1
|
Pan M, Xu X, Zhang D, Cao W. Exploring the Immune Landscape of ccRCC: Prognostic Signatures and Therapeutic Implications. J Cell Mol Med 2024; 28:e70212. [PMID: 39557632 PMCID: PMC11573483 DOI: 10.1111/jcmm.70212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024] Open
Abstract
The tumour immunological microenvironment is involved in the development of clear cell renal cell carcinoma (ccRCC). Nevertheless, the role of the immunological microenvironment in ccRCC has not been thoroughly investigated. In this study, we combined six ccRCC cohorts into a large cohort and quantified the expression matrix into 53 immunological terms using the ssGSEA algorithm. Five immune terms related to prognosis were screened through 1000 iterations of L1-penalised (lasso) estimation and Cox regression analysis for immune-related risk score (IRS) calculation. The IRS showed satisfactory prognosis prediction efficacy in ccRCC. We then compared the clinical and genomic characteristics of two IRS subgroups. Patients with low IRS showed a high level of tumour mutational burden (TMB) and a low level of copy number variation (CNV), indicating that low IRS group patients have a higher probability of responding to immunotherapy. We employed TIDE and subclass mapping analyses to corroborate our results, and the findings demonstrated that patients with a low IRS had a significantly greater percentage of immunotherapy response. According to the Genomics of Drug Sensitivity in Cancer (GDSC), patients with a high IRS had a decreased IC50 for sunitinib, which is the first-line treatment for ccRCC patients. As a result, the immune characteristics of the microenvironment of ccRCC tumours have been explored, and a signature has been constructed. Analysis demonstrated that our signature could effectively predict prognosis and immunotherapy response rate.
Collapse
Affiliation(s)
- Minjie Pan
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xinchi Xu
- The State Key Lab of Reproductive; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dong Zhang
- The State Key Lab of Reproductive; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Cao
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
2
|
Huang J, Liu M, Chen H, Zhang J, Xie X, Jiang L, Zhang S, Jiang C, Zhang J, Zhang Q, Yang G, Chi H, Tian G. Elucidating the Influence of MPT-driven necrosis-linked LncRNAs on immunotherapy outcomes, sensitivity to chemotherapy, and mechanisms of cell death in clear cell renal carcinoma. Front Oncol 2023; 13:1276715. [PMID: 38162499 PMCID: PMC10757362 DOI: 10.3389/fonc.2023.1276715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Clear cell renal carcinoma (ccRCC) stands as the prevailing subtype among kidney cancers, making it one of the most prevalent malignancies characterized by significant mortality rates. Notably,mitochondrial permeability transition drives necrosis (MPT-Driven Necrosis) emerges as a form of cell death triggered by alterations in the intracellular microenvironment. MPT-Driven Necrosis, recognized as a distinctive type of programmed cell death. Despite the association of MPT-Driven Necrosis programmed-cell-death-related lncRNAs (MPTDNLs) with ccRCC, their precise functions within the tumor microenvironment and prognostic implications remain poorly understood. Therefore, this study aimed to develop a novel prognostic model that enhances prognostic predictions for ccRCC. METHODS Employing both univariate Cox proportional hazards and Lasso regression methodologies, this investigation distinguished genes with differential expression that are intimately linked to prognosis.Furthermore, a comprehensive prognostic risk assessment model was established using multiple Cox proportional hazards regression. Additionally, a thorough evaluation was conducted to explore the associations between the characteristics of MPTDNLs and clinicopathological features, tumor microenvironment, and chemotherapy sensitivity, thereby providing insights into their interconnectedness.The model constructed based on the signatures of MPTDNLs was verified to exhibit excellent prediction performance by Cell Culture and Transient Transfection, Transwell and other experiments. RESULTS By analyzing relevant studies, we identified risk scores derived from MPTDNLs as an independent prognostic determinant for ccRCC, and subsequently we developed a Nomogram prediction model that combines clinical features and associated risk assessment. Finally, the application of experimental techniques such as qRT-PCR helped to compare the expression of MPTDNLs in healthy tissues and tumor samples, as well as their role in the proliferation and migration of renal clear cell carcinoma cells. It was found that there was a significant correlation between CDK6-AS1 and ccRCC results, and CDK6-AS1 plays a key role in the proliferation and migration of ccRCC cells. Impressive predictive results were generated using marker constructs based on these MPTDNLs. CONCLUSIONS In this research, we formulated a new prognostic framework for ccRCC, integrating mitochondrial permeability transition-induced necrosis. This model holds significant potential for enhancing prognostic predictions in ccRCC patients and establishing a foundation for optimizing therapeutic strategies.
Collapse
Affiliation(s)
- Jinbang Huang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mengtao Liu
- Pediatric Surgery, Guiyang Matemal and Child Health Care Hospital, Guiyang Children’s Hospital, Guiyang, China
| | - Haiqing Chen
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xixi Xie
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shengke Zhang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chenglu Jiang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jieying Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qinhong Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, GA, United States
| | - Hao Chi
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| |
Collapse
|
3
|
GE WENFEI, SONG SHIYAN, QI XIAOCHEN, CHEN FENG, CHE XIANGYU, SUN YONGHAO, WANG JIN, LI XIAOWEI, LIU NANA, WANG QIFEI, WU GUANGZHEN. Review and prospect of immune checkpoint blockade therapy represented by PD-1/PD-L1 in the treatment of clear cell renal cell carcinoma. Oncol Res 2023; 31:255-270. [PMID: 37305384 PMCID: PMC10229311 DOI: 10.32604/or.2023.027942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/02/2023] [Indexed: 06/13/2023] Open
Abstract
As a common tumor of the urinary system, the morbidity and mortality related to renal carcinoma, are increasing annually. Clear cell renal cell carcinoma (CCRCC) is the most common subtype of renal cell carcinoma, accounting for approximately 75% of the total number of patients with renal cell carcinoma. Currently, the clinical treatment of ccRCC involves targeted therapy, immunotherapy, and a combination of the two. In immunotherapy, PD-1/PD-L1 blocking of activated T cells to kill cancer cells is the most common treatment. However, as treatment progresses, some patients gradually develop resistance to immunotherapy. Meanwhile, other patients experience great side effects after immunotherapy, resulting in a survival status far lower than the expected survival rate. Based on these clinical problems, many researchers have been working on the improvement of tumor immunotherapy in recent years and have accumulated numerous research results. We hope to find a more suitable direction for future immunotherapy for ccRCC by combining these results and the latest research progress.
Collapse
Affiliation(s)
- WENFEI GE
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - SHIYAN SONG
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - XIAOCHEN QI
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - FENG CHEN
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - XIANGYU CHE
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - YONGHAO SUN
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - JIN WANG
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - XIAOWEI LI
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - NANA LIU
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - QIFEI WANG
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - GUANGZHEN WU
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| |
Collapse
|
4
|
Ren J, Yang J, Na S, Wang Y, Zhang L, Wang J, Liu J. Comprehensive characterisation of immunogenic cell death in melanoma revealing the association with prognosis and tumor immune microenvironment. Front Immunol 2022; 13:998653. [PMID: 36211436 PMCID: PMC9538190 DOI: 10.3389/fimmu.2022.998653] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/30/2022] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence has highlighted the critical functions of immunogenic cell death (ICD) within many tumors. However, the therapeutic possibilities and mechanism of utilizing ICD in melanoma are still not well investigated. Melanoma samples involved in our study were acquired from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. First, pan-cancer analysis of ICD systematically revealed its expression characteristics, prognostic values, mutation information, methylation level, pathway regulation relationship in multiple human cancers. The non-negative matrix factorization clustering was utilized to separate the TCGA-melanoma samples into two subtypes (i.e. C1 and C2) with different prognosis and immune microenvironment based on the expression traits of ICD. Then, LASSO-Cox regression analysis was utilized to determine an ICD-dependent risk signature (ICDRS) based on the differentially expressed genes (DEGs) between the two subtypes. Principal component analysis and t-distributed stochastic neighbor embedding analysis of ICDRS showed that high- and low-risk subpopulations could be clearly distinguished. Survival analysis and ROC curves in the training, internal validation, and external validation cohorts highlighted the accurate prognosis evaluation of ICDRS. The obvious discrepancies of immune microenvironment between the different risk populations might be responsible for the different prognoses of patients with melanoma. These findings revealed the close association of ICD with prognosis and tumor immune microenvironment. More importantly, ICDRS-based immunotherapy response and targeted drug prediction might be beneficial to different risk subpopulations of patients with melanoma. The innotative ICDRS could function as a marker to determine the prognosis and tumor immune microenvironment in melanoma. This will aid in patient classification for individualized melanoma treatment.
Collapse
Affiliation(s)
- Jie Ren
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiaqi Yang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Song Na
- Emergency Intensive Care Unit, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yiqian Wang
- Department of Radiotherapy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Linyun Zhang
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Jiwei Liu, ; Jinkui Wang, ; Linyun Zhang,
| | - Jinkui Wang
- Department of Plastic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Jiwei Liu, ; Jinkui Wang, ; Linyun Zhang,
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Jiwei Liu, ; Jinkui Wang, ; Linyun Zhang,
| |
Collapse
|
5
|
Qi X, Wang J, Che X, Li Q, Li X, Wang Q, Wu G. The potential value of cuprotosis (copper-induced cell death) in the therapy of clear cell renal cell carcinoma. Am J Cancer Res 2022; 12:3947-3966. [PMID: 36119838 PMCID: PMC9442008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for 75% of the total incidence of renal cancer, and every year the number of morbidity and mortality increases, posing a serious threat to public health. The current main treatment methods for kidney cancer include drug-targeted therapy and immunotherapy. Although there are many treatment options for kidney cancer, they all have limitations, including drug resistance, unsatisfied long-term benefits, and adverse effects. Therefore, it is crucial to identify more effective therapeutic targets. As a newly discovered mechanism of cell death, copper-induced cell death (cuprotosis) is closely related to changes in cell metabolism, particularly in copper metabolism. Current studies have shown that the key signaling pathway of cuprotosis, the FDX1 (Ferredoxin 1)-LIAS (Lipoic Acid Synthetase) axis, plays an important role in the regulation of cellular oxidative stress, which can directly affect cell survival via inducing or promoting cancer cell death. Therefore, we speculated that this regulatory cell death mechanism might serve as a potential therapeutic target for the clinical treatment of renal cancer. To test this, we first performed a pan-cancer analysis based on cuprotosis-related genomic and transcriptomic levels to reveal the expression of cuprotosis in cancer. Next, GSVA-clustering analysis was performed with data from the Cancer Genome Atlas (TCGA) cohort, and the cohort was divided into three clusters according to the gene enrichment levels of cuprotosis marker genes. In addition, we analyzed the potential of using cuprotosis in clinical treatment from multiple perspectives, including chemotherapeutic drug susceptibility test, immune target inhibition treatment responsiveness, and histone modification. Combining the results of multi-omics analysis, we focused on the feasibility of this novel regulatory cell death mechanism in ccRCC treatment and further constructed a prognostic model. Finally, we verified our results by integrating the patient's gene expression information and radiomics information. Our study provides new insights into the development and clinical application of targeting cuprotosis pathway.
Collapse
Affiliation(s)
- Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University Dalian 116011, Liaoning, China
| | - Jin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University Dalian 116011, Liaoning, China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University Dalian 116011, Liaoning, China
| | - Quanlin Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University Dalian 116011, Liaoning, China
| | - Xiaowei Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University Dalian 116011, Liaoning, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University Dalian 116011, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University Dalian 116011, Liaoning, China
| |
Collapse
|
6
|
Li XY, Yang XT. Correlation Between the RNA Methylation Genes and Immune Infiltration and Prognosis of Patients with Hepatocellular Carcinoma: A Pan-Cancer Analysis. J Inflamm Res 2022; 15:3941-3956. [PMID: 35860228 PMCID: PMC9289455 DOI: 10.2147/jir.s373776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background RNA methylation is one of the most common RNA modifications and is dynamic and reversible. The enzymes and downstream effectors associated with RNA methylation modifications can be targeted to regulate RNA methylation levels. This mechanism can affect RNA processing, metabolism, cell proliferation and migration, and regulation of physiological or pathological processes. The aim of this study was to investigate the role of RNA methylation-related genes in hepatocellular carcinoma (HCC). Methods Baseline RNA methylation data were extracted from The Cancer Genome Atlas database. The expression pattern, predictive value, mutational profile, and interaction network of RNA methylation genes in pancancer were examined. Then, the association between the expression of RNA methylation genes and immune infiltration was investigated. In addition, a risk score model for HCC was developed and analyzed. Results Cancer cells had a higher expression of RNA methylation genes than normal cells in some cancer cells, and a higher expression of RNA methylation genes could negatively affect patient prognosis. Enrichment analysis revealed that RNA methylation genes are involved in the mRNA surveillance pathway and RNA degradation and transport. A 4-gene (ALYREF, NSUN4, TRMT6, YTHDF1) prognostic signature was established to predict HCC prognosis based on RNA methylation-related genes. Finally, the role of prognostic models in HCC was validated. Conclusion RNA methylation genes can be an indicator of oncogenicity in relation to HCC prognosis and are associated with immune infiltration in the tumour microenvironment. This finding could provide clinicians with the opportunity to explore new strategic approaches.
Collapse
Affiliation(s)
- Xin-Yu Li
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xi-Tao Yang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Wu S, He H, Huang J, Jiang S, Deng X, Huang J, Chen Y, Jiang Y. FMR1 is identified as an immune-related novel prognostic biomarker for renal clear cell carcinoma: A bioinformatics analysis of TAZ/YAP. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:9295-9320. [PMID: 35942760 DOI: 10.3934/mbe.2022432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
WW domain-containing transcription regulator 1 (TAZ, or WWTR1) and Yes-associated protein 1 (YAP) are both important effectors of the Hippo pathway and exhibit different functions. However, few studies have explored their co-regulatory mechanisms in kidney renal clear cell carcinoma (KIRC). Here, we used bioinformatics approaches to evaluate the co-regulatory roles of TAZ/YAP and screen novel biomarkers in KIRC. GSE121689 and GSE146354 were downloaded from the GEO. The limma was applied to identify the differential expression genes (DEGs) and the Venn diagram was utilized to screen co-expressed DEGs. Co-expressed DEGs obtained the corresponding pathways through GO and KEGG analysis. The protein-protein interaction (PPI) network was constructed using STRING. The hub genes were selected applying MCODE and CytoHubba. GSEA was further applied to identify the hub gene-related signaling pathways. The expression, survival, receiver operating character (ROC), and immune infiltration of the hub genes were analyzed by HPA, UALCAN, GEPIA, pROC, and TIMER. A total of 51 DEGs were co-expressed in the two datasets. The KEGG results showed that the enriched pathways were concentrated in the TGF-β signaling pathway and endocytosis. In the PPI network, the hub genes (STAU2, AGO2, FMR1) were identified by the MCODE and CytoHubba. The GSEA results revealed that the hub genes were correlated with the signaling pathways of metabolism and immunomodulation. We found that STAU2 and FMR1 were weakly expressed in tumors and were negatively associated with the tumor stages. The overall survival (OS) and disease-free survival (DFS) rate of the high-expressed group of FMR1 was greater than that of the low-expressed group. The ROC result exhibited that FMR1 had certainly a predictive ability. The TIMER results indicated that FMR1 was positively correlated to immune cell infiltration. The abovementioned results indicated that TAZ/YAP was involved in the TGF-β signaling pathway and endocytosis. FMR1 possibly served as an immune-related novel prognostic gene in KIRC.
Collapse
Affiliation(s)
- Sufang Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Shiyao Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Xiyun Deng
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanbing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| |
Collapse
|
8
|
Qi X, Li Q, Che X, Wang Q, Wu G. Application of Regulatory Cell Death in Cancer: Based on Targeted Therapy and Immunotherapy. Front Immunol 2022; 13:837293. [PMID: 35359956 PMCID: PMC8960167 DOI: 10.3389/fimmu.2022.837293] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The development of cancer treatment methods is constantly changing. For common cancers, our treatment methods are still based on conventional treatment methods, such as chemotherapy, radiotherapy, and targeted drug therapy. Nevertheless, the emergence of tumor resistance has a negative impact on treatment. Regulated cell death is a gene-regulated mode of programmed cell death. After receiving specific signal transduction, cells change their physical and chemical properties and the extracellular microenvironment, resulting in structural destruction and decomposition. As research accumulates, we now know that by precisely inducing specific cell death patterns, we can treat cancer with less collateral damage than other treatments. Many newly discovered types of RCD are thought to be useful for cancer treatment. However, some experimental results suggest that some RCDs are not sensitive to cancer cell death, and some may even promote cancer progression. This review summarizes the discovered types of RCDs, reviews their clinical efficacy in cancer treatment, explores their anticancer mechanisms, and discusses the feasibility of some newly discovered RCDs for cancer treatment in combination with the immune and tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | - Qifei Wang
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|