1
|
Hipulan LA, Dingcong RG, Estrada DJE, Dumancas GG, Bondaug JC, Alguno AC, Bacosa HP, Malaluan RM, Lubguban AA. Development of High-Performance Coconut Oil-Based Rigid Polyurethane-Urea Foam: A Novel Sequential Amidation and Prepolymerization Process. ACS OMEGA 2024; 9:13112-13124. [PMID: 38524448 PMCID: PMC10956093 DOI: 10.1021/acsomega.3c09598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
The utilization of coconut diethanolamide (p-CDEA) as a substitute polyol for petroleum-based polyol in fully biobased rigid polyurethane-urea foam (RPUAF) faces challenges due to its short chain and limited cross-linking capability. This leads to compromised cell wall resistance during foam expansion, resulting in significant ruptured cells and adverse effects on mechanical and thermal properties. To address this, a novel sequential amidation-prepolymerization route was employed on coconut oil, yielding a hydroxyl-terminated poly(urethane-urea) prepolymer polyol (COPUAP). Compared to p-CDEA, COPUAP exhibited a decreased hydroxyl value (496.3-473.2 mg KOH/g), an increase in amine value (13.464-24.561 mg KOH/g), and an increase in viscosity (472.4-755.8 mPa·s), indicating enhanced functionality of 34.3 mgKOH/g and chain lengthening. Further, COPUAP was utilized as the sole B-side polyol in the production of RPUAF (PU-COPUAP). The improved functionality of COPUAP and its improved cross-linking capability during foaming have significantly improved cell morphology, resulting in a remarkable 4.7-fold increase in compressive strength (132-628 kPa), a 3.5-fold increase in flexural strength (232-828 kPa), and improved insulation properties with a notable decrease in thermal conductivity (48.02-34.52 mW/m·K) compared to PU-CDEA in the literature. Additionally, PU-COPUAP exhibited a 16.5% increase in the water contact angle (114.93° to 133.87°), attributing to the formation of hydrophobic biuret segments and a tightly packed, highly cross-linked structure inhibiting water penetration. This innovative approach sets a new benchmark for fully biobased rigid foam production, delivering high load-bearing capacity, exceptional insulation, and significantly improved hydrophobicity.
Collapse
Affiliation(s)
- Louell
Nikki A. Hipulan
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan9200, Philippines
- Environmental
Science Graduate Program, Department of Biological Sciences, Mindanao State University − Iligan Institute
of Technology, A. Bonifacio Avenue, Iligan 9200, Philippines
- Chemical
Engineering Program, College of Technology, University of San Agustin, General Luna St., Iloilo 5000, Philippines
| | - Roger G. Dingcong
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan9200, Philippines
| | - Dave Joseph E. Estrada
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan9200, Philippines
| | - Gerard G. Dumancas
- Department
of Chemistry, The University of Scranton, Scranton, Pennsylvania 18510, United States
| | - John Christian
S. Bondaug
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan9200, Philippines
- Environmental
Science Graduate Program, Department of Biological Sciences, Mindanao State University − Iligan Institute
of Technology, A. Bonifacio Avenue, Iligan 9200, Philippines
| | - Arnold C. Alguno
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan9200, Philippines
- Department
of Physics, Mindanao State University −
Iligan Institute of Technology, A. Bonifacio Avenue, Iligan 9200, Philippines
| | - Hernando P. Bacosa
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan9200, Philippines
- Environmental
Science Graduate Program, Department of Biological Sciences, Mindanao State University − Iligan Institute
of Technology, A. Bonifacio Avenue, Iligan 9200, Philippines
| | - Roberto M. Malaluan
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan9200, Philippines
- Department
of Chemical Engineering and Technology, Mindanao State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan 9200, Philippines
| | - Arnold A. Lubguban
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan9200, Philippines
- Department
of Chemical Engineering and Technology, Mindanao State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan 9200, Philippines
| |
Collapse
|
2
|
Amri MR, Md Yasin F, Abdullah LC, Al-Edrus SSO, Mohamad SF. Ternary Nanocomposite System Composing of Graphene Nanoplatelet, Cellulose Nanofiber and Jatropha Oil Based Waterborne Polyurethane: Characterizations, Mechanical, Thermal Properties and Conductivity. Polymers (Basel) 2021; 13:polym13213740. [PMID: 34771296 PMCID: PMC8587327 DOI: 10.3390/polym13213740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
This work aims to evaluate the performance of graphene nanoplatelet (GNP) as conductive filler with the presence of 0.5 wt.% cellulose nanofiber (CNF) on the physical, mechanical, conductivity and thermal properties of jatropha oil based waterborne polyurethane. Polyurethane was made from crude jatropha oil using an epoxidation and ring-opening process. 0.5, 1.0, 1.5, 2.0 wt.% GNP and 0.5 wt.% CNF were incorporated using casting method to enhance film performance. Mechanical properties were studied following standard method as stated in ASTM D638-03 Type V. Thermal stability of the nanocomposite system was studied using thermal gravimetric analysis (TGA). Filler interaction and chemical crosslinking was monitored using Fourier-transform infrared spectroscopy (FTIR) and film morphology were observed with field emission scanning electron microscopy (FESEM). Water uptake analysis, water contact angle and conductivity tests are also carried out. The results showed that when the GNP was incorporated at fixed CNF content, it was found to enhance the nanocomposite film, its mechanical, thermal and water behavior properties as supported by morphology and water uptake. Nanocomposite film with 0.5 wt.% GNP shows the highest improvement in term of tensile strength, Young’s modulus, thermal degradation and water behavior. As the GNP loading increases, water uptake of the nanocomposite film was found relatively small (<1%). Contact angle test also indicates that the film is hydrophobic with addition of GNP. The conductivity properties of the nanocomposite film were not enhanced due to electrostatic repulsion force between GNP sheet and hard segment of WBPU. Overall, with addition of GNP, mechanical and thermal properties was greatly enhanced. However, conductivity value was not enhanced as expected due to electrostatic repulsion force. Therefore, ternary nanocomposite system is a suitable candidate for coating application.
Collapse
Affiliation(s)
- Mohamad Ridzuan Amri
- Institute of Tropical Forestry and Forest Product, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Faizah Md Yasin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of Advance Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (F.M.Y.); (L.C.A.); (S.S.O.A.-E.)
| | - Luqman Chuah Abdullah
- Institute of Tropical Forestry and Forest Product, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (F.M.Y.); (L.C.A.); (S.S.O.A.-E.)
| | - Syeed Saifulazry Osman Al-Edrus
- Institute of Tropical Forestry and Forest Product, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence: (F.M.Y.); (L.C.A.); (S.S.O.A.-E.)
| | - Siti Fatahiyah Mohamad
- Radiation Processing and Technology Division, Malaysia Nuclear Agency, Bangi 43000, Selangor, Malaysia;
| |
Collapse
|
3
|
Effect of Cellulose Nanofibrils on the Properties of Jatropha Oil-Based Waterborne Polyurethane Nanocomposite Film. Polymers (Basel) 2021; 13:polym13091460. [PMID: 33946517 PMCID: PMC8124478 DOI: 10.3390/polym13091460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 01/31/2023] Open
Abstract
The objective of this work was to study the influence of cellulose nanofibrils (CNF) on the physical, mechanical, and thermal properties of Jatropha oil-based waterborne polyurethane (WBPU) nanocomposite films. The polyol to produce polyurethane was synthesized from crude Jatropha oil through epoxidation and ring-opening method. The chain extender, 1,6-hexanediol, was used to improve film elasticity by 0.1, 0.25, and 0.5 wt.% of CNF loading was incorporated to enhance film performance. Mechanical performance was studied using a universal test machine as specified in ASTM D638-03 Type V and was achieved by 0.18 MPa at 0.5 wt.% of CNF. Thermal gravimetric analysis (TGA) was performed to measure the temperature of degradation and the chemical crosslinking and film morphology were studied using Fourier-transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The results showed that when the CNF was incorporated, it was found to enhance the nanocomposite film, in particular its mechanical and thermal properties supported by morphology. Nanocomposite film with 0.5 wt.% of CNF showed the highest improvement in terms of tensile strength, Young’s modulus, and thermal degradation. Although the contact angle decreases as the CNF content increases, the effect on the water absorption of the film was found to be relatively small (<3.5%). The difference between the neat WPBU and the highest CNF loading film was not more than 1%, even after 5 days of being immersed in water.
Collapse
|