1
|
Ali S, Shaikh S, Ahmad K, Choi I. Identification of active compounds as novel dipeptidyl peptidase-4 inhibitors through machine learning and structure-based molecular docking simulations. J Biomol Struct Dyn 2025; 43:1611-1620. [PMID: 38100571 DOI: 10.1080/07391102.2023.2292299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
The enzyme dipeptidyl peptidase 4 (DPP4) is a potential therapeutic target for type 2 diabetes (T2DM). Many synthetic anti-DPP4 medications are available to treat T2DM. The need for secure and efficient medicines has been unmet due to the adverse side effects of existing DPP4 medications. The present study implemented a combined approach to machine learning and structure-based virtual screening to identify DPP4 inhibitors. Two ML models were trained based on DPP4 IC50 datasets. The ML models random forest (RF) and multilayer perceptron (MLP) neural network showed good accuracy, with the area under the curve being 0.93 and 0.91, respectively. The natural compound library was screened through ML models, and 1% (217) of compounds were selected for further screening. Structure-based virtual screening was performed along with positive control sitagliptin to obtain more specific and selective leads for DPP4. Based on binding affinity, drug-likeness properties, and interaction with DPP4, Z-614 and Z-997 compounds showed high binding affinity and specificity in the catalytic pocket of DPP4. Finally, the stability conformation of the DPP4 enzyme complex was checked by a molecular dynamics (MD) simulation. The MD simulation showed that both compounds bind better in the catalytic pocket, but the Z-614 compound altered the DPP4 native conformation. Therefore, Z-614 showed a high deviation in the backbone. This combined approach (ML and structure-based) study reported that Z-997 binds most stably to DPP4 in their catalytic pocket with a binding free energy of -70.3 kJ/mol, suggesting its therapeutic potential as a treatment option for T2DM disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
2
|
Lu L, Zhang Y, Shi W, Zhou Q, Lai Z, Pu Y, Yin L. The Role of Autophagy in Copper-Induced Apoptosis and Developmental Neurotoxicity in SH-SY5Y Cells. TOXICS 2025; 13:63. [PMID: 39853061 PMCID: PMC11769067 DOI: 10.3390/toxics13010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Copper (Cu) is a global environmental pollutant that poses a serious threat to humans and ecosystems. Copper induces developmental neurotoxicity, but the underlying molecular mechanisms are unknown. Neurons are nonrenewable, and they are unable to mitigate the excessive accumulation of pathological proteins and organelles in cells, which can be ameliorated by autophagic degradation. In this study, we established an in vitro model of Cu2+-exposed (0, 15, 30, 60 and 120 μM) SH-SY5Y cells to explore the role of autophagy in copper-induced developmental neurotoxicity. The results showed that copper resulted in the reduction and shortening of neural synapses in differentiated cultured SH-SY5Y cells, a downregulated Wnt signaling pathway, and nuclear translocation of β-catenin. Exposure to Cu2+ increased autophagosome accumulation and autophagic flux blockage in terms of increased sequestosome 1 (p62/SQSTM1) and microtubule-associated protein 1 light chain 3B (LC3B) II/LC3BI expressions and inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR pathway. Furthermore, copper induced apoptosis, characterized by increased expressions of Bcl2 X protein (Bax), caspase 3, and Poly (ADP-ribose) polymerase (PARP) and decreased expression of B-cell lymphoma 2 (Bcl2). Compared with the 120 μM Cu2+ exposure group alone, autophagy activator rapamycin pretreatment increased expression of Wnt and β-catenin nuclear translocation, decreased expression of LC3BII/LC3BI and p62, as well as upregulated expression of Bcl2 and downregulated expressions of caspase 3 and PARP. In contrast, after autophagy inhibitor chloroquine pretreatment, expressions of Wnt and β-catenin nuclear translocation were decreased, expression levels of LC3BII/LC3BI and p62 were upregulated, expression of Bcl2 was decreased, while expression levels of caspase 3, Bax, and PARP were increased. In conclusion, the study demonstrated that autophagosome accumulation and autophagic flux blockage were associated with copper-induced developmental neurotoxicity via the Wnt signaling pathway, which might deepen the understanding of the developmental neurotoxicity mechanism of environmental copper exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (L.L.); (Y.Z.); (W.S.); (Q.Z.); (Z.L.); (Y.P.)
| |
Collapse
|
3
|
Zhang H, Gu W, Wu G, Yu Y. Aging and Autophagy: Roles in Musculoskeletal System Injury. Aging Dis 2024:AD.2024.0362. [PMID: 38913046 DOI: 10.14336/ad.2024.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Aging is a multifactorial process that ultimately leads to a decline in physiological function and a consequent reduction in the health span, and quality of life in elderly population. In musculoskeletal diseases, aging is often associated with a gradual loss of skeletal muscle mass and strength, resulting in reduced functional capacity and an increased risk of chronic metabolic diseases, leading to impaired function and increased mortality. Autophagy is a highly conserved physiological process by which cells, under the regulation of autophagy-related genes, degrade their own organelles and large molecules by lysosomal degradation. This process is unique to eukaryotic cells and is a strict regulator of homeostasis, the maintenance of energy and substance balance. Autophagy plays an important role in a wide range of physiological and pathological processes such as cell homeostasis, aging, immunity, tumorigenesis and neurodegenerative diseases. On the one hand, under mild stress conditions, autophagy mediates the restoration of homeostasis and proliferation, reduction of the rate of aging and delay of the aging process. On the other hand, under more intense stress conditions, an inadequate suppression of autophagy can lead to cellular aging. Conversely, autophagy activity decreases during aging. Due to the interrelationship between aging and autophagy, limited literature exists on this topic. Therefore, the objective of this review is to summarize the current concepts on aging and autophagy in the musculoskeletal system. The aim is to better understand the mechanisms of age-related changes in bone, joint and muscle, as well as the interaction relationship between autophagy and aging. Its goal is to provide a comprehensive perspective for the improvement of diseases of the musculoskeletal system.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhui Gu
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Genbin Wu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinxian Yu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Almeida MF, Farizatto KLG, Almeida RS, Bahr BA. Lifestyle strategies to promote proteostasis and reduce the risk of Alzheimer's disease and other proteinopathies. Ageing Res Rev 2024; 93:102162. [PMID: 38070831 DOI: 10.1016/j.arr.2023.102162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Unhealthy lifestyle choices, poor diet, and aging can have negative influences on cognition, gradually increasing the risk for mild cognitive impairment (MCI) and the continuum comprising early dementia. Aging is the greatest risk factor for age-related dementias such as Alzheimer's disease, and the aging process is known to be influenced by life events that can positively or negatively affect age-related diseases. Remarkably, life experiences that make the brain vulnerable to dementia, such as seizure episodes, neurotoxin exposures, metabolic disorders, and trauma-inducing events (e.g. traumatic injuries or mild neurotrauma from a fall or blast exposure), have been associated with negative effects on proteostasis and synaptic integrity. Functional compromise of the autophagy-lysosomal pathway, a major contributor to proteostasis, has been implicated in Alzheimer's disease, Parkinson's disease, obesity-related pathology, Huntington's disease, as well as in synaptic degeneration which is the best correlate of cognitive decline. Correspondingly, pharmacological and non-pharmacological strategies that positively modulate lysosomal proteases are recognized as synaptoprotective through degradative clearance of pathogenic proteins. Here, we discuss life-associated vulnerabilities that influence key hallmarks of brain aging and the increased burden of age-related dementias. Additionally, we discuss exercise and diet among the lifestyle strategies that regulate proteostasis as well as synaptic integrity, leading to evident prevention of cognitive deficits during brain aging in pre-clinical models.
Collapse
Affiliation(s)
- Michael F Almeida
- Biotechnology Research and Training Center, University of North Carolina - Pembroke, Pembroke, NC 28372, USA; Department of Biology, University of North Carolina - Pembroke, Pembroke, NC 28372, USA; Department of Biology & Marine Biology, and the Integrative, Comparative & Marine Biology Program, University of North Carolina - Wilmington, Wilmington, NC 28409, USA
| | - Karen L G Farizatto
- Biotechnology Research and Training Center, University of North Carolina - Pembroke, Pembroke, NC 28372, USA
| | - Renato S Almeida
- Department of Biosciences, University of Taubate, Taubate, SP 12020-270, Brazil
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina - Pembroke, Pembroke, NC 28372, USA; Department of Biology, University of North Carolina - Pembroke, Pembroke, NC 28372, USA.
| |
Collapse
|
5
|
Shaikh S, Ali S, Lim JH, Chun HJ, Ahmad K, Ahmad SS, Hwang YC, Han KS, Kim NR, Lee EJ, Choi I. Dipeptidyl peptidase-4 inhibitory potentials of Glycyrrhiza uralensis and its bioactive compounds licochalcone A and licochalcone B: An in silico and in vitro study. Front Mol Biosci 2022; 9:1024764. [PMID: 36250007 PMCID: PMC9564220 DOI: 10.3389/fmolb.2022.1024764] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a growing global public health issue, and dipeptidyl peptidase-4 (DPP-4) is a potential therapeutic target in T2DM. Several synthetic anti-DPP-4 medications can be used to treat T2DM. However, because of adverse effects, there is an unmet demand for the development of safe and effective medications. Natural medicines are receiving greater interest due to the inherent safety of natural compounds. Glycyrrhiza uralensis (licorice) is widely consumed and used as medicine. In this study, we investigated the abilities of a crude water extract (CWE) of G. uralensis and two of its constituents (licochalcone A (LicA) and licochalcone B (LicB)) to inhibit the enzymatic activity of DPP-4 in silico and in vitro. In silico studies showed that LicA and LicB bind tightly to the catalytic site of DPP-4 and have 11 amino acid residue interactions in common with the control inhibitor sitagliptin. Protein-protein interactions studies of LicA-DPP4 and LicB-DPP4 complexes with GLP1 and GIP reduced the DPP-4 to GLP1 and GIP interactions, indicated that these constituents might reduce the degradations of GLP1 and GIP. In addition, molecular dynamics simulations revealed that LicA and LicB stably bound to DPP-4 enzyme. Furthermore, DPP-4 enzyme assay showed the CWE of G. uralensis, LicA, and LicB concentration-dependently inhibited DPP-4; LicA and LicB had an estimated IC50 values of 347.93 and 797.84 μM, respectively. LicA and LicB inhibited DPP-4 at high concentrations, suggesting that these compounds could be used as functional food ingredients to manage T2DM.
Collapse
Affiliation(s)
- Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Ye Chan Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ki Soo Han
- Neo Cremar Co., Ltd., Seoul, South Korea
| | - Na Ri Kim
- Neo Cremar Co., Ltd., Seoul, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| |
Collapse
|
6
|
Novel Therapeutic Strategies for Ischemic Stroke: Recent Insights into Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3450207. [PMID: 35720192 PMCID: PMC9200548 DOI: 10.1155/2022/3450207] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
Stroke is one of the leading causes of death and disability worldwide. Autophagy is a conserved cellular catabolic pathway that maintains cellular homeostasis by removal of damaged proteins and organelles, which is critical for the maintenance of energy and function homeostasis of cells. Accumulating evidence demonstrates that autophagy plays important roles in pathophysiological mechanisms under ischemic stroke. Previous investigations show that autophagy serves as a “double-edged sword” in ischemic stroke as it can either promote the survival of neuronal cells or induce cell death in special conditions. Following ischemic stroke, autophagy is activated or inhibited in several cell types in brain, including neurons, astrocytes, and microglia, as well as microvascular endothelial cells, which involves in inflammatory activation, modulation of microglial phenotypes, and blood-brain barrier permeability. However, the exact mechanisms of underlying the role of autophagy in ischemic stroke are not fully understood. This review focuses on the recent advances regarding potential molecular mechanisms of autophagy in different cell types. The focus is also on discussing the “double-edged sword” effect of autophagy in ischemic stroke and its possible underlying mechanisms. In addition, potential therapeutic strategies for ischemic stroke targeting autophagy are also reviewed.
Collapse
|
7
|
Han X, Tang Y, Zhang Y, Zhang J, Hu Z, Xu W, Xu S, Niu Q. Impaired V-ATPase leads to increased lysosomal pH, results in disrupted lysosomal degradation and autophagic flux blockage, contributes to fluoride-induced developmental neurotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113500. [PMID: 35421827 DOI: 10.1016/j.ecoenv.2022.113500] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Fluoride is capable of inducing developmental neurotoxicity, yet its mechanisms remain elusive. We aimed to explore the possible role and mechanism of autophagic flux blockage caused by abnormal lysosomal pH in fluoride-induced developmental neurotoxicity, focusing on the role of V-ATPase in regulating the neuronal lysosomal pH. Using Sprague-Dawley rats exposed to sodium fluoride (NaF) from gestation through delivery until the neonatal offspring reached six months of age as an in vivo model. The results showed that NaF impaired the cognitive abilities of the offspring rats. In addition, NaF reduced V-ATPase expression, diminished lysosomal degradation capacity and blocked autophagic flux, and increased apoptosis in the hippocampus of offspring. Consistently, these results were validated in SH-SY5Y cells incubated with NaF. Moreover, NaF increased the SH-SY5Y lysosomal pH. Mechanistically, V-ATPase B2 overexpression and ATP effectively restored V-ATPase expression, reducing NaF-induced lysosomal alkalinization while increasing lysosomal degradation capacity. Notably, those above pharmacological and molecular interventions diminished NaF-induced apoptosis by restoring autophagic flux. Collectively, the present findings suggested that NaF impairs the lysosomal pH raised by V-ATPase. This leads to reduced lysosomal degradation capacity and triggers autophagic flux blockage and apoptosis, thus contributing to neuronal death. Therefore, V-ATPase might be a promising indicator of developmental fluoride neurotoxicity.
Collapse
Affiliation(s)
- Xie Han
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yanling Tang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yuanli Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Jingjing Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Zeyu Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Wanjing Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Shangzhi Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China.
| |
Collapse
|
8
|
Ahmad SS, Ahmad K, Shaikh S, You HJ, Lee EY, Ali S, Lee EJ, Choi I. Molecular Mechanisms and Current Treatment Options for Cancer Cachexia. Cancers (Basel) 2022; 14:cancers14092107. [PMID: 35565236 PMCID: PMC9105812 DOI: 10.3390/cancers14092107] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The primary characteristics of cancer cachexia are weakness, weight loss, atrophy, fat reduction, and systemic inflammation. Cachexia is strongly associated with cancers involving the lungs, pancreas, esophagus, stomach, and liver, which account for half of all cancer deaths. TGF-β, MSTN, activin, IGF-1/PI3K/AKT, and JAK-STAT signaling pathways are known to underlie muscle atrophy and cachexia. Anamorelin (appetite stimulation), megestrol acetate, eicosapentaenoic acid, phytocannabinoids, targeting MSTN/activin, and molecules targeting proinflammatory cytokines, such as TNF-α and IL-6, are being tested as treatment options for cancer cachexia. Abstract Cancer cachexia is a condition marked by functional, metabolic, and immunological dysfunctions associated with skeletal muscle (SM) atrophy, adipose tissue loss, fat reduction, systemic inflammation, and anorexia. Generally, the condition is caused by a variety of mediators produced by cancer cells and cells in tumor microenvironments. Myostatin and activin signaling, IGF-1/PI3K/AKT signaling, and JAK-STAT signaling are known to play roles in cachexia, and thus, these pathways are considered potential therapeutic targets. This review discusses the current state of knowledge of the molecular mechanisms underlying cachexia and the available therapeutic options and was undertaken to increase understanding of the various factors/pathways/mediators involved and to identify potential treatment options.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (S.S.A.); (K.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (S.S.A.); (K.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (S.S.A.); (K.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
| | - Hye Jin You
- Tumor Microenvironment Branch, Division of Cancer Biology, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang 10408, Gyeonggi-do, Korea; (H.J.Y.); (E.-Y.L.)
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyaan 10408, Gyeonggi-do, Korea
| | - Eun-Young Lee
- Tumor Microenvironment Branch, Division of Cancer Biology, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang 10408, Gyeonggi-do, Korea; (H.J.Y.); (E.-Y.L.)
| | - Shahid Ali
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (S.S.A.); (K.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
- Correspondence: (E.J.L.); (I.C.)
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (S.S.A.); (K.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
- Correspondence: (E.J.L.); (I.C.)
| |
Collapse
|