern for individuals with diabetes mellitus (DM), characterized by inflammation and periodontium loss. Hyperglycaemia in DM exacerbates susceptibility to periodontitis by inducing inflammaging in the host immune system. The use of erbium-doped yttrium-aluminum-garnet laser (ErL) in periodontitis treatment has gained attention, but its impact on diabetic-associated periodontitis (DP) and underlying mechanisms remain unclear. In this study, we simulated DP by exposing human periodontal ligament fibroblasts (PDLFs) to advanced glycation end products (AGEs) and lipopolysaccharides from P. gingivalis (Pg-LPS). Subsequently, we evaluated the impact of ErL on the cells' wound healing and assessed their inflammaging markers. ErL treatment promoted wound healing and suppressed inflammaging activities, including cell senescence, IL-6 secretion, and p65 phosphorylation. Moreover, the laser-targeted cells were observed to have upregulated expression of CTBP1-AS2, which, when overexpressed, enhanced wound healing ability and repressed inflammaging. Moreover, bioinformatic analysis revealed that CTBP1-AS2 acted as a sponge for miR155 and upregulated SIRT1. In conclusion, ErL demonstrated the ability to improve wound healing and mitigate inflammaging in diabetic periodontal tissue through the CTBP1-AS2/miR-155/SIRT1 axis. Targeting this axis could represent a promising therapeutic approach for preventing periodontitis in individuals with DM.
Collapse
Affiliation(s)
- Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (C.-C.Y.); (S.-H.C.)
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (C.-C.Y.); (S.-H.C.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Szu-Han Chen
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (C.-C.Y.); (S.-H.C.)
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (C.-C.Y.); (S.-H.C.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
5
|
Han Y, Zhou Q, Liu L, Li J, Zhou Y. DNI-MDCAP: improvement of causal MiRNA-disease association prediction based on deep network imputation. BMC Bioinformatics 2024; 25:22. [PMID: 38216907 PMCID: PMC10785389 DOI: 10.1186/s12859-024-05644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND MiRNAs are involved in the occurrence and development of many diseases. Extensive literature studies have demonstrated that miRNA-disease associations are stratified and encompass ~ 20% causal associations. Computational models that predict causal miRNA-disease associations provide effective guidance in identifying novel interpretations of disease mechanisms and potential therapeutic targets. Although several predictive models for miRNA-disease associations exist, it is still challenging to discriminate causal miRNA-disease associations from non-causal ones. Hence, there is a pressing need to develop an efficient prediction model for causal miRNA-disease association prediction. RESULTS We developed DNI-MDCAP, an improved computational model that incorporated additional miRNA similarity metrics, deep graph embedding learning-based network imputation and semi-supervised learning framework. Through extensive predictive performance evaluation, including tenfold cross-validation and independent test, DNI-MDCAP showed excellent performance in identifying causal miRNA-disease associations, achieving an area under the receiver operating characteristic curve (AUROC) of 0.896 and 0.889, respectively. Regarding the challenge of discriminating causal miRNA-disease associations from non-causal ones, DNI-MDCAP exhibited superior predictive performance compared to existing models MDCAP and LE-MDCAP, reaching an AUROC of 0.870. Wilcoxon test also indicated significantly higher prediction scores for causal associations than for non-causal ones. Finally, the potential causal miRNA-disease associations predicted by DNI-MDCAP, exemplified by diabetic nephropathies and hsa-miR-193a, have been validated by recently published literature, further supporting the reliability of the prediction model. CONCLUSIONS DNI-MDCAP is a dedicated tool to specifically distinguish causal miRNA-disease associations with substantially improved accuracy. DNI-MDCAP is freely accessible at http://www.rnanut.net/DNIMDCAP/ .
Collapse
Affiliation(s)
- Yu Han
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qiong Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Leibo Liu
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jianwei Li
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| |
Collapse
|
6
|
Liebisch M, Wolf G. Role of Epigenetic Changes in the Pathophysiology of Diabetic Kidney Disease. GLOMERULAR DISEASES 2024; 4:211-226. [PMID: 39649441 PMCID: PMC11623970 DOI: 10.1159/000541923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/08/2024] [Indexed: 12/10/2024]
Abstract
Background Diabetic kidney disease (DKD) is a global health issue. Epigenetic changes play an important role in the pathogenesis of this disease. Summary DKD is currently the leading cause of kidney failure worldwide. Although much is known about the pathophysiology of DKD, the research field of epigenetics is relatively new. Several recent studies have demonstrated that diabetes-induced dysregulation of epigenetic mechanisms alters the expression of pathological genes in kidney cells. If these changes persist for a long time, the so-called "metabolic memory" could be established. In this review, we highlight diabetes-induced epigenetic modifications associated with DKD. While there is a substantial amount of literature on epigenetic changes, only a few studies describe the underlying molecular mechanisms. Detailed analyses have shown that epigenetic changes play an important role in known pathological features of DKD, such as podocyte injury, fibrosis, accumulation of extracellular matrix, or oxidative injury, all of which contribute to the pathophysiology of disease. The transforming growth factor-β plays a key role as it is involved in all-mentioned epigenetic types of regulation. Key Messages Epigenetic is crucial for the development and progression of DKD, but the detailed molecular mechanisms have to be further analyzed more in detail.
Collapse
Affiliation(s)
- Marita Liebisch
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| |
Collapse
|
7
|
Prieto I, Kavanagh M, Jimenez-Castilla L, Pardines M, Lazaro I, Herrero del Real I, Flores-Muñoz M, Egido J, Lopez-Franco O, Gomez-Guerrero C. A mutual regulatory loop between miR-155 and SOCS1 influences renal inflammation and diabetic kidney disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102041. [PMID: 37842165 PMCID: PMC10571033 DOI: 10.1016/j.omtn.2023.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/23/2023] [Indexed: 10/17/2023]
Abstract
Diabetic kidney disease (DKD) is a common microvascular complication of diabetes, a global health issue. Hyperglycemia, in concert with cytokines, activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway to induce inflammation and oxidative stress contributing to renal damage. There is evidence of microRNA-155 (miR-155) involvement in diabetes complications, but the underlying mechanisms are unclear. In this study, gain- and loss-of-function experiments were conducted to investigate the interplay between miR-155-5p and suppressor of cytokine signaling 1 (SOCS1) in the regulation of the JAK/STAT pathway during renal inflammation and DKD. In experimental models of mesangial injury and diabetes, miR-155-5p expression correlated inversely with SOCS1 and positively with albuminuria and expression levels of cytokines and prooxidant genes. In renal cells, miR-155-5p mimic downregulated SOCS1 and promoted STAT1/3 activation, cytokine expression, and cell proliferation and migration. Conversely, both miR-155-5p antagonism and SOCS1 overexpression protected cells from inflammation and hyperglycemia damage. In vivo, SOCS1 gene delivery decreased miR-155-5p and kidney injury in diabetic mice. Moreover, therapeutic inhibition of miR-155-5p suppressed STAT1/3 activation and alleviated albuminuria, mesangial damage, and renal expression of inflammatory and fibrotic genes. In conclusion, modulation of the miR-155/SOCS1 axis protects kidneys against diabetic damage, thus highlighting its potential as therapeutic target for DKD.
Collapse
Affiliation(s)
- Ignacio Prieto
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - María Kavanagh
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
| | - Luna Jimenez-Castilla
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Marisa Pardines
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
| | - Iolanda Lazaro
- Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute-IMIM, 08003 Barcelona, Spain
| | - Isabel Herrero del Real
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
| | - Monica Flores-Muñoz
- Translational Medicine Lab, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa 91140, Veracruz, Mexico
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Oscar Lopez-Franco
- Translational Medicine Lab, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa 91140, Veracruz, Mexico
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| |
Collapse
|
8
|
Karuga FF, Jaromirska J, Malicki M, Sochal M, Szmyd B, Białasiewicz P, Strzelecki D, Gabryelska A. The role of microRNAs in pathophysiology and diagnostics of metabolic complications in obstructive sleep apnea patients. Front Mol Neurosci 2023; 16:1208886. [PMID: 37547923 PMCID: PMC10403239 DOI: 10.3389/fnmol.2023.1208886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Obstructive sleep apnea (OSA) is one of the most common sleep disorders, which is characterized by recurrent apneas and/or hypopneas occurring during sleep due to upper airway obstruction. Among a variety of health consequences, OSA patients are particularly susceptible to developing metabolic complications, such as metabolic syndrome and diabetes mellitus type 2. MicroRNAs (miRNAs) as epigenetic modulators are promising particles in both understanding the pathophysiology of OSA and the prediction of OSA complications. This review describes the role of miRNAs in the development of OSA-associated metabolic complications. Moreover, it summarizes the usefulness of miRNAs as biomarkers in predicting the aforementioned OSA complications.
Collapse
Affiliation(s)
- Filip Franciszek Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Julia Jaromirska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Mikołaj Malicki
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Bartosz Szmyd
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
- Department of Pediatrics, Oncology, and Hematology, Medical University of Lodz, Lodz, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
Zhang Y, Zhang J, Xu Z, Zhang D, Xia P, Ling J, Tang X, Liu X, Xuan R, Zhang M, Liu J, Yu P. Regulation of NcRNA-protein binding in diabetic foot. Biomed Pharmacother 2023; 160:114361. [PMID: 36753956 DOI: 10.1016/j.biopha.2023.114361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Non-coding RNA (ncRNA) is a special type of RNA transcript that makes up more than 90 % of the human genome. Although ncRNA typically does not encode proteins, it indirectly controls a wide range of biological processes, including cellular metabolism, development, proliferation, transcription, and post-transcriptional modification. NcRNAs include small interfering RNA (siRNA), PIWI-interacting RNA (piRNA), tRNA-derived small RNA (tsRNA), etc. The most researched of these are miRNA, lncRNA, and circRNA, which are crucial regulators in the onset of diabetes and the development of associated consequences. The ncRNAs indicated above are linked to numerous diabetes problems by binding proteins, including diabetic foot (DF), diabetic nephropathy, diabetic cardiomyopathy, and diabetic peripheral neuropathy. According to recent studies, Mir-146a can control the AKAP12 axis to promote the proliferation and migration of diabetic foot ulcer (DFU) cells, while lncRNA GAS5 can activate HIF1A/VEGF pathway by binding to TAF15 to promote DFU wound healing. However, there are still many unanswered questions about the mechanism of action of ncRNAs. In this study, we explored the mechanism and new progress of ncRNA-protein binding in DF, which can provide help and guidance for the application of ncRNA in the early diagnosis and potential targeted intervention of DFU.
Collapse
Affiliation(s)
- Yujia Zhang
- Huankui College, Nanchang University, Nanchang, Jiangxi, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhou Xu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jitao Ling
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Xuan
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meiying Zhang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
10
|
Yan M, Guo L, Ma J, Yang Y, Tang T, Zhang B, Zhou W, Zou W, Hou Z, Gu H, Gong H. Liquiritin alleviates alpha-naphthylisothiocyanate-induced intrahepatic cholestasis through the Sirt1/FXR/Nrf2 pathway. J Appl Toxicol 2023; 43:350-359. [PMID: 36008890 DOI: 10.1002/jat.4385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 11/11/2022]
Abstract
Liquiritin (LQ) is an important monomer active component in flavonoids of licorice. The objective of this study was to evaluate the hepatoprotective effects of LQ in cholestatic mice. LQ (40 or 80 mg/kg) was intragastrically administered to mice once daily for 6 days, and mice were treated intragastrically with a single dosage of ANIT (75 mg/kg) on the 5th day. On the 7th day, mice were sacrificed to collect blood and livers. The mRNA and protein levels were determined by qRT-PCR and western blot assay. We also conducted systematical assessments of miRNAs expression profiles in the liver. LQ ameliorated ANIT-induced cholestatic liver injury, as evidenced by reduced serum biochemical markers and attenuated pathological changes in liver. Pretreatment of LQ reduced the increase of malondialdehyde, TNF-α, and IL-1β induced by ANIT. Moreover, ANIT suppressed the expression of Sirt1 and FXR in liver tissue, which was weakened in the LQ pre-treatment group. LQ enhanced the nuclear expression of Nrf2, which was increased in the ANIT group. LQ also increased the mRNA expressions of bile acid transporters Bsep, Ntcp, Mrp3, and Mrp4. Furthermore, a miRNA deep sequencing analysis revealed that LQ had a global regulatory effect on the hepatic miRNA expression. Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis showed that the differentially expressed miRNAs were mainly related to metabolic pathways, endocytosis, and MAPK signaling pathway. Collectively, LQ attenuated hepatotoxicity and cholestasis by regulating the expression of Sirt1/FXR/Nrf2 and the bile acid transporters, indicating that LQ might be an effective approach for cholestatic liver diseases.
Collapse
Affiliation(s)
- Miao Yan
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Guo
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiating Ma
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Yang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingli Tang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei Zou
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zhenyan Hou
- Department of Pharmacy, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Hongmei Gu
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd, Lianyungang, Jiangsu, China
| | - Hui Gong
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Sun Y, Yuan C, Yu J, Zhu C, Wei X, Yin J. Plant-derived bisbenzylisoquinoline alkaloid tetrandrine prevents human podocyte injury by regulating the miR-150-5p/NPHS1 axis. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Podocytes have become a crucial target for kidney disease. Tetrandrine (TET), the main active component of a Chinese medicine formula Fangji Huangqi Tang, has shown a positive effect on various renal diseases. We aimed to investigate the effect and mechanism of TET on podocytes. The targeting relationship between microRNA (miR)-150-5p and nephrosis 1 (NPHS1) was determined by a dual-luciferase reporter gene assay. Cell proliferation, migration, and apoptosis were detected by cell counting kit-8, Transwell, and flow cytometry assays, respectively. The expression of miR-150-5p and NPHS1 was detected by RT-qPCR. The levels of Nephrin, Caspase-3, Bcl-2, Bax, E-cadherin, and α-smooth muscle actin were detected by Western blot. TET prompted cell viability and inhibited migration and apoptosis of puromycin aminonucleoside-induced human podocytes (HPC) in a dose-dependent manner. miR-150-5p directly targeted NPHS1 and was upregulated in damaged HPC. TET decreased the miR-150-5p expression and increased the level of NPHS1 and Nephrin. Overexpressed miR-150-5p inhibited the expression of NPHS1 and Nephrin, and reversed the protective effects of TET on injured HPC. TET protects the biological function of HPC by suppressing the miR-150-5p/NPHS1 axis. It reveals that TET may be a potential drug and miR150-5p is a potential therapeutic target for the treatment of podocyte injury.
Collapse
Affiliation(s)
- Yue Sun
- Department of Nephropathy, Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine) , No. 453 Stadium Road , Hangzhou 310007 , Zhejiang , China
| | - Chenyi Yuan
- Department of Nephropathy, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine) , Hangzhou 310007 , Zhejiang , China
| | - Jin Yu
- Department of Nephropathy, Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine) , No. 453 Stadium Road , Hangzhou 310007 , Zhejiang , China
| | - Caifeng Zhu
- Department of Nephropathy, Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine) , No. 453 Stadium Road , Hangzhou 310007 , Zhejiang , China
| | - Xia Wei
- Department of Digestive, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine) , Hangzhou 310007 , Zhejiang , China
| | - Jiazhen Yin
- Department of Nephropathy, Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine) , No. 453 Stadium Road , Hangzhou 310007 , Zhejiang , China
| |
Collapse
|
12
|
Liu T, Yang L, Mao H, Ma F, Wang Y, Li S, Li P, Zhan Y. Sirtuins as novel pharmacological targets in podocyte injury and related glomerular diseases. Biomed Pharmacother 2022; 155:113620. [PMID: 36122519 DOI: 10.1016/j.biopha.2022.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Podocyte injury is a major cause of proteinuria in kidney diseases, and persistent loss of podocytes leads to rapid irreversible progression of kidney disease. Sirtuins, a class of nicotinamide adenine dinucleotide-dependent deacetylases, can promote DNA repair, modify transcription factors, and regulate the cell cycle. Additionally, sirtuins play a critical role in renoprotection, particularly against podocyte injury. They also have pleiotropic protective effects on podocyte injury-related glomerular diseases, such as improving the immune inflammatory status and oxidative stress levels, maintaining mitochondrial homeostasis, enhancing autophagy, and regulating lipid metabolism. Sirtuins deficiency causes podocyte injury in different glomerular diseases. Studies using podocyte sirtuin-specific knockout and transgenic models corroborate this conclusion. Of note, sirtuin activators have protective effects in different podocyte injury-related glomerular diseases, including diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, and lupus nephritis. These findings suggest that sirtuins are promising therapeutic targets for preventing podocyte injury. This review provides an overview of recent advances in the role of sirtuins in kidney diseases, especially their role in podocyte injury, and summarizes the possible rationale for sirtuins as targets for pharmacological intervention in podocyte injury-related glomerular diseases.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shen Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
13
|
Gondaliya P, Sayyed AA, Bhat P, Mali M, Arya N, Khairnar A, Kalia K. Mesenchymal Stem Cell-Derived Exosomes Loaded with miR-155 Inhibitor Ameliorate Diabetic Wound Healing. Mol Pharm 2022; 19:1294-1308. [PMID: 35294195 DOI: 10.1021/acs.molpharmaceut.1c00669] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic wounds are one of the debilitating complications that affect up to 20% of diabetic patients. Despite the advent of extensive therapies, the recovery rate is unsatisfactory, and approximately, 25% of patients undergo amputation, thereby demanding alternative therapeutic strategies. On the basis of the individual therapeutic roles of the miR-155 inhibitor and mesenchymal stem cells (MSC)-derived exosomes, we conjectured that the combination of the miR-155 inhibitor and MSC-derived exosomes would have synergy in diabetic wound healing. Herein, miR-155-inhibitor-loaded MSC-derived exosomes showed synergistic effects in keratinocyte migration, restoration of FGF-7 levels, and anti-inflammatory action, leading to accelerated wound healing mediated by negative regulation of miR-155, using an in vitro co-culture model and in vivo mouse model of the diabetic wound. Furthermore, treatment with miR-155-inhibitor-loaded MSC-derived exosomes led to enhanced collagen deposition, angiogenesis, and re-epithelialization in diabetic wounds. This study revealed the therapeutic potential of miR-155-inhibitor-loaded MSC-derived exosomes in diabetic wound healing and opened the doors for encapsulating miRNAs along with antibiotics within the MSC-derived exosomes toward improved management of chronic, nonhealing diabetic wounds.
Collapse
Affiliation(s)
- Piyush Gondaliya
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Adil Ali Sayyed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Palak Bhat
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Mukund Mali
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Neha Arya
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Kiran Kalia
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| |
Collapse
|