1
|
Liang S, Qian Y, Liu Y, Wang Y, Su L, Yan S. Ligustrazine nanoparticles inhibits epithelial-mesenchymal transition and alleviates postoperative abdominal adhesion. Biochem Biophys Res Commun 2024; 739:150994. [PMID: 39547120 DOI: 10.1016/j.bbrc.2024.150994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Following abdominal surgery, the occurrence of postoperative abdominal adhesion (PAA) is highly prevalent and stands out as one of the most frequently encountered complications. The effect and molecular mechanisms of Ligustrazine nanoparticles (LN) underlying epithelial-mesenchymal transition (EMT) in PAA still remain elusive. Adhesions were induced in Male Sprague-Dawley rats by injuring the cecum (cecal abrasion model), followed by administration of LN and hyaluronate acid (HA). The mechanism was further verified by enzyme-linked immunosorbent assay, wound healing assay, si-RNA and Western blot. Animal experiments revealed that LN effectively ameliorated adhesions, notably decreased tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-8, and fibrosis, and reduced the expression of TGF-β1 and EMT related markers (Fibronectin and E-cadherin). Furthermore, in vitro experiments demonstrated that LN might inhibit the TGF-β1 FOXC2 pathway through suppressing the expression of Fibronectin, P120, and E-cadherin and ameliorating peritoneal adhesion. Collectively, our findings indicate that LN inhibits PAA formation by reducing inflammation, decreasing EMT and promoting peritoneal mesothelial cell repair. Therefore, LN might be considered a potential candidate for the treatment of PPA. However, further clinical studies are required to approve the effectiveness of LN.
Collapse
Affiliation(s)
- Shasha Liang
- Teaching and Research Office of Obstetrics and Gynecology, Medical College of Zhengzhou University of Industrial Technology, Xinzheng, 451100, Henan, China
| | - Yifei Qian
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ying Liu
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Yahui Wang
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Lianlin Su
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Shuai Yan
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China.
| |
Collapse
|
2
|
Wang P, Chen W, li B, Yang S, Li W, Zhao S, Ning J, Zhou X, Cheng F. Exosomes on the development and progression of renal fibrosis. Cell Prolif 2024; 57:e13677. [PMID: 38898750 PMCID: PMC11533081 DOI: 10.1111/cpr.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Renal fibrosis is a prevalent pathological alteration that occurs throughout the progression of primary and secondary renal disorders towards end-stage renal disease. As a complex and irreversible pathophysiological phenomenon, it includes a sequence of intricate regulatory processes at the molecular and cellular levels. Exosomes are a distinct category of extracellular vesicles that play a crucial role in facilitating intercellular communication. Multiple pathways are regulated by exosomes produced by various cell types, including tubular epithelial cells and mesenchymal stem cells, in the context of renal fibrosis. Furthermore, research has shown that exosomes present in bodily fluids, including urine and blood, may be indicators of renal fibrosis. However, the regulatory mechanism of exosomes in renal fibrosis has not been fully elucidated. This article reviewed and analysed the various mechanisms by which exosomes regulate renal fibrosis, which may provide new ideas for further study of the pathophysiological process of renal fibrosis and targeted treatment of renal fibrosis with exosomes.
Collapse
Affiliation(s)
- Peihan Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Wu Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Bojun li
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Songyuan Yang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Wei Li
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Sheng Zhao
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Jinzhuo Ning
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Xiangjun Zhou
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
3
|
Xu Y, Zhou X, Wang X, Jin Y, Zhou L, Ye J. Progress of mesenchymal stem cells (MSCs) & MSC-Exosomes combined with drugs intervention in liver fibrosis. Biomed Pharmacother 2024; 176:116848. [PMID: 38834005 DOI: 10.1016/j.biopha.2024.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Liver fibrosis is an intrahepatic chronic damage repair response caused by various reasons such as alcoholic liver, fatty liver, viral hepatitis, autoimmune diseases, etc., and is closely related to the progression of liver disease. Currently, the mechanisms of liver fibrosis and its treatment are hot research topics in the field of liver disease remedy. Mesenchymal stem cells (MSCs) are a class of adult stem cells with self-renewal and multidirectional differentiation potential, which can ameliorate fibrosis through hepatic-directed differentiation, paracrine effects, and immunomodulation. However, the low inner-liver colonization rate, low survival rate, and short duration of intervention after stem cell transplantation have limited their wide clinical application. With the intensive research on liver fibrosis worldwide, it has been found that MSCs and MSCs-derived exosomes combined with drugs have shown better intervention efficiency than utilization of MSCs alone in many animal models of liver fibrosis. In this paper, we review the interventional effects and mechanisms of mesenchymal stem cells and their exosomes combined with drugs to alleviate hepatic fibrosis in vivo in animal models in recent years, which will provide new ideas to improve the efficacy of mesenchymal stem cells and their exosomes in treating hepatic fibrosis in the clinic.
Collapse
Affiliation(s)
- Yan Xu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Xiaolei Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Yu Jin
- School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China; Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Jiangxi, China; Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Jiangxi, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Jiangxi, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Jiangxi, China; Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Jiangxi, China; Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Jiangxi, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Jiangxi, China.
| |
Collapse
|
4
|
Zhang Y, Liu Y, Huo W, He L, Li B, Wang H, Meng F, Duan C, Zhou B, Wu J, Chen R, Xing J, Wan Y. The Role of miRNA and Long Noncoding RNA in Cholestatic Liver Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:879-893. [PMID: 38417698 DOI: 10.1016/j.ajpath.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024]
Abstract
Cholestatic liver diseases encompass a range of organic damages, metabolic disorders, and dysfunctions within the hepatobiliary system, arising from various pathogenic causes. These factors contribute to disruptions in bile production, secretion, and excretion. Cholestatic liver diseases can be classified into intrahepatic and extrahepatic cholestasis, according to the location of occurrence. The etiology of cholestatic liver diseases is complex, and includes drugs, poisons, viruses, parasites, bacteria, autoimmune responses, tumors, and genetic metabolism. The pathogenesis of cholelstatic liver disease is not completely clarified, and effective therapy is lacking. Clarifying its mechanism to find more effective therapeutic targets and drugs is an unmet need. Increasing evidence demonstrates that miRNA and long noncoding RNA are involved in the progression of cholestatic liver diseases. This review provides a comprehensive summary of the research progress on the roles of miRNA and long noncoding RNA in cholestatic liver diseases. The aim of the review is to enhance the understanding of their potential diagnostic, therapeutic, and prognostic value for patients with cholestasis.
Collapse
Affiliation(s)
- Yudian Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ying Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Wen Huo
- Functional Experiment Center, College of Basic and Legal Medicine, North Sichuan Medical College, Nanchong, China
| | - Longfei He
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Bowen Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Hui Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Chenggang Duan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Bingru Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinbo Wu
- Department of Otolaryngology-Head and Neck Surgery, Luzhou Maternal and Child Health Hospital (Luzhou Second People's Hospital), Luzhou, China
| | - Rong Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Juan Xing
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
5
|
Li D, Yang W, Pang J, Yu G. Differential DNA methylation landscape of miRNAs genes in mice liver fibrosis. Mol Biol Rep 2024; 51:475. [PMID: 38553662 DOI: 10.1007/s11033-024-09416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Patients with chronic liver disease were found nearly all to have liver fibrosis, which is characterized by excess accumulation of extracellular matrix (ECM) proteins. While ECM accumulation can prevent liver infection and injury, it can destroy normal liver function and architecture. miRNA's own regulation was involved in DNA methylation change. The purpose of this study is to detect DNA methylation landscape of miRNAs genes in mice liver fibrosis tissues. METHODS Male mice (10-12 weeks) were injected CCl4 from abdominal cavity to induced liver fibrosis. 850 K BeadChips were used to examine DNA methylation change in whole genome. The methylation change of 16 CpG dinucleotides located in promoter regions of 4 miRNA genes were detected by bisulfite sequencing polymerase chain reaction (BSP) to verify chip data accuracy, and these 4 miRNA genes' expressions were detected by RT-qPCR methods. RESULTS There are 769 differential methylation sites (DMS) in total between fibrotic liver tissue and normal mice liver tissue, which were related with 148 different miRNA genes. Chips array data were confirmed by bisulfite sequencing polymerase chain reaction (R = 0.953; P < 0.01). GO analysis of the target genes of 2 miRNA revealed that protein binding, cytoplasm and chromatin binding activity were commonly enriched; KEGG pathway enrichment analysis displayed that TGF-beta signaling pathway was commonly enriched. CONCLUSION The DNA of 148 miRNA genes was found to have methylation change in liver fibrosis tissue. These discoveries in miRNA genes are beneficial to future miRNA function research in liver fibrosis.
Collapse
Affiliation(s)
- Deming Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Wentong Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Jiaojiao Pang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
6
|
Lebedeva EI, Babenka AS, Shchastniy AT. The dynamics of microRNAs level associated with pathological venous angiogenesis in experimental toxic liver fibrosis in rats. GENES & CELLS 2024; 19:181-199. [DOI: 10.17816/gc622891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
BACKGROUND: It is known that miRNAs are important in liver fibrogenesis. However, their use as targets for early diagnosis and treatment of fibrosis is far from use in clinical practice. Angiogenesis and sinusoid capillarization are important histological features of the process. Studies regarding the role of miRNAs in pathological angiogenesis and sinusoid capillarization are insufficient.
AIM: To study the molecular targets (miRNAs and mRNAs) dynamics of associated with pathological angiogenesis in toxic fibrosis of the liver; to evaluate the relationship of the selected molecular factors to the processes of restructuring the intrahepatic vascular system.
METHODS: Fibrosis and subsequent cirrhosis of the liver in rats of the Wistar line (males) were induced for 17 weeks by a freshly prepared solution of thioacetamide. The level of miRNA-19а-3р, miRNA-29b-3р, miRNA-29b-1-5p, miRNA-34b-5р, miRNA-125b-5р, miRNA-130a-5p, miRNA-195-5р, miRNA-449а-5р, miRNA-449с-5р, miRNA-466d, miRNA-489-3р, miRNA-495, miRNA-664-3р, miRNA-3085, miRNA-3558-3р in fresh frozen liver samples, was determined by Two-tailed RT-qPCR.
RESULTS: In this study, we found that throughout the experiment, the relative level of microRNAs varied in a wide range of values (10–3–104 rel. units). In most cases, it decreased at the point of transition from fibrosis to cirrhosis, while growth was observed only for microRNA-29b-3p. Statistically significant correlation relationships were established between microRNAs and the number of interlobular veins, interlobular arteries, sinusoids, and the area of connective tissue (p 0.05).
CONCLUSION: A joint analysis of morphological and molecular-genetic parameters allowed us to suggest that within the framework of the current experimental model of liver fibrosis and cirrhosis, the restructuring of the intrahepatic vascular bed and the progression of fibrosis are associated with the dynamics of the level of a number of microRNAs that we studied and Ang mRNA level.
Collapse
|
7
|
Zhang Y, Zhang X, Chen R, Jiao Z, Shen B, Shuai Z. HSCs-derived exosomes regulate the levels of inflammatory cytokines in HIBECs through miR-122-5p mediated p38 MAPK signaling pathway. Genomics 2024; 116:110795. [PMID: 38228248 DOI: 10.1016/j.ygeno.2024.110795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
PBC is an autoimmune-mediated liver disease, and intrahepatic biliary epithelial cells (IBECs) are the target cells of early damage. Previous studies found that miRNAs and inflammation is closely related to PBC. In this study, we extracted exosomes from serum and human IBECs supernatant, and RNA-sequence analyzed the expression profiles of miRNAs. Elisa measured the levels of inflammatory cytokines. RT- qPCR and western blot detected the levels of miR-122-5p, p38 and p-p38. The results showed that 263 differentially expressed (DE) miRNAs were identified in serum exosomes of PBC patients. The levels of IL-1β, IL-6, IL-12, IL-17 A, IFN-γ, TNF-α and TGF-β1 in peripheral blood of PBC patients were higher than those of normal controls. According to the validation results and previous literature, exosomal miR-122-5p was finally selected as the study object, and correlated with inflammatory factors. In vitro experiments further found that exosomal miR-122-5p may derive from hepatic stellate cells (HSCs), and can be HIBECs intake, and influence HIBECs inflammatory factor levels though p38 MAPK signaling pathways. This may provide a new strategy for the treatment of PBC.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiangzhi Zhang
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruofei Chen
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziying Jiao
- Department of Physiology, School of Basic Medicine of Anhui Medical University, Hefei, China
| | - Bing Shen
- Department of Physiology, School of Basic Medicine of Anhui Medical University, Hefei, China.
| | - Zongwen Shuai
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
8
|
Zhang W, Zhang L, Dong H, Peng H. TGIF2 is a potential biomarker for diagnosis and prognosis of glioma. Front Immunol 2024; 15:1356833. [PMID: 38629068 PMCID: PMC11020094 DOI: 10.3389/fimmu.2024.1356833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/09/2024] [Indexed: 04/19/2024] Open
Abstract
Background TGFB-induced factor homeobox 2 (TGIF2), a member of the Three-Amino-acid-Loop-Extension (TALE) superfamily, has been implicated in various malignant tumors. However, its prognostic significance in glioma, impact on tumor immune infiltration, and underlying mechanisms in glioma development remain elusive. Methods The expression of TGIF2 in various human normal tissues, normal brain tissues, and gliomas was investigated using HPA, TCGA, GTEx, and GEO databases. The study employed several approaches, including Kaplan-Meier analysis, ROC analysis, logistic regression, Cox regression, GO analysis, KEGG analysis, and GSEA, to explore the relationship between TGIF2 expression and clinicopathologic features, prognostic value, and potential biological functions in glioma patients. The impact of TGIF2 on tumor immune infiltration was assessed through Estimate, ssGSEA, and Spearman analysis. Genes coexpressed with TGIF2 were identified, and the protein-protein interaction (PPI) network of these coexpressed genes were constructed using the STRING database and Cytoscape software. Hub genes were identified using CytoHubba plugin, and their clinical predictive value was explored. Furthermore, in vitro experiments were performed by knocking down and knocking out TGIF2 using siRNA and CRISPR/Cas9 gene editing, and the role of TGIF2 in glioma cell invasion and migration was analyzed using transwell assay, scratch wound-healing assay, RT-qPCR, and Western blot. Results TGIF2 mRNA was found to be upregulated in 21 cancers, including glioma. High expression of TGIF2 was associated with malignant phenotypes and poor prognosis in glioma patients, indicating its potential as an independent prognostic factor. Furthermore, elevated TGIF2 expression positively correlated with cell cycle regulation, DNA synthesis and repair, extracellular matrix (ECM) components, immune response, and several signaling pathways that promote tumor progression. TGIF2 showed correlations with Th2 cells, macrophages, and various immunoregulatory genes. The hub genes coexpressed with TGIF2 demonstrated significant predictive value. Additionally, in vitro experiments revealed that knockdown and knockout of TGIF2 inhibited glioma cell invasion, migration and suppressed the epithelial-mesenchymal transition (EMT) phenotype. Conclusion TGIF2 emerges as a potential biomarker for glioma, possibly linked to tumor immune infiltration and EMT.
Collapse
Affiliation(s)
- Wan Zhang
- Health Science Center of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Bone and Joints Research Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Long Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Huanhuan Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hang Peng
- Health Science Center of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Second Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Feng ZJ, Wang LS, Ma X, Li K, Li XY, Tang Y, Peng CJ. Catapol attenuates the aseptic inflammatory response to hepatic I/R injury in vivo and in vitro by inhibiting the HMGB1/TLR-4/NF-κB signaling pathway via the microRNA-410-3p. Mol Immunol 2023; 164:66-78. [PMID: 37979473 DOI: 10.1016/j.molimm.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury involves inflammatory necrosis of liver cells as a significant pathological mechanism. Catapol possesses anti-inflammatory activity that is extracted from the traditional Chinese medicine, Rehmannia glutinosa. METHODS The liver function and histopathology, Oxidative stress, and aseptic inflammatory responses were assessed in vivo, and the strongest dose group was selected. For mechanism, the expression of miR-410-3p, HMGB1, and TLR-4/NF-κB signaling pathways was detected. The dual luciferase assay can verify the targeting relationship between miR-410-3p and HMGB1. Knockdown of miR-410-3p in L02 cells is applied in interference experiments. RESULTS CAT pre-treatment significantly decreased the liver function markers alanine and aspartate aminotransferases and reduced the areas of hemorrhage and necrosis induced by hepatic I/R injury. Additionally, it reduced the aseptic inflammatory response and oxidative stress, with the strongest protective effect observed in the high-dose CAT group. Mechanistically, CAT downregulates HMGB1, inhibits TLR-4/NF-κB signaling pathway activation, and reduces inflammatory cytokines TNF-α, and IL-1β. In addition, the I/R-induced downregulation of microRNA-410-3p was inhibited by CAT pre-treatment in vivo and in vitro. HMGB1 was identified as a potential target of microRNA-410-3p using a dual-luciferase reporter assay. Knockdown of microRNA-410-3p abolished the inhibitory effect of CAT on HMGB1, p-NF-κB, and p-IκB-α protein expression. CONCLUSIONS Our study showed that CAT pre-treatment has a protective effect against hepatic I/R injury in rats. Specifically, CAT attenuates the aseptic inflammatory response to hepatic I/R injury in vivo and in vitro by inhibiting the HMGB1/TLR-4/NF-κB signaling pathway via the microRNA-410-3p.
Collapse
Affiliation(s)
- Zan Jie Feng
- Clinical Medical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Liu Song Wang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xuan Ma
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kai Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Yao Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Tang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ci Jun Peng
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
10
|
Li X, Yu M, Zhao Q, Yu Y. Prospective therapeutics for intestinal and hepatic fibrosis. Bioeng Transl Med 2023; 8:e10579. [PMID: 38023697 PMCID: PMC10658571 DOI: 10.1002/btm2.10579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 07/12/2023] [Indexed: 12/01/2023] Open
Abstract
Currently, there are no effective therapies for intestinal and hepatic fibrosis representing a considerable unmet need. Breakthroughs in pathogenesis have accelerated the development of anti-fibrotic therapeutics in recent years. Particularly, with the development of nanotechnology, the harsh environment of the gastrointestinal tract and inaccessible microenvironment of fibrotic lesions seem to be no longer considered a great barrier to the use of anti-fibrotic drugs. In this review, we comprehensively summarize recent preclinical and clinical studies on intestinal and hepatic fibrosis. It is found that the targets for preclinical studies on intestinal fibrosis is varied, which could be divided into molecular, cellular, and tissues level, although little clinical trials are ongoing. Liver fibrosis clinical trials have focused on improving metabolic disorders, preventing the activation and proliferation of hepatic stellate cells, promoting the degradation of collagen, and reducing inflammation and cell death. At the preclinical stage, the therapeutic strategies have focused on drug targets and delivery systems. At last, promising remedies to the current challenges are based on multi-modal synergistic and targeted delivery therapies through mesenchymal stem cells, nanotechnology, and gut-liver axis providing useful insights into anti-fibrotic strategies for clinical use.
Collapse
Affiliation(s)
- Xin Li
- Department of Clinical Pharmacy, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutics, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Mengli Yu
- Department of Gastroenterology, The Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yang Yu
- College of Pharmaceutical SciencesSouthwest UniversityChongqingChina
| |
Collapse
|
11
|
Kan Changez MI, Mubeen M, Zehra M, Samnani I, Abdul Rasool A, Mohan A, Wara UU, Tejwaney U, Kumar V. Role of microRNA in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): a comprehensive review. J Int Med Res 2023; 51:3000605231197058. [PMID: 37676968 PMCID: PMC10492500 DOI: 10.1177/03000605231197058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver condition that affects people who do not overconsume alcohol. Uncertainties exist over how microRNAs (miRNAs) in the blood and liver relate to NAFLD. The aim of this narrative review was to investigate the role of miRNAs in the onset and progression of non-alcoholic steatohepatitis (NASH) from NAFLD, and explore their potential as diagnostic tools and treatment targets for NAFLD patients. Liver miRNA-34a levels were found to accurately represent the degree of liver damage, with lower levels suggesting more damage. In patients with NAFLD and severe liver fibrosis, higher levels of miRNA-193a-5p and miRNA-378d were found. Moreover, miRNA-34a, miRNA-122, and miRNA-192 levels might aid in differentiating NASH from NAFLD. Similar to this, miRNA-21 and miRNA-27 levels in rats were able to distinguish between steatosis and steatohepatitis. High-fat diets enhanced the expression of 15 distinct miRNAs in rats, and there were substantial differences in the miRNA expression patterns between obese and lean people. The results from the present review imply that miRNA microarrays and sequencing may be helpful diagnostic tools, and miRNAs may be a possible treatment target for patients with NAFLD.
Collapse
Affiliation(s)
- Mah I Kan Changez
- Department of Medicine, Quetta Institute of Medical Sciences, Quetta, Pakistan
| | - Maryam Mubeen
- Department of Medicine, Punjab Medical College, Faisalabad, Pakistan
| | - Monezahe Zehra
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Inara Samnani
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | | | - Anmol Mohan
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | - Um Ul Wara
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | - Usha Tejwaney
- Department of Pharmacy, Valley Health System, New Jersey, USA
| | - Vikash Kumar
- Department of Internal Medicine, The Brooklyn Hospital Center, New York City, NY, USA
| |
Collapse
|
12
|
Chou MY, Hsieh PL, Chao SC, Liao YW, Yu CC, Tsai CY. MiR-424/TGIF2-Mediated Pro-Fibrogenic Responses in Oral Submucous Fibrosis. Int J Mol Sci 2023; 24:ijms24065811. [PMID: 36982885 PMCID: PMC10053232 DOI: 10.3390/ijms24065811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Oral submucous fibrosis (OSF) has been recognized as a potentially malignant disorder and is characterized by inflammation and the deposition of collagen. Among various regulators of fibrogenesis, microRNAs (miR) have received great attention but the detailed mechanisms underlying the miR-mediated modulations remain largely unknown. Here, we showed that miR-424 was aberrantly overexpressed in OSF tissues, and then we assessed its functional role in the maintenance of myofibroblast characteristics. Our results demonstrated that the suppression of miR-424 markedly reduced various myofibroblast activities (such as collagen contractility and migration ability) and downregulated the expression of fibrosis markers. Moreover, we showed that miR-424 exerted this pro-fibrosis property via direct binding to TGIF2, an endogenous repressor of the TGF-β signaling. In addition, our findings indicated that overexpression of miR-424 activated the TGF-β/Smad pathway, leading to enhanced myofibroblast activities. Altogether, our data revealed how miR-424 contributed to myofibroblast transdifferentiation, and targeting the miR-424/TGIF2 axis may be a viable direction for achieving satisfactory results from OSF treatment.
Collapse
Affiliation(s)
- Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 265, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chang-Yi Tsai
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| |
Collapse
|
13
|
Coal dust nanoparticles induced pulmonary fibrosis by promoting inflammation and epithelial-mesenchymal transition via the NF-κB/NLRP3 pathway driven by IGF1/ROS-mediated AKT/GSK3β signals. Cell Death Dis 2022; 8:500. [PMID: 36581638 PMCID: PMC9800584 DOI: 10.1038/s41420-022-01291-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Pneumoconiosis is the most common and serious disease among coal miners. In earlier work on this subject, we documented that coal dust (CD) nanoparticles (CD-NPs) induced pulmonary fibrosis (PF) more profoundly than did CD micron particles (CD-MPs), but the mechanism has not been thoroughly studied. Based on the GEO database, jveen, STRING, and Cytoscape tools were used to screen hub genes regulating PF. Particle size distribution of CD were analyzed with Malvern nanoparticle size potentiometer. Combining 8 computational methods, we found that IGF1, POSTN, MMP7, ASPN, and CXCL14 may act as hub genes regulating PF. Based on the high score of IGF1 and its important regulatory role in various tissue fibrosis, we selected it as the target gene in this study. Activation of the IGF1/IGF1R axis promoted CD-NPs-induced PF, and inhibition of the axis activation had the opposite effect in vitro and in vivo. Furthermore, activation of the IGF1/IGF1R axis induced generation of reactive oxygen species (ROS) to promote epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs) to accelerate PF. High-throughput gene sequencing based on lung tissue suggested that cytokine-cytokine receptor interaction and the NF-kB signaling pathway play a key role in PF. Also, ROS induced inflammation and EMT by the activation of the NF-kB/NLRP3 axis to accelerate PF. ROS can induce the activation of AKT/GSK3β signaling, and inhibition of it can inhibit ROS-induced inflammation and EMT by the NF-kB/NLRP3 axis, thereby inhibiting PF. CD-NPs induced PF by promoting inflammation and EMT via the NF-κB/NLRP3 pathway driven by IGF1/ROS-mediated AKT/GSK3β signals. This study provides a valuable experimental basis for the prevention and treatment of coal workers' pneumoconiosis. Illustration of the overall research idea of this study: IGF1 stimulates coal dust nanoparticles induced pulmonary fibrosis by promoting inflammation and EMT via the NF-κB/NLRP3 pathway driven by ROS-mediated AKT/GSK3β signals.
Collapse
|
14
|
LncRNA CCAT2, involving miR-34a/TGF-β1/Smad4 signaling, regulate hepatic stellate cells proliferation. Sci Rep 2022; 12:21199. [PMID: 36482069 PMCID: PMC9732356 DOI: 10.1038/s41598-022-25738-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
miR-34a targeting on Smad4 plays important role in TGF-β1 pathway which is a dominant factor for balancing collagen production and degradation in hepatic stellate cells. TGF-β1/Smad4 regulated collagen deposition is a hallmark of hepatic fibrosis. The potential regulation on miR-34a by LncRNAs in hepatic stellate cells (HSCs) is still reserved to be revealed. In current study, it was hypothesized that a miR-34a interactor, lncRNA CCAT2 may regulate TGF-β1 pathway in liver fibrotic remodeling. The interaction between CCAT2 and miR-34a-5p was checked by dual luciferase assay. the effects of CCAT2 and miR-34a-5p on cell proliferation and apoptosis were verified by MTT assay, colony formation assay, and flow cytometry assay. Dual luciferase activity showed CCAT2 are targets of miR-34a-5p. Sh-CCAT2 transfection prohibit HSCs proliferation and induce HSCs apoptosis, also inhibited ECM protein synthesis in HSCs. Decreased miR-34a-5p enhanced HSCs proliferation, blocked HSCs apoptosis and promoted ECM protein production. miR-34a-5p inhibitor undo protective regulation of sh-CCAT2 in liver fibrosis. Furthermore, clinical investigation showed that CCAT2 and Smad4 expression level were significantly induced, while miR-34a-5p was significantly decreased in HBV related liver fibrosis serum. In conclusion, activated HSCs via TGF-β1/Smad4 signaling pathway was successfully alleviated by CCAT2 inhibition through miR-34a-5p elevation.
Collapse
|
15
|
Zhang Y, Jiao Z, Chen M, Shen B, Shuai Z. Roles of Non-Coding RNAs in Primary Biliary Cholangitis. Front Mol Biosci 2022; 9:915993. [PMID: 35874606 PMCID: PMC9305664 DOI: 10.3389/fmolb.2022.915993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune-mediated chronic cholestatic liver disease, fatigue, and skin itching are the most common clinical symptoms. Its main pathological feature is the progressive damage and destruction of bile duct epithelial cells. Non-coding RNA (NcRNA, mainly including microRNA, long non-coding RNA and circular RNA) plays a role in the pathological and biological processes of various diseases, especially autoimmune diseases. Many validated ncRNAs are expected to be biomarkers for the diagnosis or treatment of PBC. This review will elucidate the pathogenesis of PBC and help to identify potential ncRNA biomarkers for PBC.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziying Jiao
- Department of Physiology, School of Basic Medicine of Anhui Medical University, Hefei, China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Shen
- Department of Physiology, School of Basic Medicine of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Zongwen Shuai,
| |
Collapse
|
16
|
Zhao M, Qi Q, Liu S, Huang R, Shen J, Zhu Y, Chai J, Zheng H, Wu H, Liu H. MicroRNA-34a: A Novel Therapeutic Target in Fibrosis. Front Physiol 2022; 13:895242. [PMID: 35795649 PMCID: PMC9250967 DOI: 10.3389/fphys.2022.895242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022] Open
Abstract
Fibrosis can occur in many organs, and severe cases leading to organ failure and death. No specific treatment for fibrosis so far. In recent years, microRNA-34a (miR-34a) has been found to play a role in fibrotic diseases. MiR-34a is involved in the apoptosis, autophagy and cellular senescence, also regulates TGF-β1/Smad signal pathway, and negatively regulates the expression of multiple target genes to affect the deposition of extracellular matrix and regulate the process of fibrosis. Some studies have explored the efficacy of miR-34a-targeted therapies for fibrotic diseases. Therefore, miR-34a has specific potential for the treatment of fibrosis. This article reviews the important roles of miR-34a in fibrosis and provides the possibility for miR-34a as a novel therapeutic target in fibrosis.
Collapse
Affiliation(s)
- Min Zhao
- Department of Acupuncture-Moxibustion, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Shimin Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Rong Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Shen
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Zhu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Jing Chai
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Handan Zheng
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Huangan Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Huangan Wu, ; Huirong Liu,
| | - Huirong Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Huangan Wu, ; Huirong Liu,
| |
Collapse
|
17
|
Yang X, Jiang Z, Li Y, Zhang Y, Han Y, Gao L. Non-coding RNAs regulating epithelial-mesenchymal transition: Research progress in liver disease. Biomed Pharmacother 2022; 150:112972. [PMID: 35447551 DOI: 10.1016/j.biopha.2022.112972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic liver injury could gradually progress to liver fibrosis, cirrhosis, and even hepatic carcinoma without effective treatment. The massive production and activation of abnormal cell differentiation is vital to the procession of liver diseases. Epithelial-mesenchymal transformation (EMT) is a biological process in which differentiated epithelial cells lose their epithelial characteristics and acquire mesenchymal cell migration capacity. Emerging evidence suggests that EMT not only occurs in the process of hepatocellular carcinogenesis, but also appears in liver cells transforming to myofibroblasts, a core event of liver disease. Non-coding RNA (ncRNA) such as microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) are important regulatory factors in EMT, which can regulate target gene expression by binding with RNA single-stranded. Various studies had shown that ncRNA regulation of EMT plays a key role in liver disease development, and many effective ncRNAs have been identified as promising biomarkers for the diagnosis and treatment of liver disease. In this review, we focus on the relationship between the different ncRNAs and EMT as well as the specific molecular mechanism in the liver diseases to enrich the pathological progress of liver diseases and provide reference for the treatment of liver diseases.
Collapse
Affiliation(s)
- Xiang Yang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Zhitao Jiang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingchun Zhang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yi Han
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Liyuan Gao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| |
Collapse
|
18
|
Cholangiopathies and the noncoding revolution. Curr Opin Gastroenterol 2022; 38:128-135. [PMID: 35098934 DOI: 10.1097/mog.0000000000000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
PURPOSE OF REVIEW Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) among others, have attracted a great deal of attention for their potential role as master regulators of gene expression and as therapeutic targets. This review focuses on recent advances on the role of ncRNAs in the pathogenesis, diagnosis and treatment of diseases of the cholangiocytes (i.e. cholangiopathies). RECENT FINDINGS In the recent years, there has been an exponential growth in the knowledge on ncRNAs and their role in cholangiopathies, particularly cholangiocarcinoma. SUMMARY Although several studies focused on miRNAs as noninvasive biomarkers for diagnosis and staging, several studies also highlighted their functions and provided new insights into disease mechanisms.
Collapse
|
19
|
Kawami M, Takenaka S, Akai M, Yumoto R, Takano M. Characterization of miR-34a-Induced Epithelial-Mesenchymal Transition in Non-Small Lung Cancer Cells Focusing on p53. Biomolecules 2021; 11:biom11121853. [PMID: 34944497 PMCID: PMC8699678 DOI: 10.3390/biom11121853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Epithelial–mesenchymal transition (EMT), a phenotypic conversion of the epithelial to mesenchymal state, contributes to cancer progression. Currently, several microRNAs (miRNAs) are associated with EMT-mediated cancer progression, but the contribution of miR-34a to EMT in cancer cells remains controversial. The present study aimed to clarify the role of miR-34a in the EMT-related phenotypes of human non-small cell lung cancer (NSCLC) cell lines, A549 (p53 wild-type) and H1299 (p53-deficient). Methods: The miR-34a mimic and p53 small interfering RNA (siRNA) were transfected into the cells using Lipofectamine, and the obtained total RNA and cell lysates were used for real-time polymerase chain reaction and Western blotting analysis, respectively. Results: The introduction of the miR-34a mimic led to an increase in the mRNA and protein expression levels of α-smooth muscle actin (α-SMA), a mesenchymal marker gene, in A549, but not in H1299 cells. Additionally, miR-34a-induced the upregulation of p53 activity and migration was observed in A549, but not in H1299 cells. However, under the p53-knockdown condition, only α-SMA upregulation by miR-34a was abolished. Conclusion: These findings indicate a close relationship between p53 and miR-34a-induced EMT in p53-wild type NSCLC cells, which provides novel insights about the role of miR-34a in EMT-like phenotypic changes in NSCLC.
Collapse
|