1
|
Zong Y, Zhao Z, Zhou K, Duan X, Han B, He C, Huang H, Jiang H. Metabolome and transcriptome analysis of anthocyanin biosynthesis reveal key metabolites and candidate genes in red-stemmed alfalfa (Medicago sativa). BMC Genomics 2025; 26:323. [PMID: 40165085 PMCID: PMC11956477 DOI: 10.1186/s12864-025-11529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Alfalfa (Medicago sativa L.) serves as a vital high-quality forage resource, especially in tropical and subtropical regions where there is a deficiency of protein-rich feed. The red pigmentation of stem of space mutated alfalfa was mainly caused by anthocyanin accumulation. However, investigations into the mechanisms governing anthocyanin biosynthesis in alfalfa stems have been scarce. RESULT In this study, we conducted combined transcriptome and metabolome analyses on two types of alfalfa stems: space mutation red-stemmed alfalfa and non-space mutation green-stemmed alfalfa (control). Profiling of the anthocyanin metabolome unveiled 45 metabolites linked to anthocyanin biosynthesis, with cyanidin-3-O-glucoside, pelargonidin-3-O-arabinoside, delphinidin-3-O-(6-O-acetyl)-glucoside, and kaempferol-3-O-rutinoside identified as the primary anthocyanins of red-stemmed alfalfa. Transcriptome analysis revealed 72 differentially expressed genes related to anthocyanin biosynthesis pathways, of which 54 genes were highly expressed in red stems, including 12 PALs (phenylalanine ammonia-lyase), 22 4CLs (4-coumaroyl: CoA-ligase), eight CHSs (chalcone synthase), three F3Hs (flavanone 3-hydroxylase), two ANRs (anthocyanidin reductase), three DFRs (dihydroflavonol-4-reductase), three ANSs (anthocyanidin synthase), and one FLS (flavonol synthase) gene. These genes are likely pivotal for anthocyanin biosynthesis in red-stemmed. Co-expression analysis of differentially expressed genes and relative contents of differentially expressed anthocyanin showed that each anthocyanin was closely related to multiple genes, and anthocyanin accumulation process was regulated by multiple genes. The expressions of these genes were significantly positively correlated with the relative contents of cyanidin-3-O-glucoside, pelargonin-3-O-arabinoside, and kaempferol-3-O-rutin. CONCLUSION Overall, the expression patterns of PAL, 4CL, CHS, F3H, ANR, DFR, ANS, and FLS structural genes in anthocyanin biosynthesis pathway were closely related to the composition and content of anthocyanins. Different anthocyanins' accumulation patterns may result in the different stem colors of alfalfa. These findings provide comprehensive insights into the molecular mechanisms for anthocyanin biosynthesis in red-stemmed alfalfa.
Collapse
Affiliation(s)
- Yaqian Zong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhili Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Kai Zhou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xinhui Duan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Bo Han
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chenggang He
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Heping Huang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hua Jiang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Fang T, Zheng Y, Ma Q, Ren R, Xian H, Zeng L. Integrated Transcriptomic and Metabolomic Analysis Revealed Regulatory Mechanisms on Flavonoids Biosynthesis in the Skin of Passion Fruit ( Passiflora spp.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:967-978. [PMID: 39690798 DOI: 10.1021/acs.jafc.4c11116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Passion fruit is one of the most famous fruit crops in tropical and subtropical regions due to its high edible, medicinal, and ornamental value. Flavonoids, a class of plant secondary metabolites, have important health-related roles. In this study, a total of 151 flavonoid metabolites were identified, of which 25 key metabolites may be the main contributors to the purple phenotype. Using RNA sequencing, 11,180 differentially expressed genes (DEGs) were identified. Among these, 48 flavonoid biosynthesis genes (PAL, 4CL, C4H, CHS, CHI, F3H, DFR, ANS, and UFGT) and 123 transcription factors were identified. Furthermore, 12 distinct modules were identified through weighted gene coexpression network analysis, of which the brown module displays a robust positive correlation with numerous flavonoid metabolites. Overexpression of PeMYB114 significantly promoted flavonoids accumulation in tobacco leaves. Our study provided a key candidate gene for molecular breeding to improve color traits in passion fruit.
Collapse
Affiliation(s)
- Ting Fang
- College of Horticulture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiping Zheng
- College of Horticulture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
| | - Qicheng Ma
- College of Horticulture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Ren
- College of Horticulture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huimin Xian
- College of Horticulture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lihui Zeng
- College of Horticulture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Kang MJ, Pegg RB, Kerr WL, Wells ML, Conner PJ, Suh JH. Metabolomic analysis combined with machine learning algorithms enables the evaluation of postharvest pecan color stability. Food Chem 2024; 461:140814. [PMID: 39151343 DOI: 10.1016/j.foodchem.2024.140814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Nut kernel color is a crucial quality indicator affecting the consumers first impression of the product. While growing evidence suggests that plant phenolics and their derivatives are linked to nut kernel color, the compounds (biomarkers) responsible for kernel color stability during storage remain elusive. Here, pathway-based metabolomics with machine learning algorithms were employed to identify key metabolites of postharvest pecan color stability. Metabolites in phenylpropanoid, flavonoid, and anthocyanin biosynthetic pathways were analyzed in the testa of nine pecan cultivars using liquid chromatography-mass spectrometry. With color measurements, different machine learning models were compared to find relevant biomarkers of pecan color phenotypes. Results revealed potential marker compounds that included flavonoid precursors and anthocyanidins as well as anthocyanins (e.g., peonidin, delphinidin-3-O-glucoside). Our findings provide a foundation for future research in the area, and will help select genes/proteins for the breeding of pecans with stable and desirable kernel color.
Collapse
Affiliation(s)
- Min Jeong Kang
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA
| | - Ronald B Pegg
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA
| | - William L Kerr
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA
| | - M Lenny Wells
- Department of Horticulture, College of Agricultural and Environmental Sciences, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA
| | - Patrick J Conner
- Department of Horticulture, College of Agricultural and Environmental Sciences, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA
| | - Joon Hyuk Suh
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Ying J, Wen S, Cai Y, Ye Y, Li L, Qian R. Decoding anthocyanin biosynthesis regulation in Asparagus officinalis peel coloration: Insights from integrated metabolomic and transcriptomic analyses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108980. [PMID: 39102766 DOI: 10.1016/j.plaphy.2024.108980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Asparagus is a key global vegetable crop with significant economic importance. Purple asparagus, rich in anthocyanins, stands out for its nutritional value. Despite its prominence, the molecular mechanisms driving purple peel coloration in asparagus remain unclear. This study focuses on three asparagus varieties with distinct peel colors to analyze anthocyanins in both the metabolome and transcriptome, unraveling the regulatory mechanisms. Our findings identify 30 anthocyanins, categorized into five major anthocyanin aglycones across diverse asparagus peel colors. Notably, among the 30 differentially expressed metabolites (DEMs), 18 anthocyanins displayed significantly up-regulated expression in the 'Purple Passion' variety. Key contributors include Cyanidin-3-O-rutinoside-5-O-glucoside and Cyanidin-3-O-sophoroside. Cyanidin-3-O-glucoside is most abundant in 'Purple Passion', while Petunidin-glucoside-galactoside is the least. Analysis of differentially expressed genes (DEGs) displayed 21 structural genes in anthocyanin synthesis, with F3H, DFR, ANS, and one of three UFGTs showing significantly higher expression in the 'Purple Passion' compared to 'Grande' and 'Erasmus'. Additionally, transcription factors (TFs), including 38 MYB, 33 bHLH, and 13 bZIP, also display differential expression in this variety. Validation through real-time qPCR supports the idea that increased expression of anthocyanin structural genes contribute to anthocyanin accumulation. Transient overexpression of AoMYB17 in tobacco further showed that it had the vital function of increasing anthocyanin content. This study sheds light on the mechanisms behind anthocyanin coloration in three distinct asparagus peels. Therefore, it lays the foundation for potential genetic enhancements, aiming to develop new purple-fleshed asparagus germplasms with heightened anthocyanin content.
Collapse
Affiliation(s)
- Jiali Ying
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China.
| | - Shuangshuang Wen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China
| | - Yunfei Cai
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China
| | - Youju Ye
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China
| | - Lebin Li
- Wenzhou Shenlu Seeds Co., Ltd, Wenzhou, 325005, Zhejiang, China
| | - Renjuan Qian
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China.
| |
Collapse
|
5
|
Wang Z, Lei Y, Liao B. Omics-driven advances in the understanding of regulatory landscape of peanut seed development. FRONTIERS IN PLANT SCIENCE 2024; 15:1393438. [PMID: 38766472 PMCID: PMC11099219 DOI: 10.3389/fpls.2024.1393438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Peanuts (Arachis hypogaea) are an essential oilseed crop known for their unique developmental process, characterized by aerial flowering followed by subterranean fruit development. This crop is polyploid, consisting of A and B subgenomes, which complicates its genetic analysis. The advent and progression of omics technologies-encompassing genomics, transcriptomics, proteomics, epigenomics, and metabolomics-have significantly advanced our understanding of peanut biology, particularly in the context of seed development and the regulation of seed-associated traits. Following the completion of the peanut reference genome, research has utilized omics data to elucidate the quantitative trait loci (QTL) associated with seed weight, oil content, protein content, fatty acid composition, sucrose content, and seed coat color as well as the regulatory mechanisms governing seed development. This review aims to summarize the advancements in peanut seed development regulation and trait analysis based on reference genome-guided omics studies. It provides an overview of the significant progress made in understanding the molecular basis of peanut seed development, offering insights into the complex genetic and epigenetic mechanisms that influence key agronomic traits. These studies highlight the significance of omics data in profoundly elucidating the regulatory mechanisms of peanut seed development. Furthermore, they lay a foundational basis for future research on trait-related functional genes, highlighting the pivotal role of comprehensive genomic analysis in advancing our understanding of plant biology.
Collapse
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| |
Collapse
|
6
|
Zhang M, Li Y, Wang J, Shang S, Wang H, Yang X, Lu C, Wang M, Sun X, Liu X, Wang X, Wei B, Lv W, Mu G. Integrated transcriptomic and metabolomic analyses reveals anthocyanin biosynthesis in leaf coloration of quinoa (Chenopodium quinoa Willd.). BMC PLANT BIOLOGY 2024; 24:203. [PMID: 38509491 PMCID: PMC10953167 DOI: 10.1186/s12870-024-04821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Quinoa leaves demonstrate a diverse array of colors, offering a potential enhancement to landscape aesthetics and the development of leisure-oriented sightseeing agriculture in semi-arid regions. This study utilized integrated transcriptomic and metabolomic analyses to investigate the mechanisms underlying anthocyanin synthesis in both emerald green and pink quinoa leaves. RESULTS Integrated transcriptomic and metabolomic analyses indicated that both flavonoid biosynthesis pathway (ko00941) and anthocyanin biosynthesis pathway (ko00942) were significantly associated with anthocyanin biosynthesis. Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were analyzed between the two germplasms during different developmental periods. Ten DEGs were verified using qRT-PCR, and the results were consistent with those of the transcriptomic sequencing. The elevated expression of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), 4-coumarate CoA ligase (4CL) and Hydroxycinnamoyltransferase (HCT), as well as the reduced expression of flavanone 3-hydroxylase (F3H) and Flavonol synthase (FLS), likely cause pink leaf formation. In addition, bHLH14, WRKY46, and TGA indirectly affected the activities of CHS and 4CL, collectively regulating the levels of cyanidin 3-O-(3'', 6''-O-dimalonyl) glucoside and naringenin. The diminished expression of PAL, 4CL, and HCT decreased the formation of cyanidin-3-O-(6"-O-malonyl-2"-O-glucuronyl) glucoside, leading to the emergence of emerald green leaves. Moreover, the lowered expression of TGA and WRKY46 indirectly regulated 4CL activity, serving as another important factor in maintaining the emerald green hue in leaves N1, N2, and N3. CONCLUSION These findings establish a foundation for elucidating the molecular regulatory mechanisms governing anthocyanin biosynthesis in quinoa leaves, and also provide some theoretical basis for the development of leisure and sightseeing agriculture.
Collapse
Affiliation(s)
- Min Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Yueyou Li
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, Hebei Province, 050000, P. R. China
| | - Junling Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Shaopu Shang
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, Hebei Province, 050000, P. R. China
| | - Hongxia Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Xinlei Yang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Chuan Lu
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, Hebei Province, 050000, P. R. China
| | - Mei Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Xinbo Sun
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Xiaoqing Liu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Xiaoxia Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Boxiang Wei
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Wei Lv
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, Hebei Province, 050000, P. R. China.
| | - Guojun Mu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China.
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China.
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China.
| |
Collapse
|
7
|
Yang L, Chen Y, Wang M, Hou H, Li S, Guan L, Yang H, Wang W, Hong L. Metabolomic and transcriptomic analyses reveal the effects of grafting on blood orange quality. FRONTIERS IN PLANT SCIENCE 2023; 14:1169220. [PMID: 37360739 PMCID: PMC10286243 DOI: 10.3389/fpls.2023.1169220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
Introduction Blood orange (Citrus sinensis L.) is a valuable source of nutrition because it is enriched in anthocyanins and has high organoleptic properties. Grafting is commonly used in citriculture and has crucial effects on various phenotypes of the blood orange, including its coloration, phenology, and biotic and abiotic resistance. Still, the underlying genetics and regulatory mechanisms are largely unexplored. Methods In this study, we investigated the phenotypic, metabolomic, and transcriptomic profiles at eight developmental stages of the lido blood orange cultivar (Citrus sinensis L. Osbeck cv. Lido) grafted onto two rootstocks. Results and discussion The Trifoliate orange rootstock provided the best fruit quality and flesh color for Lido blood orange. Comparative metabolomics suggested significant differences in accumulation patterns of metabolites and we identified 295 differentially accumulated metabolites. The major contributors were flavonoids, phenolic acids, lignans and coumarins, and terpenoids. Moreover, transcriptome profiling resulted in the identification of 4179 differentially expressed genes (DEGs), and 54 DEGs were associated with flavonoids and anthocyanins. Weighted gene co-expression network analysis identified major genes associated to 16 anthocyanins. Furthermore, seven transcription factors (C2H2, GANT, MYB-related, AP2/ERF, NAC, bZIP, and MYB) and five genes associated with anthocyanin synthesis pathway (CHS, F3H, UFGT, and ANS) were identified as key modulators of the anthocyanin content in lido blood orange. Overall, our results revealed the impact of rootstock on the global transcriptome and metabolome in relation to fruit quality in lido blood orange. The identified key genes and metabolites can be further utilized for the quality improvement of blood orange varieties.
Collapse
Affiliation(s)
- Lei Yang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yang Chen
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Min Wang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Huifang Hou
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shuang Li
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Ling Guan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Haijian Yang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Wu Wang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Lin Hong
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|
8
|
Chen H, Yang X, Xu R, Chen X, Zhong H, Liu N, Huang L, Luo H, Huai D, Liu W, Chen Y, Chen J, Jiang H. Genetic mapping of AhVt1, a novel genetic locus that confers the variegated testa color in cultivated peanut ( Arachis hypogaea L.) and its utilization for marker-assisted selection. FRONTIERS IN PLANT SCIENCE 2023; 14:1145098. [PMID: 37021305 PMCID: PMC10067746 DOI: 10.3389/fpls.2023.1145098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Peanut (Arachis hypogaea L.) is an important cash crop worldwide. Compared with the ordinary peanut with pure pink testa, peanut with variegated testa color has attractive appearance and a higher market value. In addition, the variegated testa represents a distinct regulation pattern of anthocyanin accumulation in integument cells. METHODS In order to identify the genetic locus underlying variegated testa color in peanut, two populations were constructed from the crosses between Fuhua 8 (pure-pink testa) and Wucai (red on white variegated testa), Quanhonghua 1 (pure-red testa) and Wucai, respectively. Genetic analysis and bulked sergeant analysis sequencing were applied to detect and identify the genetic locus for variegated testa color. Marker-assisted selection was used to develop new variegated testa peanut lines. RESULTS As a result, all the seeds harvested from the F1 individuals of both populations showed the variegated testa type with white trace. Genetic analysis revealed that the pigmentation of colored region in red on white variegated testa was controlled by a previous reported gene AhRt1, while the formation of white region (un-pigmented region) in variegated testa was controlled by another single genetic locus. This locus, named as AhVt1 (Arachis hypogaea Variegated Testa 1), was preliminary mapped on chromosome 08 through bulked sergeant analysis sequencing. Using a secondary mapping population derived from the cross between Fuhua 8 and Wucai, AhVt1 was further mapped to a 1.89-Mb genomic interval by linkage analysis, and several potential genes associated with the uneven distribution of anthocyanin, such as MADS-box, MYB, and Chalcone synthase-like protein, were harbored in the region. Moreover, the molecular markers closely linked to the AhVt1 were developed, and the new variegated testa peanut lines were obtained with the help of marker-assisted selection. CONCLUSION Our findings will accelerate the breeding program for developing new peanut varieties with "colorful" testa colors and laid a foundation for map-based cloning of gene responsible for variegated testa.
Collapse
Affiliation(s)
- Hao Chen
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| | - Xinlei Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Rirong Xu
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
| | - Xiangyu Chen
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
| | - Haifeng Zhong
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
| | - Nian Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| | - Li Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| | - Huaiyong Luo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| | - Dongxin Huai
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| | - Wenjing Liu
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, China
| | - Yuhua Chen
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
| | - Jianhong Chen
- R&D Center for Oil Crops, Quanzhou Institute of Agricultural Sciences, Jinjiang, China
| | - Huifang Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| |
Collapse
|
9
|
Ahmad N, Zhang K, Ma J, Yuan M, Zhao S, Wang M, Deng L, Ren L, Gangurde SS, Pan J, Ma C, Li C, Guo B, Wang X, Li A, Zhao C. Transcriptional networks orchestrating red and pink testa color in peanut. BMC PLANT BIOLOGY 2023; 23:44. [PMID: 36658483 PMCID: PMC9850581 DOI: 10.1186/s12870-023-04041-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/03/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Testa color is an important trait of peanut (Arachis hypogaea L.) which is closely related with the nutritional and commercial value. Pink and red are main color of peanut testa. However, the genetic mechanism of testa color regulation in peanut is not fully understood. To elucidate a clear picture of peanut testa regulatory model, samples of pink cultivar (Y9102), red cultivar (ZH12), and two RNA pools (bulk red and bulk pink) constructed from F4 lines of Y9102 x ZH12 were compared through a bulk RNA-seq approach. RESULTS A total of 2992 differential expressed genes (DEGs) were identified among which 317 and 1334 were up-regulated and 225 and 1116 were down-regulated in the bulk red-vs-bulk pink RNA pools and Y9102-vs-ZH12, respectively. KEGG analysis indicates that these genes were divided into significantly enriched metabolic pathways including phenylpropanoid, flavonoid/anthocyanin, isoflavonoid and lignin biosynthetic pathways. Notably, the expression of the anthocyanin upstream regulatory genes PAL, CHS, and CHI was upregulated in pink and red testa peanuts, indicating that their regulation may occur before to the advent of testa pigmentation. However, the differential expression of down-stream regulatory genes including F3H, DFR, and ANS revealed that deepening of testa color not only depends on their gene expression bias, but also linked with FLS inhibition. In addition, the down-regulation of HCT, IFS, HID, 7-IOMT, and I2'H genes provided an alternative mechanism for promoting anthocyanin accumulation via perturbation of lignin and isoflavone pathways. Furthermore, the co-expression module of MYB, bHLH, and WRKY transcription factors also suggested a fascinating transcriptional activation complex, where MYB-bHLH could utilize WRKY as a co-option during the testa color regulation by augmenting anthocyanin biosynthesis in peanut. CONCLUSIONS These findings reveal candidate functional genes and potential strategies for the manipulation of anthocyanin biosynthesis to improve peanut varieties with desirable testa color.
Collapse
Affiliation(s)
- Naveed Ahmad
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kun Zhang
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, 250100, People's Republic of China
| | - Jing Ma
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Mei Yuan
- Shandong Peanut Research Institute, Qingdao, 266199, Shandong, People's Republic of China
| | - Shuzhen Zhao
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Mingqing Wang
- Shandong Peanut Research Institute, Qingdao, 266199, Shandong, People's Republic of China
| | - Li Deng
- Kaifeng Academy of Agriculture and Forestry, Kaifeng, 475008, People's Republic of China
| | - Li Ren
- Kaifeng Academy of Agriculture and Forestry, Kaifeng, 475008, People's Republic of China
| | - Sunil S Gangurde
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA, 31793, USA
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| | - Jiaowen Pan
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Changsheng Li
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA, 31793, USA
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| | - Xingjun Wang
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Aiqin Li
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China.
| | - Chuanzhi Zhao
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
10
|
Transcriptome Analysis of Key Genes Involved in Color Variation between Blue and White Flowers of Iris bulleyana. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7407772. [PMID: 36714023 PMCID: PMC9876678 DOI: 10.1155/2023/7407772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 01/20/2023]
Abstract
Iris bulleyana Dykes (Southwest iris) is an extensively distributed Iridaceae species with blue or white flowers. Hereby, we performed a systematic study, employing metabolomics and transcriptomics to uncover the subtle color differentiation from blue to white in Southwest iris. Fresh flower buds from both cultivars were subjected to flavonoid/anthocyanin and carotenoid-targeted metabolomics along with transcriptomic sequencing. Among 297 flavonoids, 24 anthocyanins were identified, and 13 showed a strong down-accumulation pattern in the white flowers compared to the blue flowers. Significant downregulation of 3GT and 5GT genes involved in the glycosylation of anthocyanins was predicted to hinder the accumulation of anthocyanins, resulting in white coloration. Besides, no significant altered accumulation of carotenoids and expression of their biosynthetic genes was observed between the two cultivars. Our study systematically addressed the color differentiation in I. bulleyana flowers, which can aid future breeding programs.
Collapse
|
11
|
Wang X, Liu Y, Ouyang L, Yao R, He D, Han Z, Li W, Ding Y, Wang Z, Kang Y, Yan L, Chen Y, Huai D, Jiang H, Lei Y, Liao B. Metabolomics combined with transcriptomics analyses of mechanism regulating testa pigmentation in peanut. FRONTIERS IN PLANT SCIENCE 2022; 13:1065049. [PMID: 36589085 PMCID: PMC9800836 DOI: 10.3389/fpls.2022.1065049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Peanut testa (seed coat) contains large amounts of flavonoids that significantly influence seed color, taste, and nutritional qualities. There are various colors of peanut testa, however, their precise flavonoid components and regulatory mechanism of pigmentation remain unclear. In this study, a total of 133 flavonoids were identified and absolutely quantified in the seed coat of four peanut cultivars with different testa color using a widely targeted metabolomic approach. Black peanut skin had more types and substantial higher levels of cyanidin-based anthocyanins, which possibly contribute to its testa coloration. Procyanidins and flavan-3-ols were the major co-pigmented flavonoids in the red, spot and black peanuts, while flavanols were the most abundant constitutes in white cultivar. Although the concentrations as well as composition characteristics varied, the content ratios of procyanidins to flavan-3-ols were similar in all samples except for white peanut. Furthermore, MYB-like transcription factors, anthocyanidin reductases (ANR), and UDP-glycosyltransferases (UGT) were found to be candidate genes involved in testa pigmentation via RNA-seq and weighted gene co-expression network analysis. It is proposed that UGTs and ANR compete for the substrate cyanidin and the prevalence of UGTs activities over ANR one will determine the color pattern of peanut testa. Our results provide a comprehensive report examining the absolute abundance of flavonoid profiles in peanut seed coat, and the finding are expected to be useful for further understanding of regulation mechanisms of seed coat pigmentation in peanut and other crops.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yue Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lei Ouyang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ruonan Yao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhongkui Han
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Weitao Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yingbin Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhihui Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yanping Kang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
12
|
Zhang K, Ma J, Gangurde SS, Hou L, Xia H, Li N, Pan J, Tian R, Huang H, Wang X, Zhang Y, Zhao C. Targeted metabolome analysis reveals accumulation of metabolites in testa of four peanut germplasms. FRONTIERS IN PLANT SCIENCE 2022; 13:992124. [PMID: 36186006 PMCID: PMC9523574 DOI: 10.3389/fpls.2022.992124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Cultivated peanut (Arachis hypogaea L.) is an important source of edible oil and protein. Peanut testa (seed coat) provides protection for seeds and serves as a carrier for diversity metabolites necessary for human health. There is significant diversity available for testa color in peanut germplasms. However, the kinds and type of metabolites in peanut testa has not been comprehensively investigated. In this study, we performed metabolite profiling using UPLC-MS/MS for four peanut germplasm lines with different testa colors, including pink, purple, red, and white. A total of 85 metabolites were identified in four peanuts. Comparative metabolomics analysis identified 78 differentially accumulated metabolites (DAMs). Some metabolites showed significant correlation with other metabolites. For instance, proanthocyanidins were positively correlated with cyanidin 3-O-rutinoside and malvin, and negatively correlated with pelargonidin-3-glucoside. We observed that the total proanthocyanidins are most abundant in pink peanut variety WH10. The red testa accumulated more isoflavones, flavonols and anthocyanidins compared with that in pink testa. These results provided valuable information about differential accumulation of metabolites in testa with different color, which are helpful for further investigation of the molecular mechanism underlying biosynthesis and accumulation of these metabolites in peanut.
Collapse
Affiliation(s)
- Kun Zhang
- College of Tropical Crops, Hainan University, Haikou, China
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, China
| | - Jing Ma
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Sunil S. Gangurde
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA, United States
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Lei Hou
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Han Xia
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Nana Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Jiaowen Pan
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Ruizheng Tian
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Huailing Huang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xingjun Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yindong Zhang
- College of Tropical Crops, Hainan University, Haikou, China
- Hainan Academy of Agricultural Sciences, Haikou, China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
13
|
Xing A, Wang X, Nazir MF, Zhang X, Wang X, Yang R, Chen B, Fu G, Wang J, Ge H, Peng Z, Jia Y, He S, Du X. Transcriptomic and metabolomic profiling of flavonoid biosynthesis provides novel insights into petals coloration in Asian cotton (Gossypium arboreum L.). BMC PLANT BIOLOGY 2022; 22:416. [PMID: 36038835 PMCID: PMC9425979 DOI: 10.1186/s12870-022-03800-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Asian cotton (Gossypium arboreum L.), as a precious germplasm resource of cotton with insect resistance and stress tolerance, possesses a broad spectrum of phenotypic variation related to pigmentation. Flower color affects insect pollination and the ornamental value of plants. Studying flower color of Asian cotton varieties improves the rate of hybridization and thus enriches the diversity of germplasm resources. Meanwhile, it also impacts the development of the horticultural industry. Unfortunately, there is a clear lack of studies concerning intricate mechanisms of cotton flower-color differentiation. Hereby, we report an integrative approach utilizing transcriptome and metabolome concerning flower color variation in three Gossypium arboreum cultivars. RESULTS A total of 215 differentially accumulated metabolites (DAMs) were identified, including 83 differentially accumulated flavonoids (DAFs). Colorless kaempferol was more abundant in white flowers, while gossypetin-fer showed specificity in white flowers. Quercetin and gossypetin were the main contributors to yellow petal formation. Pelargonidin 3-O-beta-D-glucoside and cyanidin-3-O-(6''-Malonylglucoside) showed high accumulation levels in purple petals. Quercetin and gossypetin pigments also promoted purple flower coloration. Moreover, 8178 differentially expressed genes (DEGs) were identified by RNA sequencing. The correlation results between total anthocyanins and DEGs were explored, indicating that 10 key structural genes and 29 transcription factors promoted anthocyanin biosynthesis and could be candidates for anthocyanin accumulation. Ultimately, we constructed co-expression networks of key DAFs and DEGs and demonstrated the interactions between specific metabolites and transcripts in different color flowers. CONCLUSION This study provides new insights into elucidating the regulatory mechanisms of cotton flower color and lays a potential foundation for generate cotton varieties with highly attractive flowers for pollinators.
Collapse
Affiliation(s)
- Aishuang Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Mian Faisal Nazir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaomeng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiuxiu Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ru Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou Henan, 450001, China
| | - Baojun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Guoyong Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jingjing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hao Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou Henan, 450001, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou Henan, 450001, China.
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou Henan, 450001, China.
| |
Collapse
|
14
|
Li C, Yang J, Yang K, Wu H, Chen H, Wu Q, Zhao H. Tartary buckwheat FtF3'H1 as a metabolic branch switch to increase anthocyanin content in transgenic plant. FRONTIERS IN PLANT SCIENCE 2022; 13:959698. [PMID: 36092410 PMCID: PMC9452690 DOI: 10.3389/fpls.2022.959698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Tartary buckwheat (TB) is a pseudocereal rich in flavonoids, mainly including flavonols and anthocyanins. The flavonoid 3'-hydroxylase (F3'H) is a key enzyme in flavonoid biosynthesis and is encoded by two copies in TB genome. However, its biological function and effects on flavonol and anthocyanin synthesis in TB have not been well validated yet. In this study, we cloned the full-length FtF3'H1 gene highly expressed in all tissues (compared with FtF3'H2) according to TB flowering transcriptome data. The corresponding FtF3'H1 protein contains 534 amino acids with the molecular properties of the typical plant F3'H and belongs to the CYP75B family. During the flowering stage, the FtF3'H1 expression was highest in flowers, and its expression pattern showed a significant and positive correlation with the total flavonoids (R 2 > 0.95). The overexpression of FtF3'H1 in Arabidopsis thaliana, Nicotiana tabacum and TB hairy roots resulted in a significant increase in anthocyanin contents (p < 0.05) but a decrease in rutin (p < 0.05). The average anthocyanin contents were 2.94 mg/g (fresh weight, FW) in A. thaliana (about 135% increase), 1.18 mg/g (FW) in tobacco (about 17% increase), and 1.56 mg/g (FW) TB hairy roots (about 44% increase), and the rutin contents were dropped to about 53.85, 14.99, 46.31%, respectively. However, the expression of genes involved in anthocyanin (DFRs and ANSs) and flavonol (FLSs) synthesis pathways were significantly upregulated (p < 0.05). In particular, the expression level of DFR, a key enzyme that enters the anthocyanin branch, was upregulated thousand-fold in A. thaliana and in N. tabacum. These results might be attributed to FtF3'H1 protein with a higher substrate preference for anthocyanin synthesis substrates. Altogether, we identified the basic biochemical activity of FtF3'H1 in vivo and investigated its involvement in anthocyanin and flavonol metabolism in plant.
Collapse
|
15
|
Cao H, Li H, Chen X, Zhang Y, Lu L, Li S, Tao X, Zhu W, Wang J, Ma L. Insight into the molecular mechanisms of leaf coloration in Cymbidium ensifolium. Front Genet 2022; 13:923082. [PMID: 36035180 PMCID: PMC9413228 DOI: 10.3389/fgene.2022.923082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cymbidiumensifolium L. is a significant ornamental plant in Orchidaceae. Aside from its attractive flowers, its leaf coloration is also an important ornamental trait. However, there is an apparent lack of studies concerning the intricate mechanism of leaf coloration in C. ensifolium. In this study, we report a systematic evaluation of leaf coloration utilizing transcriptome and metabolome profiles of purple, yellow, and green leaves. In total, 40 anthocyanins and 67 flavonoids were quantified along with chlorophyll content. The tissue–transcriptome profile identified 26,499 differentially expressed genes (DEGs). The highest chlorophyll contents were identified in green leaves, followed by yellow and purple leaves. We identified key anthocyanins and flavonoids associated with leaf coloration, including cyanidin-3-O-sophoroside, naringenin-7-O-glucoside, delphinidin, cyanidin, petunidin, and quercetin, diosmetin, sinensetin, and naringenin chalcone. Moreover, genes encoding UDP-glucoronosyl, UDP-glucosyl transferase, chalcone synthesis, flavodoxin, cytochrome P450, and AMP-binding enzyme were identified as key structural genes affecting leaf coloration in C. ensifolium. In summary, copigmentation resulting from several key metabolites modulated by structural genes was identified as governing leaf coloration in C. ensifolium. Further functional verification of the identified DEGs and co-accumulation of metabolites can provide a tool to modify leaf color and improve the aesthetic value of C. ensifolium.
Collapse
Affiliation(s)
- Hua Cao
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
| | - Han Li
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
| | - Xiang Chen
- Fujian Forestry Science and Technology Experimental Center, Zhangzhou, China
| | - Yuying Zhang
- Yunnan Agricultural University College of Horticulture and Landscape, Kunming, China
| | - Lin Lu
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
| | - Shenchong Li
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
| | - Xiang Tao
- Yunnan Agriculture Academy Science, Kunming, China
| | - WeiYin Zhu
- Fujian Forestry Science and Technology Experimental Center, Zhangzhou, China
| | - Jihua Wang
- Yunnan Agriculture Academy Science, Kunming, China
- *Correspondence: Lulin Ma, ; Jihua Wang,
| | - Lulin Ma
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
- *Correspondence: Lulin Ma, ; Jihua Wang,
| |
Collapse
|
16
|
Zhang K, Yuan M, Xia H, He L, Ma J, Wang M, Zhao H, Hou L, Zhao S, Li P, Tian R, Pan J, Li G, Thudi M, Ma C, Wang X, Zhao C. BSA‑seq and genetic mapping reveals AhRt2 as a candidate gene responsible for red testa of peanut. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1529-1540. [PMID: 35166897 DOI: 10.1007/s00122-022-04051-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The candidate recessive gene AhRt2 responsible for red testa of peanut was identified through combined BSA-seq and linkage mapping approaches. The testa color of peanuts (Arachis hypogaea L.) is an important trait, and those with red testa are particularly popular owing to the high-anthocyanin content. However, the identification of genes underlying the regulation of the red testa trait in peanut are rarely reported. In order to fine map red testa gene, two F2:4 populations were constructed through the cross of YZ9102 (pink testa) with ZH12 (red testa) and ZH2 (red testa). Genetic analysis indicated that red testa was controlled by a single recessive gene named as AhRt2 (Red testa gene 2). Using BSA-seq approach, AhRt2 was preliminary identified on chromosome 12, which was further mapped to a 530-kb interval using 220 recombinant lines through linkage mapping. Furthermore, functional annotation, expression profiling, and the analyses of sequence variation confirmed that the anthocyanin reductase namely (Arahy.IK60LM) was the most likely candidate gene for AhRt2. It was found that a SNP in the third exon of AhRt2 altered the encoding amino acids, and was associated with red testa in peanut. In addition, a closely linked molecular marker linked with red testa trait in peanut was also developed for future studies. Our results provide valuable insight into the molecular mechanism underlying peanut testa color and present significant diagnostic marker resources for marker-assisted selected breeding in peanut.
Collapse
Affiliation(s)
- Kun Zhang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, 250100, People's Republic of China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Mei Yuan
- Shandong Peanut Research Institute, Qingdao, 266199, Shandong, People's Republic of China
| | - Han Xia
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Liangqiong He
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jing Ma
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Mingxiao Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Huiling Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Lei Hou
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Shuzhen Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Pengcheng Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Ruizheng Tian
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Jiaowen Pan
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Guanghui Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Mahendar Thudi
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
- Dr. Rajendra Prasad Central Agricultural University, Pusa, Samsthipur, Bihar, 848125, India
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xingjun Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
17
|
Integrated Analysis of the Metabolome and Transcriptome on Anthocyanin Biosynthesis in Four Developmental Stages of Cerasus humilis Peel Coloration. Int J Mol Sci 2021; 22:ijms222111880. [PMID: 34769311 PMCID: PMC8585068 DOI: 10.3390/ijms222111880] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 12/23/2022] Open
Abstract
Cerasus humilis is a unique dwarf shrub and fruit color is an important trait in the species. In this study, we evaluated the transcriptomic and metabolomic profiles of the plant at different developmental stages to elucidate the mechanism underlying color formation. In a metabolomics analysis, 16 anthocyanin components were identified at four developmental stages, and high levels of cyanidin O-syringic acid and pelargonidin 3-O-beta-d-glucoside (callitephin chloride) were correlated with the reddening of the fruit peel. A co-expression analysis revealed that ANS and UFGT play key roles in pigmentation (PCC > 0.82). Additionally, transcriptome data showed that most anthocyanin biosynthetic genes and two MYB transcription factors were significantly up-regulated. QRT-PCR results for these differentially expressed genes were generally consistent with the high-throughput sequencing. Moreover, the overexpression of ChMYB1 (TRINITY_DN21536_c0_g1) in apple calli could contribute to the accumulation of anthocyanin. It was also found that UFGT (TRINITY_DN19893_c1_g5) and ChMYB1 (TRINITY_DN21536_c0_g1) have similar expression patterns. These findings provide insight into the mechanisms underlying anthocyanin accumulation and coloration during fruit peel development, providing a basis for the breeding of anthocyanin-rich C. humilis cultivars.
Collapse
|
18
|
Yang F, Li CH, Das D, Zheng YH, Song T, Wang LX, Chen MX, Li QZ, Zhang J. Comprehensive Transcriptome and Metabolic Profiling of Petal Color Development in Lycoris sprengeri. FRONTIERS IN PLANT SCIENCE 2021; 12:747131. [PMID: 34925402 PMCID: PMC8678534 DOI: 10.3389/fpls.2021.747131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/18/2021] [Indexed: 05/16/2023]
Abstract
Lycoris sprengeri (L. sprengeri) is an important ornamental bulbous plant, and its numerous varieties in different color forms are widely planted. Multiple color types of petals in L. sprengeri provide us with possibilities to delineate the complicated metabolic networks underlying the biochemical traits behind color formation in this plant species, especially petal color. In this study, we sequenced and annotated a reference transcriptome of pink and white petals of L. sprengeri and analyzed the metabolic role of anthocyanin biosynthesis in regulating color pigment metabolism. Briefly, white and pink petal samples were sequenced with an Illumina platform, to obtain the reads that could be assembled into 100,778 unique sequences. Sequences expressed differentially between white vs. pink petals were further annotated with the terms of Gene Ontology (GO), Clusters of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG), and eggNOG. Gene expression analyses revealed the repression of anthocyanin and steroid biosynthesis enzymes and R2R3 MYB transcription factor (TF) genes in white petals compared to pink petals. Furthermore, the targeted metabolic profiling of anthocyanins revealed that color-related delphinidin (Del) and cyanidin (Cy) pigments are lower in white petals, which correlate well with the reduced gene expression levels of anthocyanin biosynthesis genes. Taken together, it is hypothesized that anthocyanin biosynthesis, steroid biosynthesis, and R2R3 MYB TFs may play vital regulatory roles in petal color development in L. sprengeri. This work provides a valuable genomic resource for flower breeding and metabolic engineering in horticulture and markers for studying the flower trait evolution of L. sprengeri.
Collapse
Affiliation(s)
- Feng Yang
- Forestry and Pomology Research Institute, Protected Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Chao-han Li
- Forestry and Pomology Research Institute, Protected Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Debatosh Das
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yu-hong Zheng
- Ornamental Plant Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing, China
| | - Tao Song
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Lan-xiang Wang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mo-Xian Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qing-zhu Li
- Forestry and Pomology Research Institute, Protected Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Qing-zhu Li,
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Jianhua Zhang,
| |
Collapse
|