1
|
Vázquez-Carrillo MG, Palos-Hernández A, González-Paramás AM, Santos-Buelga C, García-Cruz L, Arellano-Vázquez JL, Rojas-Martínez I. Blue maize with pigmented germ: Phytochemical compounds and tortilla color. Food Chem 2025; 463:141109. [PMID: 39265409 DOI: 10.1016/j.foodchem.2024.141109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
Blue maize is used in the production of various traditional foods, and its phytochemical composition has been claimed to possess health benefits. In this study, two blue maize hybrids with pigmented germ grown in five environments were studied under the hypothesis that the germ could have a different anthocyanin profile from that of anthocyanins synthesized in the aleurone layer, and that those in the germ could increase the total anthocyanin content in the whole grain. The percentage of pigmented germ, total anthocyanin content (TA) and total soluble phenols in the germ, whole grain and tortilla were evaluated to determine how tortilla color is modified. For the first time, the anthocyanin and fatty acid profiles of pigmented germ were determined. In the anthocyanin profile, anthocyanins derived from peonidin stood out, making 50.7 %. The most abundant fatty acid was linoleic acid (40.6 %). Whole kernel TA content increased when the maize had a higher percentage of pigmented germ, with minimal changes when grain was transformed to tortilla, resulting in darker tortillas. The large variation in TA among environments highlights the importance of identifying the environments that most favor anthocyanin synthesis.
Collapse
Affiliation(s)
- María Gricelda Vázquez-Carrillo
- Laboratorio de maíz. Campo Experimental Valle de México, Instituto Nacional de Investigaciones, Forestales, Agrícolas y Pecuarias (INIFAP). Km 13.5 Carretera Los Reyes-Texcoco, Estado de México, Mexico
| | - Andrea Palos-Hernández
- Grupo de Investigación en Polifenoles (GIP-USAL), Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ana María González-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Leticia García-Cruz
- Laboratorio de maíz. Campo Experimental Valle de México, Instituto Nacional de Investigaciones, Forestales, Agrícolas y Pecuarias (INIFAP). Km 13.5 Carretera Los Reyes-Texcoco, Estado de México, Mexico.
| | - José Luis Arellano-Vázquez
- Programa de mejoramiento genético de maíz. Campo Experimental Valle de México, Instituto Nacional de Investigaciones, Forestales, Agrícolas y Pecuarias. Km 13.5 Carretera Los Reyes-Texcoco, Estado de México, Mexico
| | - Israel Rojas-Martínez
- Programa de mejoramiento genético de maíz. Campo Experimental Valle de México, Instituto Nacional de Investigaciones, Forestales, Agrícolas y Pecuarias. Km 13.5 Carretera Los Reyes-Texcoco, Estado de México, Mexico
| |
Collapse
|
2
|
Popa C, Călugăr RE, Varga A, Muntean E, Băcilă I, Vana CD, Racz I, Tritean N, Berindean IV, Ona AD, Muntean L. Evaluating Maize Hybrids for Yield, Stress Tolerance, and Carotenoid Content: Insights into Breeding for Climate Resilience. PLANTS (BASEL, SWITZERLAND) 2025; 14:138. [PMID: 39795399 PMCID: PMC11722938 DOI: 10.3390/plants14010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/26/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
To ensure food and feed security, modern maize hybrids must not only perform well under changing climate conditions but also consistently achieve higher and stable yields, exhibit maximum tolerance to stress factors, and produce high quality grains. In a study conducted in 2022 and 2023, 50 maize hybrids were developed from crosses of five elite (highly productive) inbred lines and ten lines possessing favorable genes for carotenoid content. These hybrids were tested under particularly unfavorable conditions for maize cultivation. The aim was to identify which lines effectively transmit the desired traits to the offspring (general combining ability-GCA), and to identify superior hybrids in terms of productivity, adaptability, and quality (specific combining ability-SCA). The study revealed that total carotenoids ranged from 2.30 to 40.20 μg/g for the inbred lines and from 7.45 to 25.08 μg/g for hybrids. A wider distribution of values was observed in the inbred lines compared to the hybrids for key carotenoids such as lutein, zeaxanthin, β-cryptoxanthin, and β-carotene. Among the hybrids, notable performers in yield, adaptability, and carotenoid content included E390×D302, A452×D302, and A447×D302. The paternal inbred line D302 exhibited a high general combining ability for yield (1446 kg ha-1) and, when crossed with several inbred lines, produced hybrids with enhanced yields and higher levels of zeaxanthin, lutein, and β-carotene, as well as improved unbroken plants percent.
Collapse
Affiliation(s)
- Călin Popa
- Department of Plant Breeding, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăstur St., 400372 Cluj-Napoca, Romania; (C.P.); (A.D.O.); (L.M.)
| | - Roxana Elena Călugăr
- Agricultural Research and Development Station Turda, Agriculturii 27, 401100 Turda, Romania; (A.V.); (E.M.); (C.D.V.); (I.R.); (N.T.)
| | - Andrei Varga
- Agricultural Research and Development Station Turda, Agriculturii 27, 401100 Turda, Romania; (A.V.); (E.M.); (C.D.V.); (I.R.); (N.T.)
| | - Edward Muntean
- Agricultural Research and Development Station Turda, Agriculturii 27, 401100 Turda, Romania; (A.V.); (E.M.); (C.D.V.); (I.R.); (N.T.)
- Food Sciences Department, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăstur St., 400372 Cluj-Napoca, Romania
| | - Ioan Băcilă
- Institute of Biological Research, Branch of the National Institute of Research and Development for Biological Sciences, Department of Experimental Biology and Biochemistry, 48 Republicii Street, 400015 Cluj-Napoca, Romania;
| | - Carmen Daniela Vana
- Agricultural Research and Development Station Turda, Agriculturii 27, 401100 Turda, Romania; (A.V.); (E.M.); (C.D.V.); (I.R.); (N.T.)
| | - Ionuț Racz
- Agricultural Research and Development Station Turda, Agriculturii 27, 401100 Turda, Romania; (A.V.); (E.M.); (C.D.V.); (I.R.); (N.T.)
- Department of Genetics, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăstur St., 400372 Cluj-Napoca, Romania
| | - Nicolae Tritean
- Agricultural Research and Development Station Turda, Agriculturii 27, 401100 Turda, Romania; (A.V.); (E.M.); (C.D.V.); (I.R.); (N.T.)
| | - Ioana Virginia Berindean
- Department of Genetics, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăstur St., 400372 Cluj-Napoca, Romania
| | - Andreea D. Ona
- Department of Plant Breeding, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăstur St., 400372 Cluj-Napoca, Romania; (C.P.); (A.D.O.); (L.M.)
| | - Leon Muntean
- Department of Plant Breeding, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăstur St., 400372 Cluj-Napoca, Romania; (C.P.); (A.D.O.); (L.M.)
| |
Collapse
|
3
|
García-Gurrola A, Martínez AL, Wall-Medrano A, Olivas-Aguirre FJ, Ochoa-Ruiz E, Escobar-Puentes AA. Phytochemistry, Anti-cancer, and Anti-diabetic Properties of Plant-Based Foods from Mexican Agrobiodiversity: A Review. Foods 2024; 13:4176. [PMID: 39767118 PMCID: PMC11675762 DOI: 10.3390/foods13244176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) and cancer are significant contributors to morbidity and mortality worldwide. Recent studies have increasingly highlighted the potential of phytochemicals found in plants and plant-based foods for preventing and treating these chronic diseases. Mexico's agrobiodiversity provides a valuable resource for phytochemistry. This review presents an examination of essential phytochemicals found in plants and foods within Mexican agrobiodiversity that have shown promising anti-cancer and anti-diabetic properties, including their roles as antioxidants, insulin sensitizers, and enzyme inhibitors. Notable compounds identified include flavonoids (such as quercetin and catechins), phenolic acids (chlorogenic, gallic, and caffeic acids), methylxanthines (like theobromine), xanthones (such as mangiferin), capsaicinoids (capsaicin), organosulfur compounds (like alliin), and various lipids (avocatins). Although these phytochemicals have shown promise in laboratory and animal studies, there is a significant scarcity of clinical trial data involving humans, underscoring an important area for future research.
Collapse
Affiliation(s)
- Adriana García-Gurrola
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| | - Ana Laura Martínez
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| | - Abraham Wall-Medrano
- Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Ciudad Juaez 32300, Chihuahua, Mexico; (A.W.-M.); (F.J.O.-A.)
| | - Francisco J. Olivas-Aguirre
- Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Ciudad Juaez 32300, Chihuahua, Mexico; (A.W.-M.); (F.J.O.-A.)
| | - Estefania Ochoa-Ruiz
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| | - Alberto A. Escobar-Puentes
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| |
Collapse
|
4
|
Marques BLM, Passos TS, Dantas AI, de Lima MAA, Moreira SMG, Rodrigues VM, do Nascimento Dantas MR, Lopes PS, Gomes APB, da Silva Fernandes R, Júnior FHX, Sousa Júnior FCD, de Assis CF. Nanoencapsulation of quinoa oil enhanced the antioxidant potential and inhibited digestive enzymes. Food Res Int 2024; 196:115066. [PMID: 39614496 DOI: 10.1016/j.foodres.2024.115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 12/01/2024]
Abstract
Quinoa oil is rich in unsaturated fatty acids and vitamin E, but its instability limits its application in food, pharmaceutical, and cosmetic products. Nanoencapsulation emerges as a promising strategy to promote water dispersibility, preserve and enhance functional properties, and increase the bioavailability of bioactive compounds. This study encapsulated quinoa oil through O/W emulsification, using porcine gelatin (OG) and isolated whey protein (OWG) as encapsulating agents. The particles were characterized by different physical and chemical methods and evaluated in vitro for cytotoxicity using Chinese hamster ovary (CHO) cells, human hepatocarcinoma cells (HepG2) and epithelial cells, and bioactive potential through the determination of Total Antioxidant Capacity (CAT) (acidic and neutral media) and iron chelation, and inhibition of digestive enzymes (α-amylase and amyloglucosidase). OG and OWG particles presented smooth surfaces, with an average size between 161 ± 7 and 264 ± 6 nm, with a polydispersity index of 0.11 ± 0.03 and 0.130 ± 0.04, encapsulation efficiency of 74 ± 1.47 % and 83 ± 2.92 %, and water dispersibility >70 %, respectively. Free and nanoencapsulated quinoa oil did not show cytotoxic effects (cell viability >70 %). Nanoencapsulation promoted the enhancement of the antioxidant activity of quinoa oil in the range of 50-63 % in a neutral medium and 96-153 % in an acidic medium than free oil (p < 0.05). OG and OWG also enhanced the inhibition of the enzymes α-amylase (by 5-7 %) and amyloglucosidase (6-9 times more) than free oil (p < 0.05). The results showed that nanoencapsulation increased the potential for quinoa oil application, enabling the development of innovative products.
Collapse
Affiliation(s)
- Bruna Lorena Meneses Marques
- Pharmaceutical Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Thaís Souza Passos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Alyne Ingrydid Dantas
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Malu Andrade Alves de Lima
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Susana Margarida Gomes Moreira
- Department of Cell Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Victor M Rodrigues
- Department of Cell Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Marina R do Nascimento Dantas
- Department of Cell Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Patrícia Santos Lopes
- Departament of Pharmaceutical Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Ana Paula Barreto Gomes
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Francisco Canindé de Sousa Júnior
- Pharmaceutical Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Cristiane Fernandes de Assis
- Pharmaceutical Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
5
|
Cai S, Mao Y, Gu Y, Huang B, He Z, Zeng M, Wang Z, Chen Q, Tang M, Chen J. Carotenoid and Phenolic Compositions and Antioxidant Activity of 23 Cultivars of Corn Grain and Corn Husk Extract. Foods 2024; 13:3375. [PMID: 39517159 PMCID: PMC11545591 DOI: 10.3390/foods13213375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
As a byproduct of corn processing, corn husk is usually burned or disposed of. To make a better use of corn husk, its bioactive components need to be further explored. In this work, the carotenoids and phenolics of the extracts from the corn grain and corn husk of 15 different yellow corn and 8 different waxy corn were identified and quantified, and their antioxidant activities were assessed. The results showed many considerable variations in carotenoid contents. Four types of carotenoids were observed only in both yellow corn and black waxy corn. The highest lutein and zeaxanthin contents were both observed in yellow corn husks. Lutein dominates in yellow corn, ranging from 494.5 μg/g dw to 2870.8 μg/g dw, which is followed by zeaxanthin, ranging from 63.0 μg/g dw to 360.2 μg/g dw, and finally β-cryptoxanthin and β-carotene. The total content of polyphenols (TPC) and flavonoids (TFC) of the husk from 13 yellow corn cultivars, as well as the TPC of husk from 8 waxy corn cultivars, were all higher than those of their corn grain, with the highest TPC found in waxy corn husk. Additionally, a total of 20 phenolic compounds were identified, and ferulic acid showed the highest content and reached 1101.9 µg/g dw in a waxy corn husk. The average antioxidant activity of a waxy corn husk was 25-65% higher than that of a yellow corn husk, and the highest values were observed in the husk of the waxy corn cultivar Huhong 1. These results suggested that corn husk is a rich source of lutein and phenolics and provided excellent cultivars as a reference for functional food products in agriculture and the food industry.
Collapse
Affiliation(s)
- Shaokai Cai
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (Z.H.); (M.Z.); (Z.W.); (Q.C.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yuxiang Mao
- Institute of Agricultural Sciences of Jiangsu Changjiang River Bank District, Nantong 226012, China; (Y.M.); (Y.G.)
| | - Yongjian Gu
- Institute of Agricultural Sciences of Jiangsu Changjiang River Bank District, Nantong 226012, China; (Y.M.); (Y.G.)
| | - Bowen Huang
- Wuxi Food Safety Inspection and Test Center, Wuxi 214142, China;
- Technology Innovation Center of Special Food for State Market Regulation, Wuxi 214142, China
| | - Zhiyong He
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (Z.H.); (M.Z.); (Z.W.); (Q.C.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (Z.H.); (M.Z.); (Z.W.); (Q.C.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (Z.H.); (M.Z.); (Z.W.); (Q.C.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (Z.H.); (M.Z.); (Z.W.); (Q.C.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Mingxia Tang
- Institute of Agricultural Sciences of Jiangsu Changjiang River Bank District, Nantong 226012, China; (Y.M.); (Y.G.)
| | - Jie Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (Z.H.); (M.Z.); (Z.W.); (Q.C.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Younis IY, Khattab AR, Selim NM, Sobeh M, Elhawary SS, Bishbishy MHE. Metabolomics-based profiling of 4 avocado varieties using HPLC-MS/MS and GC/MS and evaluation of their antidiabetic activity. Sci Rep 2022; 12:4966. [PMID: 35322072 PMCID: PMC8943142 DOI: 10.1038/s41598-022-08479-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Seven avocado "Persea americana" seeds belonging to 4 varieties, collected from different localities across the world, were profiled using HPLC-MS/MS and GC/MS to explore the metabolic makeup variabilities and antidiabetic potential. For the first time, 51 metabolites were tentatively-identified via HPLC-MS/MS, belonging to different classes including flavonoids, biflavonoids, naphthodianthrones, dihydrochalcones, phloroglucinols and phenolic acids while 68 un-saponified and 26 saponified compounds were identified by GC/MS analysis. The primary metabolic variabilities existing among the different varieties were revealed via GC/MS-based metabolomics assisted by unsupervised pattern recognition methods. Fatty acid accumulations were proved as competent, and varietal-discriminatory metabolites. The antidiabetic potential of the different samples was explored using in-vitro amylase and glucosidase inhibition assays, which pointed out to Gwen (KG) as the most potent antidiabetic sample. This could be attributed to its enriched content of poly-unsaturated fatty acids and polyphenolics. Molecular docking was then performed to predict the most promising phytoligands in KG variety to be posed as antidiabetic drug leads. The highest in-silico α-amylase inhibition was observed with chrysoeriol-4'-O-pentoside-7-O-rutinoside, apigenin-7-glucuronide and neoeriocitrin which might serve as potential drug leads for the discovery of new antidiabetic remedies.
Collapse
Affiliation(s)
- Inas Y Younis
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Amira R Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, 1029, Egypt
| | - Nabil M Selim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, 43150, Ben-Guerir, Morocco.
| | - Seham S Elhawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | | |
Collapse
|
7
|
Neder-Suárez D, Lardizabal-Gutiérrez D, Zazueta-Morales JDJ, Meléndez-Pizarro CO, Delgado-Nieblas CI, Ramírez Wong B, Gutiérrez-Méndez N, Hernández-Ochoa LR, Quintero-Ramos A. Anthocyanins and Functional Compounds Change in a Third-Generation Snacks Prepared Using Extruded Blue Maize, Black Bean, and Chard: An Optimization. Antioxidants (Basel) 2021; 10:antiox10091368. [PMID: 34573000 PMCID: PMC8465905 DOI: 10.3390/antiox10091368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022] Open
Abstract
The effect of extrusion cooking on bioactive compounds in third-generation snacks (TGSE) and microwave-expanded snacks (MWSE) prepared using black bean, blue maize, and chard (FBCS) was evaluated. FBCS was extruded at different moisture contents (MC; 22.2–35.7%), extrusion temperatures (ET; 102–142 °C), and screw speeds (SP; 96–171 rpm). Total anthocyanin content (TAC), contents of individual anthocyanins, viz., cyanidin-3-glucoside, malvidin-3-glucoside, pelargonidin-3-glucoside, pelargonidin-3-5-diglucoside, and delphinidin-3-glucoside chloride, total phenolic content (TPC), antioxidant activity (AA), and color parameters were determined. TAC and individual anthocyanin levels increased with the reduction in ET. ET and MC affected the chemical and color properties; increase in ET caused a significant reduction in TPC and AA. Microwave expansion reduced anthocyanin content and AA, and increased TPC. Extrusion under optimal conditions (29% MC, 111 rpm, and 120 °C) generated products with a high retention of functional compounds, with high TAC (41.81%) and TPC (28.23%). Experimental validation of optimized process parameters yielded an average error of 13.73% from the predicted contents of individual anthocyanins. Results suggest that the TGSE of FBCS obtained by combining extrusion and microwave expansion achieved significant retention of bioactive compounds having potential physiological benefits for humans.
Collapse
Affiliation(s)
- David Neder-Suárez
- Departamento de Investigación y Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n Campus Universitario 2, Chihuahua 31125, Mexico; (D.N.-S.); (C.O.M.-P.); (N.G.-M.); (L.R.H.-O.)
| | - Daniel Lardizabal-Gutiérrez
- Centro de Investigación en Materiales Avanzados, S. C. Avenida Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31109, Mexico;
| | - José de Jesús Zazueta-Morales
- Programa de Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Mexico; (J.d.J.Z.-M.); (C.I.D.-N.)
| | - Carmen Oralia Meléndez-Pizarro
- Departamento de Investigación y Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n Campus Universitario 2, Chihuahua 31125, Mexico; (D.N.-S.); (C.O.M.-P.); (N.G.-M.); (L.R.H.-O.)
| | - Carlos Iván Delgado-Nieblas
- Programa de Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Mexico; (J.d.J.Z.-M.); (C.I.D.-N.)
| | - Benjamín Ramírez Wong
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Rosales y Blvd. Luis Encinas s/n, Hermosillo 83000, Mexico;
| | - Néstor Gutiérrez-Méndez
- Departamento de Investigación y Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n Campus Universitario 2, Chihuahua 31125, Mexico; (D.N.-S.); (C.O.M.-P.); (N.G.-M.); (L.R.H.-O.)
| | - León Raúl Hernández-Ochoa
- Departamento de Investigación y Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n Campus Universitario 2, Chihuahua 31125, Mexico; (D.N.-S.); (C.O.M.-P.); (N.G.-M.); (L.R.H.-O.)
| | - Armando Quintero-Ramos
- Departamento de Investigación y Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n Campus Universitario 2, Chihuahua 31125, Mexico; (D.N.-S.); (C.O.M.-P.); (N.G.-M.); (L.R.H.-O.)
- Correspondence: or
| |
Collapse
|
8
|
Acevedo-Martinez KA, Gonzalez de Mejia E. Fortification of Maize Tortilla with an Optimized Chickpea Hydrolysate and Its Effect on DPPIV Inhibition Capacity and Physicochemical Characteristics. Foods 2021; 10:foods10081835. [PMID: 34441612 PMCID: PMC8392616 DOI: 10.3390/foods10081835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022] Open
Abstract
Chickpea hydrolysates have shown bioactivity towards type 2 diabetes by inhibiting dipeptidyl peptidase (DPPIV) activity. The objective was to compare the effect of adding different levels of an optimized bromelain hydrolysate from chickpea isolated protein on DPPIV inhibition capacity and physicochemical properties of maize tortilla. White and blue maize tortillas, with no added chickpea hydrolysates were compared with fortified tortillas at the levels of 5%, 10%, and 15% w/w. Changes in color (L* a* b*, hue angle, and ΔE), texture (hardness, cohesiveness, and puncture force), and moisture were tested. Soluble protein determination and SDS-PAGE electrophoresis were used to characterize the protein profiles, and LC-MS-MS was used to sequence the peptides. DPPIV inhibition was evaluated before and after simulated gastrointestinal digestion. Peptides in the hydrolysates had high hydrophobicity (7.97–27.05 kcal * mol −1) and pI (5.18–11.13). Molecular docking of peptides showed interaction with DPPIV with an energy of affinity of –5.8 kcal/mol for FDLPAL in comparison with vildagliptin (−6.2 kcal/mol). The lowest fortification level increased soluble protein in 105% (8 g/100 g tortilla). DPPIV inhibition of white maize tortilla increased from 11% (fresh control) to 91% (15% fortification), and for blue tortilla from 26% to 95%. After simulated digestion, there was not a difference between blue or maize tortillas for DPPIV inhibition. Fortification of maize tortilla with chickpea hydrolysate inhibits DPPIV and can potentially be used in the prevention and management of type 2 diabetes. However, due to observed physicochemical changes of the fortified tortilla, sensory properties and consumer acceptance need to be evaluated.
Collapse
|