1
|
Shi Y, Wang S, Deng D, Wang Y. Taohong Siwu Decoction: a classical Chinese prescription for treatment of orthopedic diseases. Chin J Nat Med 2024; 22:711-723. [PMID: 39197962 DOI: 10.1016/s1875-5364(24)60581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Indexed: 09/01/2024]
Abstract
The pathogenesis of orthopedic diseases is intimately linked to blood stasis, frequently arising from damage to primary and secondary blood channels. This disruption can lead to "blood leaving the meridians" or Qi stagnation, resulting in blood stasis syndrome. Taohong Siwu Decoction (THSWD) is a renowned classical Chinese medicinal formula extensively used to promote blood circulation and mitigate blood stasis. Clinical studies have demonstrated its significant therapeutic effects on various orthopedic conditions, particularly its anti-inflammatory and analgesic properties, as well as its efficacy in preventing deep vein thrombosis post-surgery. Despite these findings, research on THSWD remains fragmented, and its interdisciplinary impact is limited. This review aims to provide a comprehensive evaluation of the efficacy and pharmacological mechanisms of THSWD in treating common orthopedic diseases. Additionally, we employ bibliometric analysis to explore research trends and hotspots related to THSWD. We hope this review will enhance the recognition and application of THSWD in orthopedic treatments and guide future research into its pharmacological mechanisms.
Collapse
Affiliation(s)
- Yunzhen Shi
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China
| | - Disi Deng
- Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
2
|
Jia J, Chen J, Wang G, Li M, Zheng Q, Li D. Progress of research into the pharmacological effect and clinical application of the traditional Chinese medicine Rehmanniae Radix. Biomed Pharmacother 2023; 168:115809. [PMID: 37907043 DOI: 10.1016/j.biopha.2023.115809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023] Open
Abstract
The traditional Chinese medicine (TCM) Rehmanniae Radix (RR) refers to the fresh or dried root tuber of the plant Rehmannia glutinosa Libosch of the family Scrophulariaceae. As a traditional Chinese herbal medicine (CHM), it possesses multiple effects, including analgesia, sedation, anti-inflammation, antioxidation, anti-tumor, immunomodulation, cardiovascular and cerebrovascular regulation, and nerve damage repair, and it has been widely used in clinical practice. In recent years, scientists have extensively studied the active components and pharmacological effects of RR. Active ingredients mainly include iridoid glycosides (such as catalpol and aucuboside), phenylpropanoid glycosides (such as acteoside), other saccharides, and unsaturated fatty acids. In addition, the Chinese patent medicine (CPM) and Chinese decoction related to RR have also become major research subjects for TCM practitioners; one example is the Bolus of Six Drugs, which includes Rehmannia, Lily Bulb and Rehmannia Decoction, and Siwu Decoction. This article reviews recent literature on RR; summarizes the studies on its chemical constituents, pharmacological effects, and clinical applications; and analyzes the progress and limitations of current investigations to provide reference for further exploration and development of RR.
Collapse
Affiliation(s)
- Jinhao Jia
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Jianfei Chen
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Minjing Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003 Xinjiang, PR China.
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003 Xinjiang, PR China.
| |
Collapse
|
3
|
Zhang D, Li X, Li J, Liu W, Yu Y, Wang S, Ye X. Casticin promotes osteogenic differentiation of bone marrow stromal cells and improves osteoporosis in rats by regulating nuclear factor-κB/mitogen-activated protein kinase. Int J Rheum Dis 2023; 26:80-87. [PMID: 36195975 DOI: 10.1111/1756-185x.14451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Osteoporosis has influenced millions of people, especially postmenopausal women, which has become a big burden to the whole world. Although the diverse roles of casticin (CAS) on different diseases were identified, whether it was implicated with osteoporosis was unknown. METHODS A rat model of osteoporosis was established through dexamethasone (DEX) treatment and a cell model reflecting the osteogenic and osteoclast induction was constructed in bone marrow stromal cells (BMSCs). The calcification at the late stage of induction was measured via Alizarin Red S staining. Western blot was applied to evaluate the levels of proteins. RESULTS Hematoxylin and eosin staining revealed that the number of bone trabecular in DEX-induced osteoporosis rats was decreased, while increased doses of CAS treatment elevated the number of bone trabecular. CAS treatment alleviated DEX-induced osteoporosis in rats. Moreover, we found that CAS inhibited the nuclear factor-κB/mitogen-activated protein kinase (NF-κB/MAPK) pathway. In addition, CAS promoted osteogenic differentiation of BMSCs and reduced osteoclastogenesis of bone marrow monocytes. Finally, CAS was observed to retard the receptor activator of NFκ-B ligand-induced NF-κB/MAPK pathway. CONCLUSION CAS promoted osteogenic differentiation of BMSCs and improved osteoporosis in rats by regulating the NF-κB/MAPK pathway. This might shed a light into using CAS as a drug treating osteoporosis in the future.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuejia Li
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianmin Li
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanxin Liu
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Yu
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuqiang Wang
- Department of Spine Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojian Ye
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Si-Wu Water Extracts Protect against Colonic Mucus Barrier Damage by Regulating Muc2 Mucin Expression in Mice Fed a High-Fat Diet. Foods 2022; 11:foods11162499. [PMID: 36010498 PMCID: PMC9407452 DOI: 10.3390/foods11162499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
A high-fat diet (HFD) could cause gut barrier damage. The herbs in si-wu (SW) include dang gui (Angelica sinensis (Oliv.) Diels), shu di huang (the processed root of Rehmannia glutinosa Libosch.), chuan xiong (rhizome of Ligusticum chuanxiong Hort.), and bai shao (the root of Paeonia lactiflora f. pilosella (Nakai) Kitag.). Si-wu water extracts (SWE) have been used to treat blood deficiency. Components of one herb from SW have been reported to have anti-inflammatory and anti-obesity activities. However, there have been no reports about the effects of SWE on gut barrier damage. Therefore, the aim of the study was to explore the effect of SWE on gut barrier damage. In this study, we found that SWE effectively controlled body weight, liver weight, and feed efficiency, as well as decreased the serum TC level in HFD-fed mice. Moreover, SWE and rosiglitazone (Ros, positive control) increased the colonic alkaline phosphatase (ALP) level, down-regulated serum pro-inflammatory cytokine levels, and reduced intestinal permeability. In addition, SWE increased goblet cell numbers and mucus layer thickness to strengthen the mucus barrier. After supplementation with SWE and rosiglitazone, the protein expression of CHOP and GRP78 displayed a decrease, which improved the endoplasmic reticulum (ER) stress condition. Meanwhile, the increase in Cosmc and C1GALT1 improved the O-glycosylation process for correct protein folding. These results collectively demonstrated that SWE improved the mucus barrier, focusing on Muc2 mucin expression, in a prolonged high-fat diet, and provides evidence for the potential of SWE in the treatment of intestinal disease-associated mucus barrier damage.
Collapse
|
5
|
Jiawei Yanghe Decoction Regulates Bone-Lipid Balance through the BMP-SMAD Signaling Pathway to Promote Osteogenic Differentiation of Bone Mesenchymal Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2885419. [PMID: 35769158 PMCID: PMC9236768 DOI: 10.1155/2022/2885419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
Abstract
Background The Jiawei Yanghe decoction (JWYHD) is a traditional Chinese medicine formula for the treatment of osteoporosis, but its therapeutic mechanism has not been fully elucidated, and the therapeutic target of the intervention disease needs to be further verified. The dysfunction of bone mesenchymal stem cells (BMSCs) is considered to be an important pathogenesis of postmenopausal osteoporosis (PMOP). The purpose of this study was to explore how JWYHD regulates BMSC differentiation through the BMP-SMAD signal pathway. Methods In the in vivo study, we used an ovariectomized PMOP rat (n = 36, 2-month-old, 200 ± 20 g) model and femur micro-CT analysis to study the effect of JWYHD on bone loss in rats. By immunofluorescence, the translocation expression of BMP2, a key protein in the pathway, was detected. Serum bone metabolism was detected by an enzyme-linked immunosorbent assay (ELISA). Alkaline phosphatase (ALP) activity was detected by alkaline phosphatase staining (ALPS), osteogenesis and matrix mineralization were detected by alizarin red staining (ARS), the adipogenic ability of BMSCs was detected by oil red staining (ORS), and CFU is used to detect the ability of cells to form colonies. The expression of related proteins was detected by western blotting. Results In vivo and in vitro, the OP phenotypes of SD rats induced by ovariectomy (OVX) included impaired bone mineral density and microstructure, abnormal bone metabolism, and impaired MSC differentiation potential. JWYHD treatment reversed this trend and restored the differentiation potential of MSCs. JWYHD medicated serum and direct intervention of drugs activated the BMP-SMAD signaling pathway, promoted the osteogenic differentiation of BMSCs, and inhibited their adipogenic differentiation. Conclusions Our data identified that JWYHD is an effective alternative drug for the treatment of PMOP that functions to stimulate the differentiation of BMSCs into osteoblasts in the BMP-SMAD signaling-dependent mechanism.
Collapse
|
6
|
Zhao J, Xiao X, Zhou G, Xu N, Liu J. Effectiveness of Yushen Hezhi therapy for postmenopausal osteoporosis: An overview of systematic reviews of randomized controlled trials. Front Endocrinol (Lausanne) 2022; 13:1015483. [PMID: 36225202 PMCID: PMC9548895 DOI: 10.3389/fendo.2022.1015483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To review systematic reviews (SRs) and meta-analyses (MAs) of Yushen Hezhi therapy (YSHZT) for postmenopausal osteoporosis (PMOP) to provide an evidence-based recommendation for researchers and decision makers. METHODS We searched the PubMed, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), China Biology Medicine (CBM) and Wanfang databases for published SRs and MAs on YSHZT for the treatment of PMOP. The retrieval time was limited to July 2022. The Assessing the Methodological Quality of Systematic Reviews (AMSTAR)-2 tool and Grades of Recommendations, Assessment, Development, and Evaluation (GRADE) classification system were used to evaluate the methodological quality and the evidence quality of the SRs and MAs, respectively. RESULTS A total of 14 SRs and MAs involving 14720 cases of PMOP were included. The results of the methodological quality evaluation indicated that there were no studies with medium- or high-quality methodology included in the study and that there were 9 and 5 low- and very low-quality studies, respectively. The GRADE evaluation results show that while there was no high-level evidence based on 86 evaluation indicators, there was 1 study with moderate-level evidence (1%), 44 studies with low-level evidence (51%) and 41 with very low-level evidence (48%) based on other indicators. YSHZT can significantly improve the bone mineral density (BMD) of Ward's triangle, with a mean difference range of 0.03 to 0.12. Different conclusions were reported regarding the BMD of the lumbar spine, femoral trochanter, femoral neck, and hip, as well as bone turnover markers, adverse reactions and other outcome indicators in different SRs and thus still need further study. CONCLUSIONS The methodological quality and the evidence quality of the outcome indicators for YSHZT in the treatment of PMOP are poor, and the efficacy and safety of YSHZT in the treatment of PMOP still need to be further verified by more high-quality studies.
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiao Xiao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghui Zhou
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nanjun Xu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Liu
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Enginering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
- *Correspondence: Jun Liu,
| |
Collapse
|