1
|
Zheng S, Wang C, Fu J, Shao J. Investigating Overlapping Immune-related Genetic Markers in Cholangiocarcinoma and Inflammatory Bowel Disease for Predictive Prognosis. J Immunother 2025:00002371-990000000-00142. [PMID: 40384613 DOI: 10.1097/cji.0000000000000562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/09/2025] [Indexed: 05/20/2025]
Abstract
This study aims to explore the common immune-related gene characteristics of cholangiocarcinoma (CHOL) and inflammatory bowel disease (IBD) to predict disease prognosis. By analyzing the gene expression data from the TCGA, GEO, and NGDC databases, differentially expressed immune-related genes (DE-IRGs) were screened, and a prognostic model was constructed. The results showed that CCR7, OSM, S100P, ACVR1C, OSMR, SPP1, and PIK3R3 were key immune-related genes, and their expressions were closely related to the occurrence and development of CHOL and IBD. Patients in the low immune risk score (IRS) group had more abundant antitumor immune cell infiltration, while those in the high IRS group had more macrophage infiltration. In addition, the model based on these genes had good predictive ability for the diagnosis and prognosis of CHOL and IBD, with an area under the ROC curve (AUC) value exceeding 0.7. This study also predicted potential small molecule drugs that might be effective for the treatment of CHOL, such as Umbralisib and Tamoxifen. In conclusion, this study provides new biomarkers and potential targets for diagnosis, prognosis assessment, and treatment of CHOL and IBD.
Collapse
Affiliation(s)
| | | | | | - Jinfan Shao
- Colorectal Surgery, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital
| |
Collapse
|
2
|
Polkoff KM, Lampe R, Gupta NK, Murphy Y, Chung J, Carter A, Simon JM, Gleason K, Moatti A, Murthy PK, Edwards L, Greenbaum A, Tata A, Tata PR, Piedrahita JA. Novel Porcine Model Reveals Two Distinct LGR5 Cell Types during Lung Development and Homeostasis. Am J Respir Cell Mol Biol 2025; 72:496-509. [PMID: 39499850 PMCID: PMC12051919 DOI: 10.1165/rcmb.2024-0040oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 11/05/2024] [Indexed: 11/07/2024] Open
Abstract
Cells expressing leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) play a pivotal role in homeostasis, repair, and regeneration in multiple organs, including skin and gastrointestinal tract, but little is known about their role in the lung. Findings from mice, a widely used animal model, suggest that lung LGR5 expression differs from that of humans. In this work, using a new transgenic pig model, we identify two main populations of LGR5+ cells in the lung that are conserved in human but not mouse lungs. Using RNA sequencing, three-dimensional imaging, and organoid models, we determine that in the fetal lung, epithelial LGR5 expression is transient in a subpopulation of SOX9+/ETV5+/SFTPC+ progenitor lung tip cells. In contrast, epithelial LGR5 expression is absent from postnatal lung but is reactivated in bronchioalveolar organoids derived from basal airway cells. We also describe a separate population of mesenchymal LGR5+ cells that surrounds developing and mature airways, lies adjacent to airway basal cells, and is closely associated with nerve fibers. Transcriptionally, mesenchymal LGR5+ cells include a subset of peribronchial fibroblasts that express unique patterns of SHH, FGF, WNT, and TGF-β signaling pathway genes. These results support distinct roles for LGR5+ cells in the lung and describe a physiologically relevant animal model for further studies on the function of these cells in repair and regeneration.
Collapse
Affiliation(s)
- Kathryn M. Polkoff
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Ross Lampe
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Nithin K. Gupta
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
- School of Osteopathic Medicine, Campbell University, Lillington, North Carolina
| | - Yanet Murphy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Jaewook Chung
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Amber Carter
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Jeremy M. Simon
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Katherine Gleason
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Adele Moatti
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh and Chapel Hill, North Carolina; and
| | - Preetish K. Murthy
- Department of Cell Biology, School of Medicine, Duke University, Durham, North Carolina
| | - Laura Edwards
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Alon Greenbaum
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh and Chapel Hill, North Carolina; and
| | - Aleksandra Tata
- Department of Cell Biology, School of Medicine, Duke University, Durham, North Carolina
| | - Purushothama Rao Tata
- Department of Cell Biology, School of Medicine, Duke University, Durham, North Carolina
| | - Jorge A. Piedrahita
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
3
|
Deng X, Ma N, He J, Xu F, Zou G. The Role of TGFBR3 in the Development of Lung Cancer. Protein Pept Lett 2024; 31:491-503. [PMID: 39092729 DOI: 10.2174/0109298665315841240731060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
The Transforming Growth Factor-β (TGF-β) mediates embryonic development, maintains cellular homeostasis, regulates immune function, and is involved in a wide range of other biological processes. TGF-β superfamily signaling pathways play an important role in cancer development and can promote or inhibit tumorigenesis. Type III TGF-β receptor (TGFBR3) is a co-receptor in the TGF-β signaling pathway, which often occurs with reduced or complete loss of expression in many cancer patients and can act as a tumor suppressor gene. The reduction or deletion of TGFBR3 is more pronounced compared to other elements in the TGF-β signaling pathway. In recent years, lung cancer is one of the major malignant tumors that endanger human health, and its prognosis is poor. Recent studies have reported that TGFBR3 expression decreases to varying degrees in different types of lung cancer, both at the tissue level and at the cellular level. The invasion, metastasis, angiogenesis, and apoptosis of lung cancer cells are closely related to the expression of TGFBR3, which strengthens the inhibitory function of TGFBR3 in the evolution of lung cancer. This article reviews the mechanism of TGFBR3 in lung cancer and the influencing factors associated with TGFBR3. Clarifying the physiological function of TGFBR3 and its molecular mechanism in lung cancer is conducive to the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Xin Deng
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Nuoya Ma
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Junyu He
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Fei Xu
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Guoying Zou
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| |
Collapse
|
4
|
Chen C, Zhang Y, Lin Y, Shen C, Zhang Z, Wu Z, Qie Y, Zhao G, Hu H. The prognostic significance and immune characteristics of bone morphogenetic proteins (BMPs) family: A pan-cancer multi-omics analysis. Technol Health Care 2024; 32:4123-4175. [PMID: 39031404 PMCID: PMC11613112 DOI: 10.3233/thc-232004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/30/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) are a group of cancer-related proteins vital for development and progression of certain cancer types. Nevertheless, function of BMP family in pan-cancer was not detailedly researched. OBJECTIVE Investigating expression pattern and prognostic value of the BMPs family (BMP1-8A and BMP8B) expression across multiple cancer types. METHODS Our research integrated multi-omics data for exploring potential associations between BMPs expression and prognosis, clinicopathological characteristics, copy number or somatic mutations, immune characteristics, tumor microenvironment (TME), tumor mutation burden (TMB), microsatellite instability (MSI), immune checkpoint genes and drug sensitivity in The Cancer Genome Atlas (TCGA) tumors. Furthermore, association of BMPs expression and immunotherapy effectiveness was investigated in some confirmatory cohorts (GSE111636, GSE78220, GSE67501, GSE176307, IMvigor210 and mRNA sequencing data from currently undergoing TRUCE01 clinical research included), and biological function and potential signaling pathways of BMPs in bladder cancer (BCa) was explored via Gene Set Enrichment Analysis (GSEA). Eventually, immune infiltration analysis was done via BMPs expression, copy number or somatic mutations in BCa, as well as validation of the expression levels by reverse transcription-quantitative PCR and western blot, and in vitro functional experiments of BMP8A. RESULTS Discoveries displayed BMPs expression was related to prognosis, clinicopathological characteristics, mutations, TME, TMB, MSI and immune checkpoint genes of TCGA tumors. Anticancer drug sensitivity analysis displayed BMPs were associated with various drug sensitivities. What's more, it was discovered that expression level of certain BMP family members related to objective response to immunotherapy. By GSEA, we discovered multiple immune-associated functions and pathways were enriched. Immune infiltration analysis on BCa also displayed significant associations among BMPs copy number variations, mutation status and infiltration level of diverse immune cells. Furthermore, differential expression validation and in vitro phenotypic experiment indicated that BMP8A significantly promoted BCa cell proliferation, migration and invasion. CONCLUSIONS Current results confirmed significance of both BMPs expression and genomic alteration in the prognosis and treatment of diverse cancer types, and suggested that BMPs may be vital for BCa and can possibly be utilized as biomarkers for immunotherapy.
Collapse
Affiliation(s)
- Changsheng Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, Tianjin Haihe Hospital, Tianjin, China
| | - Yu Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Eco-City Hospital of Tianjin Fifth Central Hospital, Tianjin, China
| | - Yuda Lin
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhe Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yunkai Qie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gangjian Zhao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Guyot B, Clément F, Drouet Y, Schmidt X, Lefort S, Delay E, Treilleux I, Foy JP, Jeanpierre S, Thomas E, Kielbassa J, Tonon L, Zhu HH, Saintigny P, Gao WQ, de la Fouchardiere A, Tirode F, Viari A, Blay JY, Maguer-Satta V. An Early Neoplasia Index (ENI10), Based on Molecular Identity of CD10 Cells and Associated Stemness Biomarkers, is a Predictor of Patient Outcome in Many Cancers. CANCER RESEARCH COMMUNICATIONS 2023; 3:1966-1980. [PMID: 37707389 PMCID: PMC10540743 DOI: 10.1158/2767-9764.crc-23-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
An accurate estimate of patient survival at diagnosis is critical to plan efficient therapeutic options. A simple and multiapplication tool is needed to move forward the precision medicine era. Taking advantage of the broad and high CD10 expression in stem and cancers cells, we evaluated the molecular identity of aggressive cancer cells. We used epithelial primary cells and developed a breast cancer stem cell–based progressive model. The superiority of the early-transformed isolated molecular index was evaluated by large-scale analysis in solid cancers. BMP2-driven cell transformation increases CD10 expression which preserves stemness properties. Our model identified a unique set of 159 genes enriched in G2–M cell-cycle phases and spindle assembly complex. Using samples predisposed to transformation, we confirmed the value of an early neoplasia index associated to CD10 (ENI10) to discriminate premalignant status of a human tissue. Using a stratified Cox model, a large-scale analysis (>10,000 samples, The Cancer Genome Atlas Pan-Cancer) validated a strong risk gradient (HRs reaching HR = 5.15; 95% confidence interval: 4.00–6.64) for high ENI10 levels. Through different databases, Cox regression model analyses highlighted an association between ENI10 and poor progression-free intervals for more than 50% of cancer subtypes tested, and the potential of ENI10 to predict drug efficacy. The ENI10 index constitutes a robust tool to detect pretransformed tissues and identify high-risk patients at diagnosis. Owing to its biological link with refractory cancer stem cells, the ENI10 index constitutes a unique way of identifying effective treatments to improve clinical care. SIGNIFICANCE We identified a molecular signature called ENI10 which, owing to its biological link with stem cell properties, predicts patient outcome and drugs efficiency in breast and several other cancers. ENI10 should allow early and optimized clinical management of a broad number of cancers, regardless of the stage of tumor progression.
Collapse
Affiliation(s)
- Boris Guyot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
| | - Flora Clément
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
| | | | - Xenia Schmidt
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
| | - Sylvain Lefort
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
| | - Emmanuel Delay
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
- Centre Léon Bérard, Lyon, France
| | | | - Jean-Philippe Foy
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Tumor Escape Resistance and Immunity, CRCL, Lyon, France
| | - Sandrine Jeanpierre
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Emilie Thomas
- Bioinformatics Platform, Synergie Lyon Cancer Foundation, Lyon, France
| | - Janice Kielbassa
- Bioinformatics Platform, Synergie Lyon Cancer Foundation, Lyon, France
| | - Laurie Tonon
- Bioinformatics Platform, Synergie Lyon Cancer Foundation, Lyon, France
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute and Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Pierre Saintigny
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
- Department of Tumor Escape Resistance and Immunity, CRCL, Lyon, France
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute and Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Arnaud de la Fouchardiere
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
- Department of Tumor Escape Resistance and Immunity, CRCL, Lyon, France
| | - Franck Tirode
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Alain Viari
- Bioinformatics Platform, Synergie Lyon Cancer Foundation, Lyon, France
| | - Jean-Yves Blay
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
- Department of Tumor Escape Resistance and Immunity, CRCL, Lyon, France
| | - Véronique Maguer-Satta
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
- Centre Léon Bérard, Lyon, France
| |
Collapse
|
6
|
Provera MD, Straign DM, Karimpour P, Ihle CL, Owens P. Bone morphogenetic protein pathway responses and alterations of osteogenesis in metastatic prostate cancers. Cancer Rep (Hoboken) 2023; 6:e1707. [PMID: 36054271 PMCID: PMC9940003 DOI: 10.1002/cnr2.1707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Prostate cancer is a common cancer in men that annually results in more than 33 000 US deaths. Mortality from prostate cancer is largely from metastatic disease, reflecting on the great strides in the last century of treatments in care for the localized disease. Metastatic castrate resistant prostate cancer (mCRPC) will commonly travel to the bone, creating unique bone pathology that requires nuanced treatments in those sites with surgical, radio and chemotherapeutic interventions. The bone morphogenetic protein (BMP) pathway has been historically studied in the capacity to regulate the osteogenic nature of new bone. New mineralized bone generation is a frequent and common observation in mCRPC and referred to as blastic bone lesions. Less common are bone destructive lesions that are termed lytic. METHODS We queried the cancer genome atlas (TCGA) prostate cancer databases for the expression of the BMP pathway and found that distinct gene expression of the ligands, soluble antagonists, receptors, and intracellular mediators were altered in localized versus metastatic disease. Human prostate cancer cell lines have an innate ability to promote blastic- or lytic-like bone lesions and we hypothesized that inhibiting BMP signaling in these cell lines would result in a distinct change in osteogenesis gene expression with BMP inhibition. RESULTS We found unique and common changes by comparing these cell lines response and unique BMP pathway alterations. We treated human PCa cell lines with distinct bone pathologic phenotypes with the BMP inhibitor DMH1 and found distinct osteogenesis responses. We analyzed distinct sites of metastatic PCa in the TCGA and found that BMP signaling was selectively altered in commons sites such as lymph node, bone and liver compared to primary tumors. CONCLUSIONS Overall we conclude that BMPs in metastatic prostate cancer are important signals and functional mediators of diverse processes that have potential for individualized precision oncology in mCRPC.
Collapse
Affiliation(s)
- Meredith D. Provera
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
| | - Desiree M. Straign
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
| | | | - Claire L. Ihle
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
| | - Philip Owens
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
- Department of Veterans Affairs, Research Service, Eastern Colorado Health Care SystemAuroraColoradoUSA
| |
Collapse
|
7
|
Fan J, Xia X, Fan Z. Hsa_circ_0129047 regulates the miR-375/ACVRL1 axis to attenuate the progression of lung adenocarcinoma. J Clin Lab Anal 2022; 36:e24591. [PMID: 35908770 PMCID: PMC9459267 DOI: 10.1002/jcla.24591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are attractive candidates to be used as biomarkers of human cancers, including lung adenocarcinoma (LUAD). Our study aimed to investigate the functions and regulatory mechanisms of hsa_circ_0129047 in the tumorigenesis of LUAD. METHODS Reverse transcription-quantitative polymerase chain reaction was performed to determine the circRNA, microRNA (miRNA), and mRNA expression levels in LUAD cell lines and tissues. Tumor xenografts were established in nude mice to evaluate whether hsa_circ_0129047 affected LUAD tumor development in vivo. Cell counting kit-8 and transwell assays were performed to assess the mechanisms by which hsa_circ_0129047 influenced the viability and migration of LUAD cells, respectively. Apoptosis was evaluated via determination of the levels of the apoptotic markers, B-cell lymphoma-2, and Bcl-2-associated X, via Western blotting. Dual-luciferase reporter assay, RNA immunoprecipitation assay, and Pearson's correlation analysis were performed to determine the relationships among miR-375 and hsa_circ_0129047 and activin A receptor-like type 1 (ACVRL1). RESULTS Downregulation of hsa_circ_0129047 levels was observed in LUAD cell lines and tissues. Meanwhile, the upregulation of hsa_circ_0129047 levels repressed the proliferative, migratory, and survival capacities of LUAD cells in vitro. Hsa_circ_0129047 exerted antitumor effects during in vivo tumor development. Finally, we demonstrated that hsa_circ_0129047 sponged miR-375. This interaction facilitated the expression of the downstream target of miR-375, ACVRL1, whose upregulation inhibited the development and malignancy of LUAD. CONCLUSION These findings demonstrate that hsa_circ_0129047 functions as a tumor inhibitor in LUAD by modulating the miR-375/ACVRL1 axis. Hence, hsa_circ_0129047 may be a promising biomarker and gene target for LUAD treatment.
Collapse
Affiliation(s)
- Jinxiu Fan
- Department of Respiratory and Critical Care Medicine, Wuhan Red Cross Hospital, Wuhan No.11 Hospital, Wuhan, China
| | - Xiaofan Xia
- Department of Respiratory and Critical Care Medicine, Wuhan Red Cross Hospital, Wuhan No.11 Hospital, Wuhan, China
| | - Zhongjie Fan
- Department of Respiratory and Critical Care Medicine, Wuhan Red Cross Hospital, Wuhan No.11 Hospital, Wuhan, China
| |
Collapse
|